gecko-dev/gfx/2d/Swizzle.cpp
Cosmin Sabou 6da90eb0b7 Backed out 9 changesets (bug 1551088) for causing Bug 1583848. a=backout
Backed out changeset d0ab25c226a7 (bug 1551088)
Backed out changeset 9ef391e20fa6 (bug 1551088)
Backed out changeset 3e6f25b21f8c (bug 1551088)
Backed out changeset 5d72c8de4daf (bug 1551088)
Backed out changeset f77c43bcc75b (bug 1551088)
Backed out changeset 9e954d6765de (bug 1551088)
Backed out changeset d90a571e581f (bug 1551088)
Backed out changeset 25a5f5563e9d (bug 1551088)
Backed out changeset bed9c93eeb2d (bug 1551088)
2019-09-25 18:42:48 +03:00

785 lines
31 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Swizzle.h"
#include "Logging.h"
#include "Tools.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/EndianUtils.h"
#ifdef USE_SSE2
# include "mozilla/SSE.h"
#endif
#ifdef USE_NEON
# include "mozilla/arm.h"
#endif
namespace mozilla {
namespace gfx {
/**
* Convenience macros for dispatching to various format combinations.
*/
// Hash the formats to a relatively dense value to optimize jump table
// generation. The first 6 formats in SurfaceFormat are the 32-bit BGRA variants
// and are the most common formats dispatched here. Room is reserved in the
// lowish bits for up to these 6 destination formats. If a destination format is
// >= 6, the 6th bit is set to avoid collisions.
#define FORMAT_KEY(aSrcFormat, aDstFormat) \
(int(aSrcFormat) * 6 + int(aDstFormat) + (int(int(aDstFormat) >= 6) << 6))
#define FORMAT_CASE_EXPR(aSrcFormat, aDstFormat, ...) \
case FORMAT_KEY(aSrcFormat, aDstFormat): \
__VA_ARGS__; \
return true;
#define FORMAT_CASE(aSrcFormat, aDstFormat, ...) \
FORMAT_CASE_EXPR(aSrcFormat, aDstFormat, FORMAT_CASE_CALL(__VA_ARGS__))
/**
* Constexpr functions for analyzing format attributes in templates.
*/
// Whether B comes before R in pixel memory layout.
static constexpr bool IsBGRFormat(SurfaceFormat aFormat) {
return aFormat == SurfaceFormat::B8G8R8A8 ||
#if MOZ_LITTLE_ENDIAN
aFormat == SurfaceFormat::R5G6B5_UINT16 ||
#endif
aFormat == SurfaceFormat::B8G8R8X8 || aFormat == SurfaceFormat::B8G8R8;
}
// Whether the order of B and R need to be swapped to map from src to dst.
static constexpr bool ShouldSwapRB(SurfaceFormat aSrcFormat,
SurfaceFormat aDstFormat) {
return IsBGRFormat(aSrcFormat) != IsBGRFormat(aDstFormat);
}
// The starting byte of the RGB components in pixel memory.
static constexpr uint32_t RGBByteIndex(SurfaceFormat aFormat) {
return aFormat == SurfaceFormat::A8R8G8B8 ||
aFormat == SurfaceFormat::X8R8G8B8
? 1
: 0;
}
// The byte of the alpha component, which just comes after RGB.
static constexpr uint32_t AlphaByteIndex(SurfaceFormat aFormat) {
return (RGBByteIndex(aFormat) + 3) % 4;
}
// The endian-dependent bit shift to access RGB of a UINT32 pixel.
static constexpr uint32_t RGBBitShift(SurfaceFormat aFormat) {
#if MOZ_LITTLE_ENDIAN
return 8 * RGBByteIndex(aFormat);
#else
return 8 - 8 * RGBByteIndex(aFormat);
#endif
}
// The endian-dependent bit shift to access alpha of a UINT32 pixel.
static constexpr uint32_t AlphaBitShift(SurfaceFormat aFormat) {
return (RGBBitShift(aFormat) + 24) % 32;
}
// Whether the pixel format should ignore the value of the alpha channel and
// treat it as opaque.
static constexpr bool IgnoreAlpha(SurfaceFormat aFormat) {
return aFormat == SurfaceFormat::B8G8R8X8 ||
aFormat == SurfaceFormat::R8G8B8X8 ||
aFormat == SurfaceFormat::X8R8G8B8;
}
// Whether to force alpha to opaque to map from src to dst.
static constexpr bool ShouldForceOpaque(SurfaceFormat aSrcFormat,
SurfaceFormat aDstFormat) {
return IgnoreAlpha(aSrcFormat) != IgnoreAlpha(aDstFormat);
}
#ifdef USE_SSE2
/**
* SSE2 optimizations
*/
template <bool aSwapRB, bool aOpaqueAlpha>
void Premultiply_SSE2(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define PREMULTIPLY_SSE2(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Premultiply_SSE2<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
template <bool aSwapRB>
void Unpremultiply_SSE2(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define UNPREMULTIPLY_SSE2(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Unpremultiply_SSE2<ShouldSwapRB(aSrcFormat, aDstFormat)>)
template <bool aSwapRB, bool aOpaqueAlpha>
void Swizzle_SSE2(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define SWIZZLE_SSE2(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Swizzle_SSE2<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
#endif
#ifdef USE_NEON
/**
* ARM NEON optimizations
*/
template <bool aSwapRB, bool aOpaqueAlpha>
void Premultiply_NEON(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define PREMULTIPLY_NEON(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Premultiply_NEON<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
template <bool aSwapRB>
void Unpremultiply_NEON(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define UNPREMULTIPLY_NEON(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Unpremultiply_NEON<ShouldSwapRB(aSrcFormat, aDstFormat)>)
template <bool aSwapRB, bool aOpaqueAlpha>
void Swizzle_NEON(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define SWIZZLE_NEON(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Swizzle_NEON<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
#endif
/**
* Premultiplying
*/
// Fallback premultiply implementation that uses splayed pixel math to reduce
// the multiplications used. That is, the R and B components are isolated from
// the G and A components, which then can be multiplied as if they were two
// 2-component vectors. Otherwise, an approximation if divide-by-255 is used
// which is faster than an actual division. These optimizations are also used
// for the SSE2 and NEON implementations.
template <bool aSwapRB, bool aOpaqueAlpha, uint32_t aSrcRGBShift,
uint32_t aSrcAShift, uint32_t aDstRGBShift, uint32_t aDstAShift>
static void PremultiplyFallback(const uint8_t* aSrc, int32_t aSrcGap,
uint8_t* aDst, int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
// Load and process 1 entire pixel at a time.
uint32_t color = *reinterpret_cast<const uint32_t*>(aSrc);
uint32_t a = aSrcAShift ? color >> aSrcAShift : color & 0xFF;
// Isolate the R and B components.
uint32_t rb = (color >> aSrcRGBShift) & 0x00FF00FF;
// Swap the order of R and B if necessary.
if (aSwapRB) {
rb = (rb >> 16) | (rb << 16);
}
// Approximate the multiply by alpha and divide by 255 which is
// essentially:
// c = c*a + 255; c = (c + (c >> 8)) >> 8;
// However, we omit the final >> 8 to fold it with the final shift into
// place depending on desired output format.
rb = rb * a + 0x00FF00FF;
rb = (rb + ((rb >> 8) & 0x00FF00FF)) & 0xFF00FF00;
// Use same approximation as above, but G is shifted 8 bits left.
// Alpha is left out and handled separately.
uint32_t g = color & (0xFF00 << aSrcRGBShift);
g = g * a + (0xFF00 << aSrcRGBShift);
g = (g + (g >> 8)) & (0xFF0000 << aSrcRGBShift);
// The above math leaves RGB shifted left by 8 bits.
// Shift them right if required for the output format.
// then combine them back together to produce output pixel.
// Add the alpha back on if the output format is not opaque.
*reinterpret_cast<uint32_t*>(aDst) =
(rb >> (8 - aDstRGBShift)) |
(g >> (8 + aSrcRGBShift - aDstRGBShift)) |
(aOpaqueAlpha ? 0xFF << aDstAShift : a << aDstAShift);
aSrc += 4;
aDst += 4;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define PREMULTIPLY_FALLBACK_CASE(aSrcFormat, aDstFormat) \
FORMAT_CASE( \
aSrcFormat, aDstFormat, \
PremultiplyFallback<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat), \
RGBBitShift(aSrcFormat), AlphaBitShift(aSrcFormat), \
RGBBitShift(aDstFormat), AlphaBitShift(aDstFormat)>)
#define PREMULTIPLY_FALLBACK(aSrcFormat) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::B8G8R8A8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::B8G8R8X8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::R8G8B8A8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::R8G8B8X8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::A8R8G8B8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::X8R8G8B8)
// If rows are tightly packed, and the size of the total area will fit within
// the precision range of a single row, then process all the data as if it was
// a single row.
static inline IntSize CollapseSize(const IntSize& aSize, int32_t aSrcStride,
int32_t aDstStride) {
if (aSrcStride == aDstStride && (aSrcStride & 3) == 0 &&
aSrcStride / 4 == aSize.width) {
CheckedInt32 area = CheckedInt32(aSize.width) * CheckedInt32(aSize.height);
if (area.isValid()) {
return IntSize(area.value(), 1);
}
}
return aSize;
}
static inline int32_t GetStrideGap(int32_t aWidth, SurfaceFormat aFormat,
int32_t aStride) {
CheckedInt32 used = CheckedInt32(aWidth) * BytesPerPixel(aFormat);
if (!used.isValid() || used.value() < 0) {
return -1;
}
return aStride - used.value();
}
bool PremultiplyData(const uint8_t* aSrc, int32_t aSrcStride,
SurfaceFormat aSrcFormat, uint8_t* aDst,
int32_t aDstStride, SurfaceFormat aDstFormat,
const IntSize& aSize) {
if (aSize.IsEmpty()) {
return true;
}
IntSize size = CollapseSize(aSize, aSrcStride, aDstStride);
// Find gap from end of row to the start of the next row.
int32_t srcGap = GetStrideGap(aSize.width, aSrcFormat, aSrcStride);
int32_t dstGap = GetStrideGap(aSize.width, aDstFormat, aDstStride);
MOZ_ASSERT(srcGap >= 0 && dstGap >= 0);
if (srcGap < 0 || dstGap < 0) {
return false;
}
#define FORMAT_CASE_CALL(...) __VA_ARGS__(aSrc, srcGap, aDst, dstGap, size)
#ifdef USE_SSE2
if (mozilla::supports_sse2()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
PREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8X8)
PREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
default:
break;
}
#endif
#ifdef USE_NEON
if (mozilla::supports_neon()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
PREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8X8)
PREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
default:
break;
}
#endif
switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
PREMULTIPLY_FALLBACK(SurfaceFormat::B8G8R8A8)
PREMULTIPLY_FALLBACK(SurfaceFormat::R8G8B8A8)
PREMULTIPLY_FALLBACK(SurfaceFormat::A8R8G8B8)
default:
break;
}
#undef FORMAT_CASE_CALL
MOZ_ASSERT(false, "Unsupported premultiply formats");
return false;
}
/**
* Unpremultiplying
*/
// Generate a table of 8.16 fixed-point reciprocals representing 1/alpha.
#define UNPREMULQ(x) (0xFF00FFU / (x))
#define UNPREMULQ_2(x) UNPREMULQ(x), UNPREMULQ((x) + 1)
#define UNPREMULQ_4(x) UNPREMULQ_2(x), UNPREMULQ_2((x) + 2)
#define UNPREMULQ_8(x) UNPREMULQ_4(x), UNPREMULQ_4((x) + 4)
#define UNPREMULQ_16(x) UNPREMULQ_8(x), UNPREMULQ_8((x) + 8)
#define UNPREMULQ_32(x) UNPREMULQ_16(x), UNPREMULQ_16((x) + 16)
static const uint32_t sUnpremultiplyTable[256] = {0,
UNPREMULQ(1),
UNPREMULQ_2(2),
UNPREMULQ_4(4),
UNPREMULQ_8(8),
UNPREMULQ_16(16),
UNPREMULQ_32(32),
UNPREMULQ_32(64),
UNPREMULQ_32(96),
UNPREMULQ_32(128),
UNPREMULQ_32(160),
UNPREMULQ_32(192),
UNPREMULQ_32(224)};
// Fallback unpremultiply implementation that uses 8.16 fixed-point reciprocal
// math to eliminate any division by the alpha component. This optimization is
// used for the SSE2 and NEON implementations, with some adaptations. This
// implementation also accesses color components using individual byte accesses
// as this profiles faster than accessing the pixel as a uint32_t and
// shifting/masking to access components.
template <bool aSwapRB, uint32_t aSrcRGBIndex, uint32_t aSrcAIndex,
uint32_t aDstRGBIndex, uint32_t aDstAIndex>
static void UnpremultiplyFallback(const uint8_t* aSrc, int32_t aSrcGap,
uint8_t* aDst, int32_t aDstGap,
IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
uint8_t r = aSrc[aSrcRGBIndex + (aSwapRB ? 2 : 0)];
uint8_t g = aSrc[aSrcRGBIndex + 1];
uint8_t b = aSrc[aSrcRGBIndex + (aSwapRB ? 0 : 2)];
uint8_t a = aSrc[aSrcAIndex];
// Access the 8.16 reciprocal from the table based on alpha. Multiply by
// the reciprocal and shift off the fraction bits to approximate the
// division by alpha.
uint32_t q = sUnpremultiplyTable[a];
aDst[aDstRGBIndex + 0] = (r * q) >> 16;
aDst[aDstRGBIndex + 1] = (g * q) >> 16;
aDst[aDstRGBIndex + 2] = (b * q) >> 16;
aDst[aDstAIndex] = a;
aSrc += 4;
aDst += 4;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define UNPREMULTIPLY_FALLBACK_CASE(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
UnpremultiplyFallback< \
ShouldSwapRB(aSrcFormat, aDstFormat), \
RGBByteIndex(aSrcFormat), AlphaByteIndex(aSrcFormat), \
RGBByteIndex(aDstFormat), AlphaByteIndex(aDstFormat)>)
#define UNPREMULTIPLY_FALLBACK(aSrcFormat) \
UNPREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::B8G8R8A8) \
UNPREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::R8G8B8A8) \
UNPREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::A8R8G8B8)
bool UnpremultiplyData(const uint8_t* aSrc, int32_t aSrcStride,
SurfaceFormat aSrcFormat, uint8_t* aDst,
int32_t aDstStride, SurfaceFormat aDstFormat,
const IntSize& aSize) {
if (aSize.IsEmpty()) {
return true;
}
IntSize size = CollapseSize(aSize, aSrcStride, aDstStride);
// Find gap from end of row to the start of the next row.
int32_t srcGap = GetStrideGap(aSize.width, aSrcFormat, aSrcStride);
int32_t dstGap = GetStrideGap(aSize.width, aDstFormat, aDstStride);
MOZ_ASSERT(srcGap >= 0 && dstGap >= 0);
if (srcGap < 0 || dstGap < 0) {
return false;
}
#define FORMAT_CASE_CALL(...) __VA_ARGS__(aSrc, srcGap, aDst, dstGap, size)
#ifdef USE_SSE2
if (mozilla::supports_sse2()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
UNPREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
UNPREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
#ifdef USE_NEON
if (mozilla::supports_neon()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
UNPREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
UNPREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
UNPREMULTIPLY_FALLBACK(SurfaceFormat::B8G8R8A8)
UNPREMULTIPLY_FALLBACK(SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_FALLBACK(SurfaceFormat::A8R8G8B8)
default:
break;
}
#undef FORMAT_CASE_CALL
MOZ_ASSERT(false, "Unsupported unpremultiply formats");
return false;
}
/**
* Swizzling
*/
// Fallback swizzle implementation that uses shifting and masking to reorder
// pixels.
template <bool aSwapRB, bool aOpaqueAlpha, uint32_t aSrcRGBShift,
uint32_t aSrcAShift, uint32_t aDstRGBShift, uint32_t aDstAShift>
static void SwizzleFallback(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
uint32_t rgba = *reinterpret_cast<const uint32_t*>(aSrc);
if (aSwapRB) {
// Handle R and B swaps by exchanging words and masking.
uint32_t rb =
((rgba << 16) | (rgba >> 16)) & (0x00FF00FF << aSrcRGBShift);
uint32_t ga = rgba & ((0xFF << aSrcAShift) | (0xFF00 << aSrcRGBShift));
rgba = rb | ga;
}
// If src and dst shifts differ, rotate left or right to move RGB into
// place, i.e. ARGB -> RGBA or ARGB -> RGBA.
if (aDstRGBShift > aSrcRGBShift) {
rgba = (rgba << 8) | (aOpaqueAlpha ? 0x000000FF : rgba >> 24);
} else if (aSrcRGBShift > aDstRGBShift) {
rgba = (rgba >> 8) | (aOpaqueAlpha ? 0xFF000000 : rgba << 24);
} else if (aOpaqueAlpha) {
rgba |= 0xFF << aDstAShift;
}
*reinterpret_cast<uint32_t*>(aDst) = rgba;
aSrc += 4;
aDst += 4;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define SWIZZLE_FALLBACK(aSrcFormat, aDstFormat) \
FORMAT_CASE( \
aSrcFormat, aDstFormat, \
SwizzleFallback<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat), \
RGBBitShift(aSrcFormat), AlphaBitShift(aSrcFormat), \
RGBBitShift(aDstFormat), AlphaBitShift(aDstFormat)>)
// Fast-path for matching formats.
static void SwizzleCopy(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize, int32_t aBPP) {
if (aSrc != aDst) {
int32_t rowLength = aBPP * aSize.width;
for (int32_t height = aSize.height; height > 0; height--) {
memcpy(aDst, aSrc, rowLength);
aSrc += rowLength + aSrcGap;
aDst += rowLength + aDstGap;
}
}
}
// Fast-path for conversions that swap all bytes.
template <bool aOpaqueAlpha, uint32_t aSrcAShift, uint32_t aDstAShift>
static void SwizzleSwap(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
// Use an endian swap to move the bytes, i.e. BGRA -> ARGB.
uint32_t rgba = *reinterpret_cast<const uint32_t*>(aSrc);
#if MOZ_LITTLE_ENDIAN
rgba = NativeEndian::swapToBigEndian(rgba);
#else
rgba = NativeEndian::swapToLittleEndian(rgba);
#endif
if (aOpaqueAlpha) {
rgba |= 0xFF << aDstAShift;
}
*reinterpret_cast<uint32_t*>(aDst) = rgba;
aSrc += 4;
aDst += 4;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define SWIZZLE_SWAP(aSrcFormat, aDstFormat) \
FORMAT_CASE( \
aSrcFormat, aDstFormat, \
SwizzleSwap<ShouldForceOpaque(aSrcFormat, aDstFormat), \
AlphaBitShift(aSrcFormat), AlphaBitShift(aDstFormat)>)
// Fast-path for conversions that force alpha to opaque.
template <uint32_t aDstAShift>
static void SwizzleOpaque(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
if (aSrc == aDst) {
// Modifying in-place, so just write out the alpha.
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aDst + 4 * aSize.width;
do {
// ORing directly onto destination memory profiles faster than writing
// individually to the alpha byte and also profiles equivalently to a
// SSE2 implementation.
*reinterpret_cast<uint32_t*>(aDst) |= 0xFF << aDstAShift;
aDst += 4;
} while (aDst < end);
aDst += aDstGap;
}
} else {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
uint32_t rgba = *reinterpret_cast<const uint32_t*>(aSrc);
// Just add on the alpha bits to the source.
rgba |= 0xFF << aDstAShift;
*reinterpret_cast<uint32_t*>(aDst) = rgba;
aSrc += 4;
aDst += 4;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
}
#define SWIZZLE_OPAQUE(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, SwizzleOpaque<AlphaBitShift(aDstFormat)>)
// Packing of 32-bit formats to RGB565.
template <bool aSwapRB, uint32_t aSrcRGBShift, uint32_t aSrcRGBIndex>
static void PackToRGB565(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
uint32_t rgba = *reinterpret_cast<const uint32_t*>(aSrc);
// Isolate the R, G, and B components and shift to final endian-dependent
// locations.
uint16_t rgb565;
if (aSwapRB) {
rgb565 = ((rgba & (0xF8 << aSrcRGBShift)) << (8 - aSrcRGBShift)) |
((rgba & (0xFC00 << aSrcRGBShift)) >> (5 + aSrcRGBShift)) |
((rgba & (0xF80000 << aSrcRGBShift)) >> (19 + aSrcRGBShift));
} else {
rgb565 = ((rgba & (0xF8 << aSrcRGBShift)) >> (3 + aSrcRGBShift)) |
((rgba & (0xFC00 << aSrcRGBShift)) >> (5 + aSrcRGBShift)) |
((rgba & (0xF80000 << aSrcRGBShift)) >> (8 + aSrcRGBShift));
}
*reinterpret_cast<uint16_t*>(aDst) = rgb565;
aSrc += 4;
aDst += 2;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Packing of 32-bit formats to 24-bit formats.
template <bool aSwapRB, uint32_t aSrcRGBShift, uint32_t aSrcRGBIndex>
static void PackToRGB24(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
uint8_t r = aSrc[aSrcRGBIndex + (aSwapRB ? 2 : 0)];
uint8_t g = aSrc[aSrcRGBIndex + 1];
uint8_t b = aSrc[aSrcRGBIndex + (aSwapRB ? 0 : 2)];
aDst[0] = r;
aDst[1] = g;
aDst[2] = b;
aSrc += 4;
aDst += 3;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define PACK_RGB_CASE(aSrcFormat, aDstFormat, aPackFunc) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
aPackFunc<ShouldSwapRB(aSrcFormat, aDstFormat), \
RGBBitShift(aSrcFormat), RGBByteIndex(aSrcFormat)>)
#define PACK_RGB(aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::B8G8R8A8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::B8G8R8X8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::R8G8B8A8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::R8G8B8X8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::A8R8G8B8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::X8R8G8B8, aDstFormat, aPackFunc)
// Packing of 32-bit formats to A8.
template <uint32_t aSrcAIndex>
static void PackToA8(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
*aDst++ = aSrc[aSrcAIndex];
aSrc += 4;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define PACK_ALPHA_CASE(aSrcFormat, aDstFormat, aPackFunc) \
FORMAT_CASE(aSrcFormat, aDstFormat, aPackFunc<AlphaByteIndex(aSrcFormat)>)
#define PACK_ALPHA(aDstFormat, aPackFunc) \
PACK_ALPHA_CASE(SurfaceFormat::B8G8R8A8, aDstFormat, aPackFunc) \
PACK_ALPHA_CASE(SurfaceFormat::R8G8B8A8, aDstFormat, aPackFunc) \
PACK_ALPHA_CASE(SurfaceFormat::A8R8G8B8, aDstFormat, aPackFunc)
bool SwizzleData(const uint8_t* aSrc, int32_t aSrcStride,
SurfaceFormat aSrcFormat, uint8_t* aDst, int32_t aDstStride,
SurfaceFormat aDstFormat, const IntSize& aSize) {
if (aSize.IsEmpty()) {
return true;
}
IntSize size = CollapseSize(aSize, aSrcStride, aDstStride);
// Find gap from end of row to the start of the next row.
int32_t srcGap = GetStrideGap(aSize.width, aSrcFormat, aSrcStride);
int32_t dstGap = GetStrideGap(aSize.width, aDstFormat, aDstStride);
MOZ_ASSERT(srcGap >= 0 && dstGap >= 0);
if (srcGap < 0 || dstGap < 0) {
return false;
}
#define FORMAT_CASE_CALL(...) __VA_ARGS__(aSrc, srcGap, aDst, dstGap, size)
#ifdef USE_SSE2
if (mozilla::supports_sse2()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
SWIZZLE_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
SWIZZLE_SSE2(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8X8)
SWIZZLE_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_SSE2(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
SWIZZLE_SSE2(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8X8)
SWIZZLE_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_SSE2(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
#ifdef USE_NEON
if (mozilla::supports_neon()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
SWIZZLE_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
SWIZZLE_NEON(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8X8)
SWIZZLE_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_NEON(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
SWIZZLE_NEON(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8X8)
SWIZZLE_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_NEON(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
SWIZZLE_FALLBACK(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
SWIZZLE_FALLBACK(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8X8)
SWIZZLE_FALLBACK(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_FALLBACK(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8X8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8A8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8A8, SurfaceFormat::A8R8G8B8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8X8, SurfaceFormat::X8R8G8B8)
SWIZZLE_FALLBACK(SurfaceFormat::A8R8G8B8, SurfaceFormat::R8G8B8A8)
SWIZZLE_FALLBACK(SurfaceFormat::X8R8G8B8, SurfaceFormat::R8G8B8X8)
SWIZZLE_FALLBACK(SurfaceFormat::A8R8G8B8, SurfaceFormat::R8G8B8X8)
SWIZZLE_FALLBACK(SurfaceFormat::X8R8G8B8, SurfaceFormat::R8G8B8A8)
SWIZZLE_SWAP(SurfaceFormat::B8G8R8A8, SurfaceFormat::A8R8G8B8)
SWIZZLE_SWAP(SurfaceFormat::B8G8R8A8, SurfaceFormat::X8R8G8B8)
SWIZZLE_SWAP(SurfaceFormat::B8G8R8X8, SurfaceFormat::X8R8G8B8)
SWIZZLE_SWAP(SurfaceFormat::B8G8R8X8, SurfaceFormat::A8R8G8B8)
SWIZZLE_SWAP(SurfaceFormat::A8R8G8B8, SurfaceFormat::B8G8R8A8)
SWIZZLE_SWAP(SurfaceFormat::A8R8G8B8, SurfaceFormat::B8G8R8X8)
SWIZZLE_SWAP(SurfaceFormat::X8R8G8B8, SurfaceFormat::B8G8R8X8)
SWIZZLE_SWAP(SurfaceFormat::X8R8G8B8, SurfaceFormat::B8G8R8A8)
SWIZZLE_OPAQUE(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_OPAQUE(SurfaceFormat::B8G8R8X8, SurfaceFormat::B8G8R8A8)
SWIZZLE_OPAQUE(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_OPAQUE(SurfaceFormat::R8G8B8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_OPAQUE(SurfaceFormat::A8R8G8B8, SurfaceFormat::X8R8G8B8)
SWIZZLE_OPAQUE(SurfaceFormat::X8R8G8B8, SurfaceFormat::A8R8G8B8)
PACK_RGB(SurfaceFormat::R5G6B5_UINT16, PackToRGB565)
PACK_RGB(SurfaceFormat::B8G8R8, PackToRGB24)
PACK_RGB(SurfaceFormat::R8G8B8, PackToRGB24)
PACK_ALPHA(SurfaceFormat::A8, PackToA8)
default:
break;
}
if (aSrcFormat == aDstFormat) {
// If the formats match, just do a generic copy.
SwizzleCopy(aSrc, srcGap, aDst, dstGap, size, BytesPerPixel(aSrcFormat));
return true;
}
#undef FORMAT_CASE_CALL
MOZ_ASSERT(false, "Unsupported swizzle formats");
return false;
}
} // namespace gfx
} // namespace mozilla