mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-06 17:16:12 +00:00
1831 lines
61 KiB
C++
1831 lines
61 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef nsTArray_h__
|
|
#define nsTArray_h__
|
|
|
|
#include "nsTArrayForwardDeclare.h"
|
|
#include "mozilla/Alignment.h"
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "mozilla/TypeTraits.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include "nsCycleCollectionNoteChild.h"
|
|
#include "nsAlgorithm.h"
|
|
#include "nscore.h"
|
|
#include "nsQuickSort.h"
|
|
#include "nsDebug.h"
|
|
#include "nsISupportsImpl.h"
|
|
#include <new>
|
|
|
|
namespace JS {
|
|
template <class T>
|
|
class Heap;
|
|
} /* namespace JS */
|
|
|
|
class nsRegion;
|
|
class nsIntRegion;
|
|
|
|
//
|
|
// nsTArray is a resizable array class, like std::vector.
|
|
//
|
|
// Unlike std::vector, which follows C++'s construction/destruction rules,
|
|
// nsTArray assumes that your "T" can be memmoved()'ed safely.
|
|
//
|
|
// The public classes defined in this header are
|
|
//
|
|
// nsTArray<T>,
|
|
// FallibleTArray<T>,
|
|
// nsAutoTArray<T, N>, and
|
|
// AutoFallibleTArray<T, N>.
|
|
//
|
|
// nsTArray and nsAutoTArray are infallible; if one tries to make an allocation
|
|
// which fails, it crashes the program. In contrast, FallibleTArray and
|
|
// AutoFallibleTArray are fallible; if you use one of these classes, you must
|
|
// check the return values of methods such as Append() which may allocate. If
|
|
// in doubt, choose an infallible type.
|
|
//
|
|
// InfallibleTArray and AutoInfallibleTArray are aliases for nsTArray and
|
|
// nsAutoTArray.
|
|
//
|
|
// If you just want to declare the nsTArray types (e.g., if you're in a header
|
|
// file and don't need the full nsTArray definitions) consider including
|
|
// nsTArrayForwardDeclare.h instead of nsTArray.h.
|
|
//
|
|
// The template parameter (i.e., T in nsTArray<T>) specifies the type of the
|
|
// elements and has the following requirements:
|
|
//
|
|
// T MUST be safely memmove()'able.
|
|
// T MUST define a copy-constructor.
|
|
// T MAY define operator< for sorting.
|
|
// T MAY define operator== for searching.
|
|
//
|
|
// (Note that the memmove requirement may be relaxed for certain types - see
|
|
// nsTArray_CopyChooser below.)
|
|
//
|
|
// For methods taking a Comparator instance, the Comparator must be a class
|
|
// defining the following methods:
|
|
//
|
|
// class Comparator {
|
|
// public:
|
|
// /** @return True if the elements are equals; false otherwise. */
|
|
// bool Equals(const elem_type& a, const Item& b) const;
|
|
//
|
|
// /** @return True if (a < b); false otherwise. */
|
|
// bool LessThan(const elem_type& a, const Item& b) const;
|
|
// };
|
|
//
|
|
// The Equals method is used for searching, and the LessThan method is used for
|
|
// searching and sorting. The |Item| type above can be arbitrary, but must
|
|
// match the Item type passed to the sort or search function.
|
|
//
|
|
|
|
|
|
//
|
|
// nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types
|
|
// which are used because you cannot use a templated type which is bound to
|
|
// void as an argument to a void function. In order to work around that, we
|
|
// encode either a void or a boolean inside these proxy objects, and pass them
|
|
// to the aforementioned function instead, and then use the type information to
|
|
// decide what to do in the function.
|
|
//
|
|
// Note that public nsTArray methods should never return a proxy type. Such
|
|
// types are only meant to be used in the internal nsTArray helper methods.
|
|
// Public methods returning non-proxy types cannot be called from other
|
|
// nsTArray members.
|
|
//
|
|
struct nsTArrayFallibleResult
|
|
{
|
|
// Note: allows implicit conversions from and to bool
|
|
nsTArrayFallibleResult(bool result)
|
|
: mResult(result)
|
|
{}
|
|
|
|
operator bool() {
|
|
return mResult;
|
|
}
|
|
|
|
private:
|
|
bool mResult;
|
|
};
|
|
|
|
struct nsTArrayInfallibleResult
|
|
{
|
|
};
|
|
|
|
//
|
|
// nsTArray*Allocators must all use the same |free()|, to allow swap()'ing
|
|
// between fallible and infallible variants.
|
|
//
|
|
|
|
struct nsTArrayFallibleAllocatorBase
|
|
{
|
|
typedef bool ResultType;
|
|
typedef nsTArrayFallibleResult ResultTypeProxy;
|
|
|
|
static ResultType Result(ResultTypeProxy result) {
|
|
return result;
|
|
}
|
|
|
|
static bool Successful(ResultTypeProxy result) {
|
|
return result;
|
|
}
|
|
|
|
static ResultTypeProxy SuccessResult() {
|
|
return true;
|
|
}
|
|
|
|
static ResultTypeProxy FailureResult() {
|
|
return false;
|
|
}
|
|
|
|
static ResultType ConvertBoolToResultType(bool aValue) {
|
|
return aValue;
|
|
}
|
|
};
|
|
|
|
struct nsTArrayInfallibleAllocatorBase
|
|
{
|
|
typedef void ResultType;
|
|
typedef nsTArrayInfallibleResult ResultTypeProxy;
|
|
|
|
static ResultType Result(ResultTypeProxy result) {
|
|
}
|
|
|
|
static bool Successful(ResultTypeProxy) {
|
|
return true;
|
|
}
|
|
|
|
static ResultTypeProxy SuccessResult() {
|
|
return ResultTypeProxy();
|
|
}
|
|
|
|
static ResultTypeProxy FailureResult() {
|
|
NS_RUNTIMEABORT("Infallible nsTArray should never fail");
|
|
return ResultTypeProxy();
|
|
}
|
|
|
|
static ResultType ConvertBoolToResultType(bool aValue) {
|
|
if (!aValue) {
|
|
NS_RUNTIMEABORT("infallible nsTArray should never convert false to ResultType");
|
|
}
|
|
}
|
|
};
|
|
|
|
#if defined(MOZALLOC_HAVE_XMALLOC)
|
|
#include "mozilla/mozalloc_abort.h"
|
|
|
|
struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
|
|
{
|
|
static void* Malloc(size_t size) {
|
|
return moz_malloc(size);
|
|
}
|
|
|
|
static void* Realloc(void* ptr, size_t size) {
|
|
return moz_realloc(ptr, size);
|
|
}
|
|
|
|
static void Free(void* ptr) {
|
|
moz_free(ptr);
|
|
}
|
|
|
|
static void SizeTooBig(size_t) {
|
|
}
|
|
};
|
|
|
|
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
|
|
{
|
|
static void* Malloc(size_t size) {
|
|
return moz_xmalloc(size);
|
|
}
|
|
|
|
static void* Realloc(void* ptr, size_t size) {
|
|
return moz_xrealloc(ptr, size);
|
|
}
|
|
|
|
static void Free(void* ptr) {
|
|
moz_free(ptr);
|
|
}
|
|
|
|
static void SizeTooBig(size_t size) {
|
|
NS_ABORT_OOM(size);
|
|
}
|
|
};
|
|
|
|
#else
|
|
#include <stdlib.h>
|
|
|
|
struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
|
|
{
|
|
static void* Malloc(size_t size) {
|
|
return malloc(size);
|
|
}
|
|
|
|
static void* Realloc(void* ptr, size_t size) {
|
|
return realloc(ptr, size);
|
|
}
|
|
|
|
static void Free(void* ptr) {
|
|
free(ptr);
|
|
}
|
|
|
|
static void SizeTooBig(size_t) {
|
|
}
|
|
};
|
|
|
|
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
|
|
{
|
|
static void* Malloc(size_t size) {
|
|
void* ptr = malloc(size);
|
|
if (MOZ_UNLIKELY(!ptr)) {
|
|
NS_ABORT_OOM(size);
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
static void* Realloc(void* ptr, size_t size) {
|
|
void* newptr = realloc(ptr, size);
|
|
if (MOZ_UNLIKELY(!ptr && size)) {
|
|
NS_ABORT_OOM(size);
|
|
}
|
|
return newptr;
|
|
}
|
|
|
|
static void Free(void* ptr) {
|
|
free(ptr);
|
|
}
|
|
|
|
static void SizeTooBig(size_t size) {
|
|
NS_ABORT_OOM(size);
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
// nsTArray_base stores elements into the space allocated beyond
|
|
// sizeof(*this). This is done to minimize the size of the nsTArray
|
|
// object when it is empty.
|
|
struct NS_COM_GLUE nsTArrayHeader
|
|
{
|
|
static nsTArrayHeader sEmptyHdr;
|
|
|
|
uint32_t mLength;
|
|
uint32_t mCapacity : 31;
|
|
uint32_t mIsAutoArray : 1;
|
|
};
|
|
|
|
// This class provides a SafeElementAt method to nsTArray<T*> which does
|
|
// not take a second default value parameter.
|
|
template <class E, class Derived>
|
|
struct nsTArray_SafeElementAtHelper
|
|
{
|
|
typedef E* elem_type;
|
|
typedef size_t index_type;
|
|
|
|
// No implementation is provided for these two methods, and that is on
|
|
// purpose, since we don't support these functions on non-pointer type
|
|
// instantiations.
|
|
elem_type& SafeElementAt(index_type i);
|
|
const elem_type& SafeElementAt(index_type i) const;
|
|
};
|
|
|
|
template <class E, class Derived>
|
|
struct nsTArray_SafeElementAtHelper<E*, Derived>
|
|
{
|
|
typedef E* elem_type;
|
|
typedef size_t index_type;
|
|
|
|
elem_type SafeElementAt(index_type i) {
|
|
return static_cast<Derived*> (this)->SafeElementAt(i, nullptr);
|
|
}
|
|
|
|
const elem_type SafeElementAt(index_type i) const {
|
|
return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr);
|
|
}
|
|
};
|
|
|
|
// E is the base type that the smart pointer is templated over; the
|
|
// smart pointer can act as E*.
|
|
template <class E, class Derived>
|
|
struct nsTArray_SafeElementAtSmartPtrHelper
|
|
{
|
|
typedef E* elem_type;
|
|
typedef size_t index_type;
|
|
|
|
elem_type SafeElementAt(index_type i) {
|
|
return static_cast<Derived*> (this)->SafeElementAt(i, nullptr);
|
|
}
|
|
|
|
const elem_type SafeElementAt(index_type i) const {
|
|
return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr);
|
|
}
|
|
};
|
|
|
|
template <class T> class nsCOMPtr;
|
|
|
|
template <class E, class Derived>
|
|
struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived> :
|
|
public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
|
|
{
|
|
};
|
|
|
|
template <class T> class nsRefPtr;
|
|
|
|
template <class E, class Derived>
|
|
struct nsTArray_SafeElementAtHelper<nsRefPtr<E>, Derived> :
|
|
public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
|
|
{
|
|
};
|
|
|
|
//
|
|
// This class serves as a base class for nsTArray. It shouldn't be used
|
|
// directly. It holds common implementation code that does not depend on the
|
|
// element type of the nsTArray.
|
|
//
|
|
template<class Alloc, class Copy>
|
|
class nsTArray_base
|
|
{
|
|
// Allow swapping elements with |nsTArray_base|s created using a
|
|
// different allocator. This is kosher because all allocators use
|
|
// the same free().
|
|
template<class Allocator, class Copier>
|
|
friend class nsTArray_base;
|
|
|
|
protected:
|
|
typedef nsTArrayHeader Header;
|
|
|
|
public:
|
|
typedef size_t size_type;
|
|
typedef size_t index_type;
|
|
|
|
// @return The number of elements in the array.
|
|
size_type Length() const {
|
|
return mHdr->mLength;
|
|
}
|
|
|
|
// @return True if the array is empty or false otherwise.
|
|
bool IsEmpty() const {
|
|
return Length() == 0;
|
|
}
|
|
|
|
// @return The number of elements that can fit in the array without forcing
|
|
// the array to be re-allocated. The length of an array is always less
|
|
// than or equal to its capacity.
|
|
size_type Capacity() const {
|
|
return mHdr->mCapacity;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void* DebugGetHeader() const {
|
|
return mHdr;
|
|
}
|
|
#endif
|
|
|
|
protected:
|
|
nsTArray_base();
|
|
|
|
~nsTArray_base();
|
|
|
|
// Resize the storage if necessary to achieve the requested capacity.
|
|
// @param capacity The requested number of array elements.
|
|
// @param elemSize The size of an array element.
|
|
// @return False if insufficient memory is available; true otherwise.
|
|
typename Alloc::ResultTypeProxy EnsureCapacity(size_type capacity, size_type elemSize);
|
|
|
|
// Resize the storage to the minimum required amount.
|
|
// @param elemSize The size of an array element.
|
|
// @param elemAlign The alignment in bytes of an array element.
|
|
void ShrinkCapacity(size_type elemSize, size_t elemAlign);
|
|
|
|
// This method may be called to resize a "gap" in the array by shifting
|
|
// elements around. It updates mLength appropriately. If the resulting
|
|
// array has zero elements, then the array's memory is free'd.
|
|
// @param start The starting index of the gap.
|
|
// @param oldLen The current length of the gap.
|
|
// @param newLen The desired length of the gap.
|
|
// @param elemSize The size of an array element.
|
|
// @param elemAlign The alignment in bytes of an array element.
|
|
void ShiftData(index_type start, size_type oldLen, size_type newLen,
|
|
size_type elemSize, size_t elemAlign);
|
|
|
|
// This method increments the length member of the array's header.
|
|
// Note that mHdr may actually be sEmptyHdr in the case where a
|
|
// zero-length array is inserted into our array. But then n should
|
|
// always be 0.
|
|
void IncrementLength(size_t n) {
|
|
if (mHdr == EmptyHdr()) {
|
|
if (MOZ_UNLIKELY(n != 0)) {
|
|
// Writing a non-zero length to the empty header would be extremely bad.
|
|
MOZ_CRASH();
|
|
}
|
|
} else {
|
|
mHdr->mLength += n;
|
|
}
|
|
}
|
|
|
|
// This method inserts blank slots into the array.
|
|
// @param index the place to insert the new elements. This must be no
|
|
// greater than the current length of the array.
|
|
// @param count the number of slots to insert
|
|
// @param elementSize the size of an array element.
|
|
// @param elemAlign the alignment in bytes of an array element.
|
|
bool InsertSlotsAt(index_type index, size_type count,
|
|
size_type elementSize, size_t elemAlign);
|
|
|
|
protected:
|
|
template<class Allocator>
|
|
typename Alloc::ResultTypeProxy
|
|
SwapArrayElements(nsTArray_base<Allocator, Copy>& other,
|
|
size_type elemSize,
|
|
size_t elemAlign);
|
|
|
|
// This is an RAII class used in SwapArrayElements.
|
|
class IsAutoArrayRestorer {
|
|
public:
|
|
IsAutoArrayRestorer(nsTArray_base<Alloc, Copy> &array, size_t elemAlign);
|
|
~IsAutoArrayRestorer();
|
|
|
|
private:
|
|
nsTArray_base<Alloc, Copy> &mArray;
|
|
size_t mElemAlign;
|
|
bool mIsAuto;
|
|
};
|
|
|
|
// Helper function for SwapArrayElements. Ensures that if the array
|
|
// is an nsAutoTArray that it doesn't use the built-in buffer.
|
|
bool EnsureNotUsingAutoArrayBuffer(size_type elemSize);
|
|
|
|
// Returns true if this nsTArray is an nsAutoTArray with a built-in buffer.
|
|
bool IsAutoArray() const {
|
|
return mHdr->mIsAutoArray;
|
|
}
|
|
|
|
// Returns a Header for the built-in buffer of this nsAutoTArray.
|
|
Header* GetAutoArrayBuffer(size_t elemAlign) {
|
|
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
|
|
return GetAutoArrayBufferUnsafe(elemAlign);
|
|
}
|
|
const Header* GetAutoArrayBuffer(size_t elemAlign) const {
|
|
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
|
|
return GetAutoArrayBufferUnsafe(elemAlign);
|
|
}
|
|
|
|
// Returns a Header for the built-in buffer of this nsAutoTArray, but doesn't
|
|
// assert that we are an nsAutoTArray.
|
|
Header* GetAutoArrayBufferUnsafe(size_t elemAlign) {
|
|
return const_cast<Header*>(static_cast<const nsTArray_base<Alloc, Copy>*>(this)->
|
|
GetAutoArrayBufferUnsafe(elemAlign));
|
|
}
|
|
const Header* GetAutoArrayBufferUnsafe(size_t elemAlign) const;
|
|
|
|
// Returns true if this is an nsAutoTArray and it currently uses the
|
|
// built-in buffer to store its elements.
|
|
bool UsesAutoArrayBuffer() const;
|
|
|
|
// The array's elements (prefixed with a Header). This pointer is never
|
|
// null. If the array is empty, then this will point to sEmptyHdr.
|
|
Header *mHdr;
|
|
|
|
Header* Hdr() const {
|
|
return mHdr;
|
|
}
|
|
|
|
Header** PtrToHdr() {
|
|
return &mHdr;
|
|
}
|
|
|
|
static Header* EmptyHdr() {
|
|
return &Header::sEmptyHdr;
|
|
}
|
|
};
|
|
|
|
//
|
|
// This class defines convenience functions for element specific operations.
|
|
// Specialize this template if necessary.
|
|
//
|
|
template<class E>
|
|
class nsTArrayElementTraits
|
|
{
|
|
public:
|
|
// Invoke the default constructor in place.
|
|
static inline void Construct(E *e) {
|
|
// Do NOT call "E()"! That triggers C++ "default initialization"
|
|
// which zeroes out POD ("plain old data") types such as regular
|
|
// ints. We don't want that because it can be a performance issue
|
|
// and people don't expect it; nsTArray should work like a regular
|
|
// C/C++ array in this respect.
|
|
new (static_cast<void *>(e)) E;
|
|
}
|
|
// Invoke the copy-constructor in place.
|
|
template<class A>
|
|
static inline void Construct(E *e, const A &arg) {
|
|
typedef typename mozilla::RemoveCV<E>::Type E_NoCV;
|
|
typedef typename mozilla::RemoveCV<A>::Type A_NoCV;
|
|
static_assert(!mozilla::IsSame<E_NoCV*, A_NoCV>::value,
|
|
"For safety, we disallow constructing nsTArray<E> elements "
|
|
"from E* pointers. See bug 960591.");
|
|
new (static_cast<void *>(e)) E(arg);
|
|
}
|
|
// Invoke the destructor in place.
|
|
static inline void Destruct(E *e) {
|
|
e->~E();
|
|
}
|
|
};
|
|
|
|
// The default comparator used by nsTArray
|
|
template<class A, class B>
|
|
class nsDefaultComparator
|
|
{
|
|
public:
|
|
bool Equals(const A& a, const B& b) const {
|
|
return a == b;
|
|
}
|
|
bool LessThan(const A& a, const B& b) const {
|
|
return a < b;
|
|
}
|
|
};
|
|
|
|
template <class E> class InfallibleTArray;
|
|
template <class E> class FallibleTArray;
|
|
|
|
template<bool IsPod, bool IsSameType>
|
|
struct AssignRangeAlgorithm {
|
|
template<class Item, class ElemType, class IndexType, class SizeType>
|
|
static void implementation(ElemType* elements, IndexType start,
|
|
SizeType count, const Item *values) {
|
|
ElemType *iter = elements + start, *end = iter + count;
|
|
for (; iter != end; ++iter, ++values)
|
|
nsTArrayElementTraits<ElemType>::Construct(iter, *values);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct AssignRangeAlgorithm<true, true> {
|
|
template<class Item, class ElemType, class IndexType, class SizeType>
|
|
static void implementation(ElemType* elements, IndexType start,
|
|
SizeType count, const Item *values) {
|
|
memcpy(elements + start, values, count * sizeof(ElemType));
|
|
}
|
|
};
|
|
|
|
//
|
|
// Normally elements are copied with memcpy and memmove, but for some element
|
|
// types that is problematic. The nsTArray_CopyChooser template class can be
|
|
// specialized to ensure that copying calls constructors and destructors
|
|
// instead, as is done below for JS::Heap<E> elements.
|
|
//
|
|
|
|
//
|
|
// A class that defines how to copy elements using memcpy/memmove.
|
|
//
|
|
struct nsTArray_CopyWithMemutils
|
|
{
|
|
const static bool allowRealloc = true;
|
|
|
|
static void CopyElements(void* dest, const void* src, size_t count, size_t elemSize) {
|
|
memcpy(dest, src, count * elemSize);
|
|
}
|
|
|
|
static void CopyHeaderAndElements(void* dest, const void* src, size_t count, size_t elemSize) {
|
|
memcpy(dest, src, sizeof(nsTArrayHeader) + count * elemSize);
|
|
}
|
|
|
|
static void MoveElements(void* dest, const void* src, size_t count, size_t elemSize) {
|
|
memmove(dest, src, count * elemSize);
|
|
}
|
|
};
|
|
|
|
//
|
|
// A template class that defines how to copy elements calling their constructors
|
|
// and destructors appropriately.
|
|
//
|
|
template <class ElemType>
|
|
struct nsTArray_CopyWithConstructors
|
|
{
|
|
typedef nsTArrayElementTraits<ElemType> traits;
|
|
|
|
const static bool allowRealloc = false;
|
|
|
|
static void CopyElements(void* dest, void* src, size_t count, size_t elemSize) {
|
|
ElemType* destElem = static_cast<ElemType*>(dest);
|
|
ElemType* srcElem = static_cast<ElemType*>(src);
|
|
ElemType* destElemEnd = destElem + count;
|
|
#ifdef DEBUG
|
|
ElemType* srcElemEnd = srcElem + count;
|
|
MOZ_ASSERT(srcElemEnd <= destElem || srcElemEnd > destElemEnd);
|
|
#endif
|
|
while (destElem != destElemEnd) {
|
|
traits::Construct(destElem, *srcElem);
|
|
traits::Destruct(srcElem);
|
|
++destElem;
|
|
++srcElem;
|
|
}
|
|
}
|
|
|
|
static void CopyHeaderAndElements(void* dest, void* src, size_t count, size_t elemSize) {
|
|
nsTArrayHeader* destHeader = static_cast<nsTArrayHeader*>(dest);
|
|
nsTArrayHeader* srcHeader = static_cast<nsTArrayHeader*>(src);
|
|
*destHeader = *srcHeader;
|
|
CopyElements(static_cast<uint8_t*>(dest) + sizeof(nsTArrayHeader),
|
|
static_cast<uint8_t*>(src) + sizeof(nsTArrayHeader),
|
|
count, elemSize);
|
|
}
|
|
|
|
static void MoveElements(void* dest, void* src, size_t count, size_t elemSize) {
|
|
ElemType* destElem = static_cast<ElemType*>(dest);
|
|
ElemType* srcElem = static_cast<ElemType*>(src);
|
|
ElemType* destElemEnd = destElem + count;
|
|
ElemType* srcElemEnd = srcElem + count;
|
|
if (destElem == srcElem) {
|
|
return; // In practice, we don't do this.
|
|
} else if (srcElemEnd > destElem && srcElemEnd < destElemEnd) {
|
|
while (destElemEnd != destElem) {
|
|
--destElemEnd;
|
|
--srcElemEnd;
|
|
traits::Construct(destElemEnd, *srcElemEnd);
|
|
traits::Destruct(srcElem);
|
|
}
|
|
} else {
|
|
CopyElements(dest, src, count, elemSize);
|
|
}
|
|
}
|
|
};
|
|
|
|
//
|
|
// The default behaviour is to use memcpy/memmove for everything.
|
|
//
|
|
template <class E>
|
|
struct nsTArray_CopyChooser {
|
|
typedef nsTArray_CopyWithMemutils Type;
|
|
};
|
|
|
|
//
|
|
// Some classes require constructors/destructors to be called, so they are
|
|
// specialized here.
|
|
//
|
|
template <class E>
|
|
struct nsTArray_CopyChooser<JS::Heap<E> > {
|
|
typedef nsTArray_CopyWithConstructors<JS::Heap<E> > Type;
|
|
};
|
|
|
|
template<>
|
|
struct nsTArray_CopyChooser<nsRegion> {
|
|
typedef nsTArray_CopyWithConstructors<nsRegion> Type;
|
|
};
|
|
|
|
template<>
|
|
struct nsTArray_CopyChooser<nsIntRegion> {
|
|
typedef nsTArray_CopyWithConstructors<nsIntRegion> Type;
|
|
};
|
|
|
|
//
|
|
// Base class for nsTArray_Impl that is templated on element type and derived
|
|
// nsTArray_Impl class, to allow extra conversions to be added for specific
|
|
// types.
|
|
//
|
|
template <class E, class Derived>
|
|
struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper<E, Derived> {};
|
|
|
|
//
|
|
// Specialization of nsTArray_TypedBase for arrays containing JS::Heap<E>
|
|
// elements.
|
|
//
|
|
// These conversions are safe because JS::Heap<E> and E share the same
|
|
// representation, and since the result of the conversions are const references
|
|
// we won't miss any barriers.
|
|
//
|
|
// The static_cast is necessary to obtain the correct address for the derived
|
|
// class since we are a base class used in multiple inheritance.
|
|
//
|
|
template <class E, class Derived>
|
|
struct nsTArray_TypedBase<JS::Heap<E>, Derived>
|
|
: public nsTArray_SafeElementAtHelper<JS::Heap<E>, Derived>
|
|
{
|
|
operator const nsTArray<E>& () {
|
|
static_assert(sizeof(E) == sizeof(JS::Heap<E>),
|
|
"JS::Heap<E> must be binary compatible with E.");
|
|
Derived* self = static_cast<Derived*>(this);
|
|
return *reinterpret_cast<nsTArray<E> *>(self);
|
|
}
|
|
|
|
operator const FallibleTArray<E>& () {
|
|
Derived* self = static_cast<Derived*>(this);
|
|
return *reinterpret_cast<FallibleTArray<E> *>(self);
|
|
}
|
|
};
|
|
|
|
|
|
//
|
|
// nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray,
|
|
// nsAutoTArray, and AutoFallibleTArray.
|
|
//
|
|
// The only situation in which you might need to use nsTArray_Impl in your code
|
|
// is if you're writing code which mutates a TArray which may or may not be
|
|
// infallible.
|
|
//
|
|
// Code which merely reads from a TArray which may or may not be infallible can
|
|
// simply cast the TArray to |const nsTArray&|; both fallible and infallible
|
|
// TArrays can be cast to |const nsTArray&|.
|
|
//
|
|
template<class E, class Alloc>
|
|
class nsTArray_Impl : public nsTArray_base<Alloc, typename nsTArray_CopyChooser<E>::Type>,
|
|
public nsTArray_TypedBase<E, nsTArray_Impl<E, Alloc> >
|
|
{
|
|
public:
|
|
typedef typename nsTArray_CopyChooser<E>::Type copy_type;
|
|
typedef nsTArray_base<Alloc, copy_type> base_type;
|
|
typedef typename base_type::size_type size_type;
|
|
typedef typename base_type::index_type index_type;
|
|
typedef E elem_type;
|
|
typedef nsTArray_Impl<E, Alloc> self_type;
|
|
typedef nsTArrayElementTraits<E> elem_traits;
|
|
typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type;
|
|
|
|
using safeelementat_helper_type::SafeElementAt;
|
|
using base_type::EmptyHdr;
|
|
|
|
// A special value that is used to indicate an invalid or unknown index
|
|
// into the array.
|
|
enum {
|
|
NoIndex = index_type(-1)
|
|
};
|
|
|
|
using base_type::Length;
|
|
|
|
//
|
|
// Finalization method
|
|
//
|
|
|
|
~nsTArray_Impl() { Clear(); }
|
|
|
|
//
|
|
// Initialization methods
|
|
//
|
|
|
|
nsTArray_Impl() {}
|
|
|
|
// Initialize this array and pre-allocate some number of elements.
|
|
explicit nsTArray_Impl(size_type capacity) {
|
|
SetCapacity(capacity);
|
|
}
|
|
|
|
// The array's copy-constructor performs a 'deep' copy of the given array.
|
|
// @param other The array object to copy.
|
|
//
|
|
// It's very important that we declare this method as taking |const
|
|
// self_type&| as opposed to taking |const nsTArray_Impl<E, OtherAlloc>| for
|
|
// an arbitrary OtherAlloc.
|
|
//
|
|
// If we don't declare a constructor taking |const self_type&|, C++ generates
|
|
// a copy-constructor for this class which merely copies the object's
|
|
// members, which is obviously wrong.
|
|
//
|
|
// You can pass an nsTArray_Impl<E, OtherAlloc> to this method because
|
|
// nsTArray_Impl<E, X> can be cast to const nsTArray_Impl<E, Y>&. So the
|
|
// effect on the API is the same as if we'd declared this method as taking
|
|
// |const nsTArray_Impl<E, OtherAlloc>&|.
|
|
explicit nsTArray_Impl(const self_type& other) {
|
|
AppendElements(other);
|
|
}
|
|
|
|
// Allow converting to a const array with a different kind of allocator,
|
|
// Since the allocator doesn't matter for const arrays
|
|
template<typename Allocator>
|
|
operator const nsTArray_Impl<E, Allocator>&() const {
|
|
return *reinterpret_cast<const nsTArray_Impl<E, Allocator>*>(this);
|
|
}
|
|
// And we have to do this for our subclasses too
|
|
operator const nsTArray<E>&() const {
|
|
return *reinterpret_cast<const InfallibleTArray<E>*>(this);
|
|
}
|
|
operator const FallibleTArray<E>&() const {
|
|
return *reinterpret_cast<const FallibleTArray<E>*>(this);
|
|
}
|
|
|
|
// The array's assignment operator performs a 'deep' copy of the given
|
|
// array. It is optimized to reuse existing storage if possible.
|
|
// @param other The array object to copy.
|
|
self_type& operator=(const self_type& other) {
|
|
ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
|
|
return *this;
|
|
}
|
|
|
|
// Return true if this array has the same length and the same
|
|
// elements as |other|.
|
|
template<typename Allocator>
|
|
bool operator==(const nsTArray_Impl<E, Allocator>& other) const {
|
|
size_type len = Length();
|
|
if (len != other.Length())
|
|
return false;
|
|
|
|
// XXX std::equal would be as fast or faster here
|
|
for (index_type i = 0; i < len; ++i)
|
|
if (!(operator[](i) == other[i]))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return true if this array does not have the same length and the same
|
|
// elements as |other|.
|
|
bool operator!=(const self_type& other) const {
|
|
return !operator==(other);
|
|
}
|
|
|
|
template<typename Allocator>
|
|
self_type& operator=(const nsTArray_Impl<E, Allocator>& other) {
|
|
ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
|
|
return *this;
|
|
}
|
|
|
|
// @return The amount of memory used by this nsTArray_Impl, excluding
|
|
// sizeof(*this).
|
|
size_t SizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
|
|
if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr())
|
|
return 0;
|
|
return mallocSizeOf(this->Hdr());
|
|
}
|
|
|
|
// @return The amount of memory used by this nsTArray_Impl, including
|
|
// sizeof(*this).
|
|
size_t SizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
|
|
return mallocSizeOf(this) + SizeOfExcludingThis(mallocSizeOf);
|
|
}
|
|
|
|
//
|
|
// Accessor methods
|
|
//
|
|
|
|
// This method provides direct access to the array elements.
|
|
// @return A pointer to the first element of the array. If the array is
|
|
// empty, then this pointer must not be dereferenced.
|
|
elem_type* Elements() {
|
|
return reinterpret_cast<elem_type *>(Hdr() + 1);
|
|
}
|
|
|
|
// This method provides direct, readonly access to the array elements.
|
|
// @return A pointer to the first element of the array. If the array is
|
|
// empty, then this pointer must not be dereferenced.
|
|
const elem_type* Elements() const {
|
|
return reinterpret_cast<const elem_type *>(Hdr() + 1);
|
|
}
|
|
|
|
// This method provides direct access to the i'th element of the array.
|
|
// The given index must be within the array bounds.
|
|
// @param i The index of an element in the array.
|
|
// @return A reference to the i'th element of the array.
|
|
elem_type& ElementAt(index_type i) {
|
|
MOZ_ASSERT(i < Length(), "invalid array index");
|
|
return Elements()[i];
|
|
}
|
|
|
|
// This method provides direct, readonly access to the i'th element of the
|
|
// array. The given index must be within the array bounds.
|
|
// @param i The index of an element in the array.
|
|
// @return A const reference to the i'th element of the array.
|
|
const elem_type& ElementAt(index_type i) const {
|
|
MOZ_ASSERT(i < Length(), "invalid array index");
|
|
return Elements()[i];
|
|
}
|
|
|
|
// This method provides direct access to the i'th element of the array in
|
|
// a bounds safe manner. If the requested index is out of bounds the
|
|
// provided default value is returned.
|
|
// @param i The index of an element in the array.
|
|
// @param def The value to return if the index is out of bounds.
|
|
elem_type& SafeElementAt(index_type i, elem_type& def) {
|
|
return i < Length() ? Elements()[i] : def;
|
|
}
|
|
|
|
// This method provides direct access to the i'th element of the array in
|
|
// a bounds safe manner. If the requested index is out of bounds the
|
|
// provided default value is returned.
|
|
// @param i The index of an element in the array.
|
|
// @param def The value to return if the index is out of bounds.
|
|
const elem_type& SafeElementAt(index_type i, const elem_type& def) const {
|
|
return i < Length() ? Elements()[i] : def;
|
|
}
|
|
|
|
// Shorthand for ElementAt(i)
|
|
elem_type& operator[](index_type i) {
|
|
return ElementAt(i);
|
|
}
|
|
|
|
// Shorthand for ElementAt(i)
|
|
const elem_type& operator[](index_type i) const {
|
|
return ElementAt(i);
|
|
}
|
|
|
|
// Shorthand for ElementAt(length - 1)
|
|
elem_type& LastElement() {
|
|
return ElementAt(Length() - 1);
|
|
}
|
|
|
|
// Shorthand for ElementAt(length - 1)
|
|
const elem_type& LastElement() const {
|
|
return ElementAt(Length() - 1);
|
|
}
|
|
|
|
// Shorthand for SafeElementAt(length - 1, def)
|
|
elem_type& SafeLastElement(elem_type& def) {
|
|
return SafeElementAt(Length() - 1, def);
|
|
}
|
|
|
|
// Shorthand for SafeElementAt(length - 1, def)
|
|
const elem_type& SafeLastElement(const elem_type& def) const {
|
|
return SafeElementAt(Length() - 1, def);
|
|
}
|
|
|
|
//
|
|
// Search methods
|
|
//
|
|
|
|
// This method searches for the first element in this array that is equal
|
|
// to the given element.
|
|
// @param item The item to search for.
|
|
// @param comp The Comparator used to determine element equality.
|
|
// @return true if the element was found.
|
|
template<class Item, class Comparator>
|
|
bool Contains(const Item& item, const Comparator& comp) const {
|
|
return IndexOf(item, 0, comp) != NoIndex;
|
|
}
|
|
|
|
// This method searches for the first element in this array that is equal
|
|
// to the given element. This method assumes that 'operator==' is defined
|
|
// for elem_type.
|
|
// @param item The item to search for.
|
|
// @return true if the element was found.
|
|
template<class Item>
|
|
bool Contains(const Item& item) const {
|
|
return IndexOf(item) != NoIndex;
|
|
}
|
|
|
|
// This method searches for the offset of the first element in this
|
|
// array that is equal to the given element.
|
|
// @param item The item to search for.
|
|
// @param start The index to start from.
|
|
// @param comp The Comparator used to determine element equality.
|
|
// @return The index of the found element or NoIndex if not found.
|
|
template<class Item, class Comparator>
|
|
index_type IndexOf(const Item& item, index_type start,
|
|
const Comparator& comp) const {
|
|
const elem_type* iter = Elements() + start, *end = Elements() + Length();
|
|
for (; iter != end; ++iter) {
|
|
if (comp.Equals(*iter, item))
|
|
return index_type(iter - Elements());
|
|
}
|
|
return NoIndex;
|
|
}
|
|
|
|
// This method searches for the offset of the first element in this
|
|
// array that is equal to the given element. This method assumes
|
|
// that 'operator==' is defined for elem_type.
|
|
// @param item The item to search for.
|
|
// @param start The index to start from.
|
|
// @return The index of the found element or NoIndex if not found.
|
|
template<class Item>
|
|
index_type IndexOf(const Item& item, index_type start = 0) const {
|
|
return IndexOf(item, start, nsDefaultComparator<elem_type, Item>());
|
|
}
|
|
|
|
// This method searches for the offset of the last element in this
|
|
// array that is equal to the given element.
|
|
// @param item The item to search for.
|
|
// @param start The index to start from. If greater than or equal to the
|
|
// length of the array, then the entire array is searched.
|
|
// @param comp The Comparator used to determine element equality.
|
|
// @return The index of the found element or NoIndex if not found.
|
|
template<class Item, class Comparator>
|
|
index_type LastIndexOf(const Item& item, index_type start,
|
|
const Comparator& comp) const {
|
|
size_type endOffset = start >= Length() ? Length() : start + 1;
|
|
const elem_type* end = Elements() - 1, *iter = end + endOffset;
|
|
for (; iter != end; --iter) {
|
|
if (comp.Equals(*iter, item))
|
|
return index_type(iter - Elements());
|
|
}
|
|
return NoIndex;
|
|
}
|
|
|
|
// This method searches for the offset of the last element in this
|
|
// array that is equal to the given element. This method assumes
|
|
// that 'operator==' is defined for elem_type.
|
|
// @param item The item to search for.
|
|
// @param start The index to start from. If greater than or equal to the
|
|
// length of the array, then the entire array is searched.
|
|
// @return The index of the found element or NoIndex if not found.
|
|
template<class Item>
|
|
index_type LastIndexOf(const Item& item,
|
|
index_type start = NoIndex) const {
|
|
return LastIndexOf(item, start, nsDefaultComparator<elem_type, Item>());
|
|
}
|
|
|
|
// This method searches for the offset for the element in this array
|
|
// that is equal to the given element. The array is assumed to be sorted.
|
|
// @param item The item to search for.
|
|
// @param comp The Comparator used.
|
|
// @return The index of the found element or NoIndex if not found.
|
|
template<class Item, class Comparator>
|
|
index_type BinaryIndexOf(const Item& item, const Comparator& comp) const {
|
|
index_type low = 0, high = Length();
|
|
while (high > low) {
|
|
index_type mid = (high + low) >> 1;
|
|
if (comp.Equals(ElementAt(mid), item))
|
|
return mid;
|
|
if (comp.LessThan(ElementAt(mid), item))
|
|
low = mid + 1;
|
|
else
|
|
high = mid;
|
|
}
|
|
return NoIndex;
|
|
}
|
|
|
|
// This method searches for the offset for the element in this array
|
|
// that is equal to the given element. The array is assumed to be sorted.
|
|
// This method assumes that 'operator==' and 'operator<' are defined.
|
|
// @param item The item to search for.
|
|
// @return The index of the found element or NoIndex if not found.
|
|
template<class Item>
|
|
index_type BinaryIndexOf(const Item& item) const {
|
|
return BinaryIndexOf(item, nsDefaultComparator<elem_type, Item>());
|
|
}
|
|
|
|
//
|
|
// Mutation methods
|
|
//
|
|
// This method call the destructor on each element of the array, empties it,
|
|
// but does not shrink the array's capacity.
|
|
// See also SetLengthAndRetainStorage.
|
|
// Make sure to call Compact() if needed to avoid keeping a huge array
|
|
// around.
|
|
void ClearAndRetainStorage() {
|
|
if (base_type::mHdr == EmptyHdr()) {
|
|
return;
|
|
}
|
|
|
|
DestructRange(0, Length());
|
|
base_type::mHdr->mLength = 0;
|
|
}
|
|
|
|
// This method modifies the length of the array, but unlike SetLength
|
|
// it doesn't deallocate/reallocate the current internal storage.
|
|
// The new length MUST be shorter than or equal to the current capacity.
|
|
// If the new length is larger than the existing length of the array,
|
|
// then new elements will be constructed using elem_type's default
|
|
// constructor. If shorter, elements will be destructed and removed.
|
|
// See also ClearAndRetainStorage.
|
|
// @param newLen The desired length of this array.
|
|
void SetLengthAndRetainStorage(size_type newLen) {
|
|
MOZ_ASSERT(newLen <= base_type::Capacity());
|
|
size_type oldLen = Length();
|
|
if (newLen > oldLen) {
|
|
InsertElementsAt(oldLen, newLen - oldLen);
|
|
return;
|
|
}
|
|
if (newLen < oldLen) {
|
|
DestructRange(newLen, oldLen - newLen);
|
|
base_type::mHdr->mLength = newLen;
|
|
}
|
|
}
|
|
|
|
// This method replaces a range of elements in this array.
|
|
// @param start The starting index of the elements to replace.
|
|
// @param count The number of elements to replace. This may be zero to
|
|
// insert elements without removing any existing elements.
|
|
// @param array The values to copy into this array. Must be non-null,
|
|
// and these elements must not already exist in the array
|
|
// being modified.
|
|
// @param arrayLen The number of values to copy into this array.
|
|
// @return A pointer to the new elements in the array, or null if
|
|
// the operation failed due to insufficient memory.
|
|
template<class Item>
|
|
elem_type *ReplaceElementsAt(index_type start, size_type count,
|
|
const Item* array, size_type arrayLen) {
|
|
// Adjust memory allocation up-front to catch errors.
|
|
if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen - count, sizeof(elem_type))))
|
|
return nullptr;
|
|
DestructRange(start, count);
|
|
this->ShiftData(start, count, arrayLen, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
|
|
AssignRange(start, arrayLen, array);
|
|
return Elements() + start;
|
|
}
|
|
|
|
// A variation on the ReplaceElementsAt method defined above.
|
|
template<class Item>
|
|
elem_type *ReplaceElementsAt(index_type start, size_type count,
|
|
const nsTArray<Item>& array) {
|
|
return ReplaceElementsAt(start, count, array.Elements(), array.Length());
|
|
}
|
|
|
|
// A variation on the ReplaceElementsAt method defined above.
|
|
template<class Item>
|
|
elem_type *ReplaceElementsAt(index_type start, size_type count,
|
|
const Item& item) {
|
|
return ReplaceElementsAt(start, count, &item, 1);
|
|
}
|
|
|
|
// A variation on the ReplaceElementsAt method defined above.
|
|
template<class Item>
|
|
elem_type *ReplaceElementAt(index_type index, const Item& item) {
|
|
return ReplaceElementsAt(index, 1, &item, 1);
|
|
}
|
|
|
|
// A variation on the ReplaceElementsAt method defined above.
|
|
template<class Item>
|
|
elem_type *InsertElementsAt(index_type index, const Item* array,
|
|
size_type arrayLen) {
|
|
return ReplaceElementsAt(index, 0, array, arrayLen);
|
|
}
|
|
|
|
// A variation on the ReplaceElementsAt method defined above.
|
|
template<class Item, class Allocator>
|
|
elem_type *InsertElementsAt(index_type index, const nsTArray_Impl<Item, Allocator>& array) {
|
|
return ReplaceElementsAt(index, 0, array.Elements(), array.Length());
|
|
}
|
|
|
|
// A variation on the ReplaceElementsAt method defined above.
|
|
template<class Item>
|
|
elem_type *InsertElementAt(index_type index, const Item& item) {
|
|
return ReplaceElementsAt(index, 0, &item, 1);
|
|
}
|
|
|
|
// Insert a new element without copy-constructing. This is useful to avoid
|
|
// temporaries.
|
|
// @return A pointer to the newly inserted element, or null on OOM.
|
|
elem_type* InsertElementAt(index_type index) {
|
|
if (!Alloc::Successful(this->EnsureCapacity(Length() + 1, sizeof(elem_type))))
|
|
return nullptr;
|
|
this->ShiftData(index, 0, 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
|
|
elem_type *elem = Elements() + index;
|
|
elem_traits::Construct(elem);
|
|
return elem;
|
|
}
|
|
|
|
// This method searches for the smallest index of an element that is strictly
|
|
// greater than |item|. If |item| is inserted at this index, the array will
|
|
// remain sorted and |item| would come after all elements that are equal to
|
|
// it. If |item| is greater than or equal to all elements in the array, the
|
|
// array length is returned.
|
|
//
|
|
// Note that consumers who want to know whether there are existing items equal
|
|
// to |item| in the array can just check that the return value here is > 0 and
|
|
// indexing into the previous slot gives something equal to |item|.
|
|
//
|
|
//
|
|
// @param item The item to search for.
|
|
// @param comp The Comparator used.
|
|
// @return The index of greatest element <= to |item|
|
|
// @precondition The array is sorted
|
|
template<class Item, class Comparator>
|
|
index_type
|
|
IndexOfFirstElementGt(const Item& item,
|
|
const Comparator& comp) const {
|
|
// invariant: low <= [idx] <= high
|
|
index_type low = 0, high = Length();
|
|
while (high > low) {
|
|
index_type mid = (high + low) >> 1;
|
|
// Comparators are not required to provide a LessThan(Item&, elem_type),
|
|
// so we can't do comp.LessThan(item, ElementAt(mid)).
|
|
if (comp.LessThan(ElementAt(mid), item) ||
|
|
comp.Equals(ElementAt(mid), item)) {
|
|
// item >= ElementAt(mid), so our desired index is at least mid+1.
|
|
low = mid + 1;
|
|
} else {
|
|
// item < ElementAt(mid). Our desired index is therefore at most mid.
|
|
high = mid;
|
|
}
|
|
}
|
|
MOZ_ASSERT(high == low);
|
|
return low;
|
|
}
|
|
|
|
// A variation on the IndexOfFirstElementGt method defined above.
|
|
template<class Item>
|
|
index_type
|
|
IndexOfFirstElementGt(const Item& item) const {
|
|
return IndexOfFirstElementGt(item, nsDefaultComparator<elem_type, Item>());
|
|
}
|
|
|
|
// Inserts |item| at such an index to guarantee that if the array
|
|
// was previously sorted, it will remain sorted after this
|
|
// insertion.
|
|
template<class Item, class Comparator>
|
|
elem_type *InsertElementSorted(const Item& item, const Comparator& comp) {
|
|
index_type index = IndexOfFirstElementGt(item, comp);
|
|
return InsertElementAt(index, item);
|
|
}
|
|
|
|
// A variation on the InsertElementSorted method defined above.
|
|
template<class Item>
|
|
elem_type *InsertElementSorted(const Item& item) {
|
|
return InsertElementSorted(item, nsDefaultComparator<elem_type, Item>());
|
|
}
|
|
|
|
// This method appends elements to the end of this array.
|
|
// @param array The elements to append to this array.
|
|
// @param arrayLen The number of elements to append to this array.
|
|
// @return A pointer to the new elements in the array, or null if
|
|
// the operation failed due to insufficient memory.
|
|
template<class Item>
|
|
elem_type *AppendElements(const Item* array, size_type arrayLen) {
|
|
if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen, sizeof(elem_type))))
|
|
return nullptr;
|
|
index_type len = Length();
|
|
AssignRange(len, arrayLen, array);
|
|
this->IncrementLength(arrayLen);
|
|
return Elements() + len;
|
|
}
|
|
|
|
// A variation on the AppendElements method defined above.
|
|
template<class Item, class Allocator>
|
|
elem_type *AppendElements(const nsTArray_Impl<Item, Allocator>& array) {
|
|
return AppendElements(array.Elements(), array.Length());
|
|
}
|
|
|
|
// A variation on the AppendElements method defined above.
|
|
template<class Item>
|
|
elem_type *AppendElement(const Item& item) {
|
|
return AppendElements(&item, 1);
|
|
}
|
|
|
|
// Append new elements without copy-constructing. This is useful to avoid
|
|
// temporaries.
|
|
// @return A pointer to the newly appended elements, or null on OOM.
|
|
elem_type *AppendElements(size_type count) {
|
|
if (!Alloc::Successful(this->EnsureCapacity(Length() + count, sizeof(elem_type))))
|
|
return nullptr;
|
|
elem_type *elems = Elements() + Length();
|
|
size_type i;
|
|
for (i = 0; i < count; ++i) {
|
|
elem_traits::Construct(elems + i);
|
|
}
|
|
this->IncrementLength(count);
|
|
return elems;
|
|
}
|
|
|
|
// Append a new element without copy-constructing. This is useful to avoid
|
|
// temporaries.
|
|
// @return A pointer to the newly appended element, or null on OOM.
|
|
elem_type *AppendElement() {
|
|
return AppendElements(1);
|
|
}
|
|
|
|
// Move all elements from another array to the end of this array without
|
|
// calling copy constructors or destructors.
|
|
// @return A pointer to the newly appended elements, or null on OOM.
|
|
template<class Item, class Allocator>
|
|
elem_type *MoveElementsFrom(nsTArray_Impl<Item, Allocator>& array) {
|
|
MOZ_ASSERT(&array != this, "argument must be different array");
|
|
index_type len = Length();
|
|
index_type otherLen = array.Length();
|
|
if (!Alloc::Successful(this->EnsureCapacity(len + otherLen, sizeof(elem_type))))
|
|
return nullptr;
|
|
copy_type::CopyElements(Elements() + len, array.Elements(), otherLen, sizeof(elem_type));
|
|
this->IncrementLength(otherLen);
|
|
array.ShiftData(0, otherLen, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
|
|
return Elements() + len;
|
|
}
|
|
|
|
// This method removes a range of elements from this array.
|
|
// @param start The starting index of the elements to remove.
|
|
// @param count The number of elements to remove.
|
|
void RemoveElementsAt(index_type start, size_type count) {
|
|
MOZ_ASSERT(count == 0 || start < Length(), "Invalid start index");
|
|
MOZ_ASSERT(start + count <= Length(), "Invalid length");
|
|
// Check that the previous assert didn't overflow
|
|
MOZ_ASSERT(start <= start + count, "Start index plus length overflows");
|
|
DestructRange(start, count);
|
|
this->ShiftData(start, count, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
|
|
}
|
|
|
|
// A variation on the RemoveElementsAt method defined above.
|
|
void RemoveElementAt(index_type index) {
|
|
RemoveElementsAt(index, 1);
|
|
}
|
|
|
|
// A variation on the RemoveElementsAt method defined above.
|
|
void Clear() {
|
|
RemoveElementsAt(0, Length());
|
|
}
|
|
|
|
// This helper function combines IndexOf with RemoveElementAt to "search
|
|
// and destroy" the first element that is equal to the given element.
|
|
// @param item The item to search for.
|
|
// @param comp The Comparator used to determine element equality.
|
|
// @return true if the element was found
|
|
template<class Item, class Comparator>
|
|
bool RemoveElement(const Item& item, const Comparator& comp) {
|
|
index_type i = IndexOf(item, 0, comp);
|
|
if (i == NoIndex)
|
|
return false;
|
|
|
|
RemoveElementAt(i);
|
|
return true;
|
|
}
|
|
|
|
// A variation on the RemoveElement method defined above that assumes
|
|
// that 'operator==' is defined for elem_type.
|
|
template<class Item>
|
|
bool RemoveElement(const Item& item) {
|
|
return RemoveElement(item, nsDefaultComparator<elem_type, Item>());
|
|
}
|
|
|
|
// This helper function combines IndexOfFirstElementGt with
|
|
// RemoveElementAt to "search and destroy" the last element that
|
|
// is equal to the given element.
|
|
// @param item The item to search for.
|
|
// @param comp The Comparator used to determine element equality.
|
|
// @return true if the element was found
|
|
template<class Item, class Comparator>
|
|
bool RemoveElementSorted(const Item& item, const Comparator& comp) {
|
|
index_type index = IndexOfFirstElementGt(item, comp);
|
|
if (index > 0 && comp.Equals(ElementAt(index - 1), item)) {
|
|
RemoveElementAt(index - 1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// A variation on the RemoveElementSorted method defined above.
|
|
template<class Item>
|
|
bool RemoveElementSorted(const Item& item) {
|
|
return RemoveElementSorted(item, nsDefaultComparator<elem_type, Item>());
|
|
}
|
|
|
|
// This method causes the elements contained in this array and the given
|
|
// array to be swapped.
|
|
template<class Allocator>
|
|
typename Alloc::ResultType
|
|
SwapElements(nsTArray_Impl<E, Allocator>& other) {
|
|
return Alloc::Result(this->SwapArrayElements(other, sizeof(elem_type),
|
|
MOZ_ALIGNOF(elem_type)));
|
|
}
|
|
|
|
//
|
|
// Allocation
|
|
//
|
|
|
|
// This method may increase the capacity of this array object by the
|
|
// specified amount. This method may be called in advance of several
|
|
// AppendElement operations to minimize heap re-allocations. This method
|
|
// will not reduce the number of elements in this array.
|
|
// @param capacity The desired capacity of this array.
|
|
// @return True if the operation succeeded; false if we ran out of memory
|
|
typename Alloc::ResultType SetCapacity(size_type capacity) {
|
|
return Alloc::Result(this->EnsureCapacity(capacity, sizeof(elem_type)));
|
|
}
|
|
|
|
// This method modifies the length of the array. If the new length is
|
|
// larger than the existing length of the array, then new elements will be
|
|
// constructed using elem_type's default constructor. Otherwise, this call
|
|
// removes elements from the array (see also RemoveElementsAt).
|
|
// @param newLen The desired length of this array.
|
|
// @return True if the operation succeeded; false otherwise.
|
|
// See also TruncateLength if the new length is guaranteed to be
|
|
// smaller than the old.
|
|
typename Alloc::ResultType SetLength(size_type newLen) {
|
|
size_type oldLen = Length();
|
|
if (newLen > oldLen) {
|
|
return Alloc::ConvertBoolToResultType(InsertElementsAt(oldLen, newLen - oldLen) != nullptr);
|
|
}
|
|
|
|
TruncateLength(newLen);
|
|
return Alloc::ConvertBoolToResultType(true);
|
|
}
|
|
|
|
// This method modifies the length of the array, but may only be
|
|
// called when the new length is shorter than the old. It can
|
|
// therefore be called when elem_type has no default constructor,
|
|
// unlike SetLength. It removes elements from the array (see also
|
|
// RemoveElementsAt).
|
|
// @param newLen The desired length of this array.
|
|
void TruncateLength(size_type newLen) {
|
|
size_type oldLen = Length();
|
|
NS_ABORT_IF_FALSE(newLen <= oldLen,
|
|
"caller should use SetLength instead");
|
|
RemoveElementsAt(newLen, oldLen - newLen);
|
|
}
|
|
|
|
// This method ensures that the array has length at least the given
|
|
// length. If the current length is shorter than the given length,
|
|
// then new elements will be constructed using elem_type's default
|
|
// constructor.
|
|
// @param minLen The desired minimum length of this array.
|
|
// @return True if the operation succeeded; false otherwise.
|
|
typename Alloc::ResultType EnsureLengthAtLeast(size_type minLen) {
|
|
size_type oldLen = Length();
|
|
if (minLen > oldLen) {
|
|
return Alloc::ConvertBoolToResultType(!!InsertElementsAt(oldLen, minLen - oldLen));
|
|
}
|
|
return Alloc::ConvertBoolToResultType(true);
|
|
}
|
|
|
|
// This method inserts elements into the array, constructing
|
|
// them using elem_type's default constructor.
|
|
// @param index the place to insert the new elements. This must be no
|
|
// greater than the current length of the array.
|
|
// @param count the number of elements to insert
|
|
elem_type *InsertElementsAt(index_type index, size_type count) {
|
|
if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Initialize the extra array elements
|
|
elem_type *iter = Elements() + index, *end = iter + count;
|
|
for (; iter != end; ++iter) {
|
|
elem_traits::Construct(iter);
|
|
}
|
|
|
|
return Elements() + index;
|
|
}
|
|
|
|
// This method inserts elements into the array, constructing them
|
|
// elem_type's copy constructor (or whatever one-arg constructor
|
|
// happens to match the Item type).
|
|
// @param index the place to insert the new elements. This must be no
|
|
// greater than the current length of the array.
|
|
// @param count the number of elements to insert.
|
|
// @param item the value to use when constructing the new elements.
|
|
template<class Item>
|
|
elem_type *InsertElementsAt(index_type index, size_type count,
|
|
const Item& item) {
|
|
if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Initialize the extra array elements
|
|
elem_type *iter = Elements() + index, *end = iter + count;
|
|
for (; iter != end; ++iter) {
|
|
elem_traits::Construct(iter, item);
|
|
}
|
|
|
|
return Elements() + index;
|
|
}
|
|
|
|
// This method may be called to minimize the memory used by this array.
|
|
void Compact() {
|
|
ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type));
|
|
}
|
|
|
|
//
|
|
// Sorting
|
|
//
|
|
|
|
// This function is meant to be used with the NS_QuickSort function. It
|
|
// maps the callback API expected by NS_QuickSort to the Comparator API
|
|
// used by nsTArray_Impl. See nsTArray_Impl::Sort.
|
|
template<class Comparator>
|
|
static int Compare(const void* e1, const void* e2, void *data) {
|
|
const Comparator* c = reinterpret_cast<const Comparator*>(data);
|
|
const elem_type* a = static_cast<const elem_type*>(e1);
|
|
const elem_type* b = static_cast<const elem_type*>(e2);
|
|
return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1);
|
|
}
|
|
|
|
// This method sorts the elements of the array. It uses the LessThan
|
|
// method defined on the given Comparator object to collate elements.
|
|
// @param comp The Comparator used to collate elements.
|
|
template<class Comparator>
|
|
void Sort(const Comparator& comp) {
|
|
NS_QuickSort(Elements(), Length(), sizeof(elem_type),
|
|
Compare<Comparator>, const_cast<Comparator*>(&comp));
|
|
}
|
|
|
|
// A variation on the Sort method defined above that assumes that
|
|
// 'operator<' is defined for elem_type.
|
|
void Sort() {
|
|
Sort(nsDefaultComparator<elem_type, elem_type>());
|
|
}
|
|
|
|
//
|
|
// Binary Heap
|
|
//
|
|
|
|
// Sorts the array into a binary heap.
|
|
// @param comp The Comparator used to create the heap
|
|
template<class Comparator>
|
|
void MakeHeap(const Comparator& comp) {
|
|
if (!Length()) {
|
|
return;
|
|
}
|
|
index_type index = (Length() - 1) / 2;
|
|
do {
|
|
SiftDown(index, comp);
|
|
} while (index--);
|
|
}
|
|
|
|
// A variation on the MakeHeap method defined above.
|
|
void MakeHeap() {
|
|
MakeHeap(nsDefaultComparator<elem_type, elem_type>());
|
|
}
|
|
|
|
// Adds an element to the heap
|
|
// @param item The item to add
|
|
// @param comp The Comparator used to sift-up the item
|
|
template<class Item, class Comparator>
|
|
elem_type *PushHeap(const Item& item, const Comparator& comp) {
|
|
if (!base_type::InsertSlotsAt(Length(), 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
|
|
return nullptr;
|
|
}
|
|
// Sift up the new node
|
|
elem_type *elem = Elements();
|
|
index_type index = Length() - 1;
|
|
index_type parent_index = (index - 1) / 2;
|
|
while (index && comp.LessThan(elem[parent_index], item)) {
|
|
elem[index] = elem[parent_index];
|
|
index = parent_index;
|
|
parent_index = (index - 1) / 2;
|
|
}
|
|
elem[index] = item;
|
|
return &elem[index];
|
|
}
|
|
|
|
// A variation on the PushHeap method defined above.
|
|
template<class Item>
|
|
elem_type *PushHeap(const Item& item) {
|
|
return PushHeap(item, nsDefaultComparator<elem_type, Item>());
|
|
}
|
|
|
|
// Delete the root of the heap and restore the heap
|
|
// @param comp The Comparator used to restore the heap
|
|
template<class Comparator>
|
|
void PopHeap(const Comparator& comp) {
|
|
if (!Length()) {
|
|
return;
|
|
}
|
|
index_type last_index = Length() - 1;
|
|
elem_type *elem = Elements();
|
|
elem[0] = elem[last_index];
|
|
TruncateLength(last_index);
|
|
if (Length()) {
|
|
SiftDown(0, comp);
|
|
}
|
|
}
|
|
|
|
// A variation on the PopHeap method defined above.
|
|
void PopHeap() {
|
|
PopHeap(nsDefaultComparator<elem_type, elem_type>());
|
|
}
|
|
|
|
protected:
|
|
using base_type::Hdr;
|
|
using base_type::ShrinkCapacity;
|
|
|
|
// This method invokes elem_type's destructor on a range of elements.
|
|
// @param start The index of the first element to destroy.
|
|
// @param count The number of elements to destroy.
|
|
void DestructRange(index_type start, size_type count) {
|
|
elem_type *iter = Elements() + start, *end = iter + count;
|
|
for (; iter != end; ++iter) {
|
|
elem_traits::Destruct(iter);
|
|
}
|
|
}
|
|
|
|
// This method invokes elem_type's copy-constructor on a range of elements.
|
|
// @param start The index of the first element to construct.
|
|
// @param count The number of elements to construct.
|
|
// @param values The array of elements to copy.
|
|
template<class Item>
|
|
void AssignRange(index_type start, size_type count,
|
|
const Item *values) {
|
|
AssignRangeAlgorithm<mozilla::IsPod<Item>::value,
|
|
mozilla::IsSame<Item, elem_type>::value>
|
|
::implementation(Elements(), start, count, values);
|
|
}
|
|
|
|
// This method sifts an item down to its proper place in a binary heap
|
|
// @param index The index of the node to start sifting down from
|
|
// @param comp The Comparator used to sift down
|
|
template<class Comparator>
|
|
void SiftDown(index_type index, const Comparator& comp) {
|
|
elem_type *elem = Elements();
|
|
elem_type item = elem[index];
|
|
index_type end = Length() - 1;
|
|
while ((index * 2) < end) {
|
|
const index_type left = (index * 2) + 1;
|
|
const index_type right = (index * 2) + 2;
|
|
const index_type parent_index = index;
|
|
if (comp.LessThan(item, elem[left])) {
|
|
if (left < end &&
|
|
comp.LessThan(elem[left], elem[right])) {
|
|
index = right;
|
|
} else {
|
|
index = left;
|
|
}
|
|
} else if (left < end &&
|
|
comp.LessThan(item, elem[right])) {
|
|
index = right;
|
|
} else {
|
|
break;
|
|
}
|
|
elem[parent_index] = elem[index];
|
|
}
|
|
elem[index] = item;
|
|
}
|
|
};
|
|
|
|
template <typename E, typename Alloc>
|
|
inline void
|
|
ImplCycleCollectionUnlink(nsTArray_Impl<E, Alloc>& aField)
|
|
{
|
|
aField.Clear();
|
|
}
|
|
|
|
template <typename E, typename Alloc>
|
|
inline void
|
|
ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
|
|
nsTArray_Impl<E, Alloc>& aField,
|
|
const char* aName,
|
|
uint32_t aFlags = 0)
|
|
{
|
|
aFlags |= CycleCollectionEdgeNameArrayFlag;
|
|
size_t length = aField.Length();
|
|
for (size_t i = 0; i < length; ++i) {
|
|
ImplCycleCollectionTraverse(aCallback, aField[i], aName, aFlags);
|
|
}
|
|
}
|
|
|
|
//
|
|
// nsTArray is an infallible vector class. See the comment at the top of this
|
|
// file for more details.
|
|
//
|
|
template <class E>
|
|
class nsTArray : public nsTArray_Impl<E, nsTArrayInfallibleAllocator>
|
|
{
|
|
public:
|
|
typedef nsTArray_Impl<E, nsTArrayInfallibleAllocator> base_type;
|
|
typedef nsTArray<E> self_type;
|
|
typedef typename base_type::size_type size_type;
|
|
|
|
nsTArray() {}
|
|
explicit nsTArray(size_type capacity) : base_type(capacity) {}
|
|
explicit nsTArray(const nsTArray& other) : base_type(other) {}
|
|
|
|
template<class Allocator>
|
|
explicit nsTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {}
|
|
};
|
|
|
|
//
|
|
// FallibleTArray is a fallible vector class.
|
|
//
|
|
template <class E>
|
|
class FallibleTArray : public nsTArray_Impl<E, nsTArrayFallibleAllocator>
|
|
{
|
|
public:
|
|
typedef nsTArray_Impl<E, nsTArrayFallibleAllocator> base_type;
|
|
typedef FallibleTArray<E> self_type;
|
|
typedef typename base_type::size_type size_type;
|
|
|
|
FallibleTArray() {}
|
|
explicit FallibleTArray(size_type capacity) : base_type(capacity) {}
|
|
explicit FallibleTArray(const FallibleTArray<E>& other) : base_type(other) {}
|
|
|
|
template<class Allocator>
|
|
explicit FallibleTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {}
|
|
};
|
|
|
|
//
|
|
// nsAutoArrayBase is a base class for AutoFallibleTArray and nsAutoTArray.
|
|
// You shouldn't use this class directly.
|
|
//
|
|
template <class TArrayBase, size_t N>
|
|
class nsAutoArrayBase : public TArrayBase
|
|
{
|
|
public:
|
|
typedef nsAutoArrayBase<TArrayBase, N> self_type;
|
|
typedef TArrayBase base_type;
|
|
typedef typename base_type::Header Header;
|
|
typedef typename base_type::elem_type elem_type;
|
|
|
|
template<typename Allocator>
|
|
self_type& operator=(const nsTArray_Impl<elem_type, Allocator>& other) {
|
|
base_type::operator=(other);
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
nsAutoArrayBase() {
|
|
Init();
|
|
}
|
|
|
|
// We need this constructor because nsAutoTArray and friends all have
|
|
// implicit copy-constructors. If we don't have this method, those
|
|
// copy-constructors will call nsAutoArrayBase's implicit copy-constructor,
|
|
// which won't call Init() and set up the auto buffer!
|
|
nsAutoArrayBase(const self_type &aOther) {
|
|
Init();
|
|
this->AppendElements(aOther);
|
|
}
|
|
|
|
private:
|
|
// nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer
|
|
// to mAutoBuf.
|
|
template<class Allocator, class Copier>
|
|
friend class nsTArray_base;
|
|
|
|
void Init() {
|
|
static_assert(MOZ_ALIGNOF(elem_type) <= 8,
|
|
"can't handle alignments greater than 8, "
|
|
"see nsTArray_base::UsesAutoArrayBuffer()");
|
|
// Temporary work around for VS2012 RC compiler crash
|
|
Header** phdr = base_type::PtrToHdr();
|
|
*phdr = reinterpret_cast<Header*>(&mAutoBuf);
|
|
(*phdr)->mLength = 0;
|
|
(*phdr)->mCapacity = N;
|
|
(*phdr)->mIsAutoArray = 1;
|
|
|
|
MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) ==
|
|
reinterpret_cast<Header*>(&mAutoBuf),
|
|
"GetAutoArrayBuffer needs to be fixed");
|
|
}
|
|
|
|
// Declare mAutoBuf aligned to the maximum of the header's alignment and
|
|
// elem_type's alignment. We need to use a union rather than
|
|
// MOZ_ALIGNED_DECL because GCC is picky about what goes into
|
|
// __attribute__((aligned(foo))).
|
|
union {
|
|
char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)];
|
|
// Do the max operation inline to ensure that it is a compile-time constant.
|
|
mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(elem_type))
|
|
? MOZ_ALIGNOF(Header) : MOZ_ALIGNOF(elem_type)> mAlign;
|
|
};
|
|
};
|
|
|
|
//
|
|
// nsAutoTArray<E, N> is an infallible vector class with N elements of inline
|
|
// storage. If you try to store more than N elements inside an
|
|
// nsAutoTArray<E, N>, we'll call malloc() and store them all on the heap.
|
|
//
|
|
// Note that you can cast an nsAutoTArray<E, N> to
|
|
// |const AutoFallibleTArray<E, N>&|.
|
|
//
|
|
template<class E, size_t N>
|
|
class nsAutoTArray : public nsAutoArrayBase<nsTArray<E>, N>
|
|
{
|
|
typedef nsAutoTArray<E, N> self_type;
|
|
typedef nsAutoArrayBase<nsTArray<E>, N> Base;
|
|
|
|
public:
|
|
nsAutoTArray() {}
|
|
|
|
template<typename Allocator>
|
|
explicit nsAutoTArray(const nsTArray_Impl<E, Allocator>& other) {
|
|
Base::AppendElements(other);
|
|
}
|
|
|
|
operator const AutoFallibleTArray<E, N>&() const {
|
|
return *reinterpret_cast<const AutoFallibleTArray<E, N>*>(this);
|
|
}
|
|
};
|
|
|
|
//
|
|
// AutoFallibleTArray<E, N> is a fallible vector class with N elements of
|
|
// inline storage.
|
|
//
|
|
template<class E, size_t N>
|
|
class AutoFallibleTArray : public nsAutoArrayBase<FallibleTArray<E>, N>
|
|
{
|
|
typedef AutoFallibleTArray<E, N> self_type;
|
|
typedef nsAutoArrayBase<FallibleTArray<E>, N> Base;
|
|
|
|
public:
|
|
AutoFallibleTArray() {}
|
|
|
|
template<typename Allocator>
|
|
explicit AutoFallibleTArray(const nsTArray_Impl<E, Allocator>& other) {
|
|
Base::AppendElements(other);
|
|
}
|
|
|
|
operator const nsAutoTArray<E, N>&() const {
|
|
return *reinterpret_cast<const nsAutoTArray<E, N>*>(this);
|
|
}
|
|
};
|
|
|
|
// Assert that nsAutoTArray doesn't have any extra padding inside.
|
|
//
|
|
// It's important that the data stored in this auto array takes up a multiple of
|
|
// 8 bytes; e.g. nsAutoTArray<uint32_t, 1> wouldn't work. Since nsAutoTArray
|
|
// contains a pointer, its size must be a multiple of alignof(void*). (This is
|
|
// because any type may be placed into an array, and there's no padding between
|
|
// elements of an array.) The compiler pads the end of the structure to
|
|
// enforce this rule.
|
|
//
|
|
// If we used nsAutoTArray<uint32_t, 1> below, this assertion would fail on a
|
|
// 64-bit system, where the compiler inserts 4 bytes of padding at the end of
|
|
// the auto array to make its size a multiple of alignof(void*) == 8 bytes.
|
|
|
|
static_assert(sizeof(nsAutoTArray<uint32_t, 2>) ==
|
|
sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2,
|
|
"nsAutoTArray shouldn't contain any extra padding, "
|
|
"see the comment");
|
|
|
|
// Definitions of nsTArray_Impl methods
|
|
#include "nsTArray-inl.h"
|
|
|
|
#endif // nsTArray_h__
|