mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-25 13:51:41 +00:00
126bd9e1a4
This patch was generated automatically by the "modeline.py" script, available here: https://github.com/amccreight/moz-source-tools/blob/master/modeline.py For every file that is modified in this patch, the changes are as follows: (1) The patch changes the file to use the exact C++ mode lines from the Mozilla coding style guide, available here: https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style#Mode_Line (2) The patch deletes any blank lines between the mode line & the MPL boilerplate comment. (3) If the file previously had the mode lines and MPL boilerplate in a single contiguous C++ comment, then the patch splits them into separate C++ comments, to match the boilerplate in the coding style. MozReview-Commit-ID: 77D61xpSmIl --HG-- extra : rebase_source : c6162fa3cf539a07177a19838324bf368faa162b
1182 lines
34 KiB
C++
1182 lines
34 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef _MOZILLA_GFX_SIMD_H_
|
|
#define _MOZILLA_GFX_SIMD_H_
|
|
|
|
/**
|
|
* Consumers of this file need to #define SIMD_COMPILE_SSE2 before including it
|
|
* if they want access to the SSE2 functions.
|
|
*/
|
|
|
|
#ifdef SIMD_COMPILE_SSE2
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
namespace simd {
|
|
|
|
template<typename u8x16_t>
|
|
u8x16_t Load8(const uint8_t* aSource);
|
|
|
|
template<typename u8x16_t>
|
|
u8x16_t From8(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h,
|
|
uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p);
|
|
|
|
template<typename u8x16_t>
|
|
u8x16_t FromZero8();
|
|
|
|
template<typename i16x8_t>
|
|
i16x8_t FromI16(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e, int16_t f, int16_t g, int16_t h);
|
|
|
|
template<typename u16x8_t>
|
|
u16x8_t FromU16(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h);
|
|
|
|
template<typename i16x8_t>
|
|
i16x8_t FromI16(int16_t a);
|
|
|
|
template<typename u16x8_t>
|
|
u16x8_t FromU16(uint16_t a);
|
|
|
|
template<typename i32x4_t>
|
|
i32x4_t From32(int32_t a, int32_t b, int32_t c, int32_t d);
|
|
|
|
template<typename i32x4_t>
|
|
i32x4_t From32(int32_t a);
|
|
|
|
template<typename f32x4_t>
|
|
f32x4_t FromF32(float a, float b, float c, float d);
|
|
|
|
template<typename f32x4_t>
|
|
f32x4_t FromF32(float a);
|
|
|
|
// All SIMD backends overload these functions for their SIMD types:
|
|
|
|
#if 0
|
|
|
|
// Store 16 bytes to a 16-byte aligned address
|
|
void Store8(uint8_t* aTarget, u8x16_t aM);
|
|
|
|
// Fixed shifts
|
|
template<int32_t aNumberOfBits> i16x8_t ShiftRight16(i16x8_t aM);
|
|
template<int32_t aNumberOfBits> i32x4_t ShiftRight32(i32x4_t aM);
|
|
|
|
i16x8_t Add16(i16x8_t aM1, i16x8_t aM2);
|
|
i32x4_t Add32(i32x4_t aM1, i32x4_t aM2);
|
|
i16x8_t Sub16(i16x8_t aM1, i16x8_t aM2);
|
|
i32x4_t Sub32(i32x4_t aM1, i32x4_t aM2);
|
|
u8x16_t Min8(u8x16_t aM1, iu8x16_t aM2);
|
|
u8x16_t Max8(u8x16_t aM1, iu8x16_t aM2);
|
|
i32x4_t Min32(i32x4_t aM1, i32x4_t aM2);
|
|
i32x4_t Max32(i32x4_t aM1, i32x4_t aM2);
|
|
|
|
// Truncating i16 -> i16 multiplication
|
|
i16x8_t Mul16(i16x8_t aM1, i16x8_t aM2);
|
|
|
|
// Long multiplication i16 -> i32
|
|
// aFactorsA1B1 = (a1[4] b1[4])
|
|
// aFactorsA2B2 = (a2[4] b2[4])
|
|
// aProductA = a1 * a2, aProductB = b1 * b2
|
|
void Mul16x4x2x2To32x4x2(i16x8_t aFactorsA1B1, i16x8_t aFactorsA2B2,
|
|
i32x4_t& aProductA, i32x4_t& aProductB);
|
|
|
|
// Long multiplication + pairwise addition i16 -> i32
|
|
// See the scalar implementation for specifics.
|
|
i32x4_t MulAdd16x8x2To32x4(i16x8_t aFactorsA, i16x8_t aFactorsB);
|
|
i32x4_t MulAdd16x8x2To32x4(u16x8_t aFactorsA, u16x8_t aFactorsB);
|
|
|
|
// Set all four 32-bit components to the value of the component at aIndex.
|
|
template<int8_t aIndex>
|
|
i32x4_t Splat32(i32x4_t aM);
|
|
|
|
// Interpret the input as four 32-bit values, apply Splat32<aIndex> on them,
|
|
// re-interpret the result as sixteen 8-bit values.
|
|
template<int8_t aIndex>
|
|
u8x16_t Splat32On8(u8x16_t aM);
|
|
|
|
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3> i32x4 Shuffle32(i32x4 aM);
|
|
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3> i16x8 ShuffleLo16(i16x8 aM);
|
|
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3> i16x8 ShuffleHi16(i16x8 aM);
|
|
|
|
u8x16_t InterleaveLo8(u8x16_t m1, u8x16_t m2);
|
|
u8x16_t InterleaveHi8(u8x16_t m1, u8x16_t m2);
|
|
i16x8_t InterleaveLo16(i16x8_t m1, i16x8_t m2);
|
|
i16x8_t InterleaveHi16(i16x8_t m1, i16x8_t m2);
|
|
i32x4_t InterleaveLo32(i32x4_t m1, i32x4_t m2);
|
|
|
|
i16x8_t UnpackLo8x8ToI16x8(u8x16_t m);
|
|
i16x8_t UnpackHi8x8ToI16x8(u8x16_t m);
|
|
u16x8_t UnpackLo8x8ToU16x8(u8x16_t m);
|
|
u16x8_t UnpackHi8x8ToU16x8(u8x16_t m);
|
|
|
|
i16x8_t PackAndSaturate32To16(i32x4_t m1, i32x4_t m2);
|
|
u8x16_t PackAndSaturate16To8(i16x8_t m1, i16x8_t m2);
|
|
u8x16_t PackAndSaturate32To8(i32x4_t m1, i32x4_t m2, i32x4_t m3, const i32x4_t& m4);
|
|
|
|
i32x4 FastDivideBy255(i32x4 m);
|
|
i16x8 FastDivideBy255_16(i16x8 m);
|
|
|
|
#endif
|
|
|
|
// Scalar
|
|
|
|
struct Scalaru8x16_t {
|
|
uint8_t u8[16];
|
|
};
|
|
|
|
union Scalari16x8_t {
|
|
int16_t i16[8];
|
|
uint16_t u16[8];
|
|
};
|
|
|
|
typedef Scalari16x8_t Scalaru16x8_t;
|
|
|
|
struct Scalari32x4_t {
|
|
int32_t i32[4];
|
|
};
|
|
|
|
struct Scalarf32x4_t {
|
|
float f32[4];
|
|
};
|
|
|
|
template<>
|
|
inline Scalaru8x16_t
|
|
Load8<Scalaru8x16_t>(const uint8_t* aSource)
|
|
{
|
|
return *(Scalaru8x16_t*)aSource;
|
|
}
|
|
|
|
inline void Store8(uint8_t* aTarget, Scalaru8x16_t aM)
|
|
{
|
|
*(Scalaru8x16_t*)aTarget = aM;
|
|
}
|
|
|
|
template<>
|
|
inline Scalaru8x16_t From8<Scalaru8x16_t>(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h,
|
|
uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p)
|
|
{
|
|
Scalaru8x16_t _m;
|
|
_m.u8[0] = a;
|
|
_m.u8[1] = b;
|
|
_m.u8[2] = c;
|
|
_m.u8[3] = d;
|
|
_m.u8[4] = e;
|
|
_m.u8[5] = f;
|
|
_m.u8[6] = g;
|
|
_m.u8[7] = h;
|
|
_m.u8[8+0] = i;
|
|
_m.u8[8+1] = j;
|
|
_m.u8[8+2] = k;
|
|
_m.u8[8+3] = l;
|
|
_m.u8[8+4] = m;
|
|
_m.u8[8+5] = n;
|
|
_m.u8[8+6] = o;
|
|
_m.u8[8+7] = p;
|
|
return _m;
|
|
}
|
|
|
|
template<>
|
|
inline Scalaru8x16_t FromZero8<Scalaru8x16_t>()
|
|
{
|
|
return From8<Scalaru8x16_t>(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
|
|
}
|
|
|
|
template<>
|
|
inline Scalari16x8_t FromI16<Scalari16x8_t>(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e, int16_t f, int16_t g, int16_t h)
|
|
{
|
|
Scalari16x8_t m;
|
|
m.i16[0] = a;
|
|
m.i16[1] = b;
|
|
m.i16[2] = c;
|
|
m.i16[3] = d;
|
|
m.i16[4] = e;
|
|
m.i16[5] = f;
|
|
m.i16[6] = g;
|
|
m.i16[7] = h;
|
|
return m;
|
|
}
|
|
|
|
template<>
|
|
inline Scalaru16x8_t FromU16<Scalaru16x8_t>(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h)
|
|
{
|
|
Scalaru16x8_t m;
|
|
m.u16[0] = a;
|
|
m.u16[1] = b;
|
|
m.u16[2] = c;
|
|
m.u16[3] = d;
|
|
m.u16[4] = e;
|
|
m.u16[5] = f;
|
|
m.u16[6] = g;
|
|
m.u16[7] = h;
|
|
return m;
|
|
}
|
|
|
|
template<>
|
|
inline Scalari16x8_t FromI16<Scalari16x8_t>(int16_t a)
|
|
{
|
|
return FromI16<Scalari16x8_t>(a, a, a, a, a, a, a, a);
|
|
}
|
|
|
|
template<>
|
|
inline Scalaru16x8_t FromU16<Scalaru16x8_t>(uint16_t a)
|
|
{
|
|
return FromU16<Scalaru16x8_t>(a, a, a, a, a, a, a, a);
|
|
}
|
|
|
|
template<>
|
|
inline Scalari32x4_t From32<Scalari32x4_t>(int32_t a, int32_t b, int32_t c, int32_t d)
|
|
{
|
|
Scalari32x4_t m;
|
|
m.i32[0] = a;
|
|
m.i32[1] = b;
|
|
m.i32[2] = c;
|
|
m.i32[3] = d;
|
|
return m;
|
|
}
|
|
|
|
template<>
|
|
inline Scalarf32x4_t FromF32<Scalarf32x4_t>(float a, float b, float c, float d)
|
|
{
|
|
Scalarf32x4_t m;
|
|
m.f32[0] = a;
|
|
m.f32[1] = b;
|
|
m.f32[2] = c;
|
|
m.f32[3] = d;
|
|
return m;
|
|
}
|
|
|
|
template<>
|
|
inline Scalarf32x4_t FromF32<Scalarf32x4_t>(float a)
|
|
{
|
|
return FromF32<Scalarf32x4_t>(a, a, a, a);
|
|
}
|
|
|
|
template<>
|
|
inline Scalari32x4_t From32<Scalari32x4_t>(int32_t a)
|
|
{
|
|
return From32<Scalari32x4_t>(a, a, a, a);
|
|
}
|
|
|
|
template<int32_t aNumberOfBits>
|
|
inline Scalari16x8_t ShiftRight16(Scalari16x8_t aM)
|
|
{
|
|
return FromI16<Scalari16x8_t>(uint16_t(aM.i16[0]) >> aNumberOfBits, uint16_t(aM.i16[1]) >> aNumberOfBits,
|
|
uint16_t(aM.i16[2]) >> aNumberOfBits, uint16_t(aM.i16[3]) >> aNumberOfBits,
|
|
uint16_t(aM.i16[4]) >> aNumberOfBits, uint16_t(aM.i16[5]) >> aNumberOfBits,
|
|
uint16_t(aM.i16[6]) >> aNumberOfBits, uint16_t(aM.i16[7]) >> aNumberOfBits);
|
|
}
|
|
|
|
template<int32_t aNumberOfBits>
|
|
inline Scalari32x4_t ShiftRight32(Scalari32x4_t aM)
|
|
{
|
|
return From32<Scalari32x4_t>(aM.i32[0] >> aNumberOfBits, aM.i32[1] >> aNumberOfBits,
|
|
aM.i32[2] >> aNumberOfBits, aM.i32[3] >> aNumberOfBits);
|
|
}
|
|
|
|
inline Scalaru16x8_t Add16(Scalaru16x8_t aM1, Scalaru16x8_t aM2)
|
|
{
|
|
return FromU16<Scalaru16x8_t>(aM1.u16[0] + aM2.u16[0], aM1.u16[1] + aM2.u16[1],
|
|
aM1.u16[2] + aM2.u16[2], aM1.u16[3] + aM2.u16[3],
|
|
aM1.u16[4] + aM2.u16[4], aM1.u16[5] + aM2.u16[5],
|
|
aM1.u16[6] + aM2.u16[6], aM1.u16[7] + aM2.u16[7]);
|
|
}
|
|
|
|
inline Scalari32x4_t Add32(Scalari32x4_t aM1, Scalari32x4_t aM2)
|
|
{
|
|
return From32<Scalari32x4_t>(aM1.i32[0] + aM2.i32[0], aM1.i32[1] + aM2.i32[1],
|
|
aM1.i32[2] + aM2.i32[2], aM1.i32[3] + aM2.i32[3]);
|
|
}
|
|
|
|
inline Scalaru16x8_t Sub16(Scalaru16x8_t aM1, Scalaru16x8_t aM2)
|
|
{
|
|
return FromU16<Scalaru16x8_t>(aM1.u16[0] - aM2.u16[0], aM1.u16[1] - aM2.u16[1],
|
|
aM1.u16[2] - aM2.u16[2], aM1.u16[3] - aM2.u16[3],
|
|
aM1.u16[4] - aM2.u16[4], aM1.u16[5] - aM2.u16[5],
|
|
aM1.u16[6] - aM2.u16[6], aM1.u16[7] - aM2.u16[7]);
|
|
}
|
|
|
|
inline Scalari32x4_t Sub32(Scalari32x4_t aM1, Scalari32x4_t aM2)
|
|
{
|
|
return From32<Scalari32x4_t>(aM1.i32[0] - aM2.i32[0], aM1.i32[1] - aM2.i32[1],
|
|
aM1.i32[2] - aM2.i32[2], aM1.i32[3] - aM2.i32[3]);
|
|
}
|
|
|
|
inline int32_t
|
|
umin(int32_t a, int32_t b)
|
|
{
|
|
return a - ((a - b) & -(a > b));
|
|
}
|
|
|
|
inline int32_t
|
|
umax(int32_t a, int32_t b)
|
|
{
|
|
return a - ((a - b) & -(a < b));
|
|
}
|
|
|
|
inline Scalaru8x16_t Min8(Scalaru8x16_t aM1, Scalaru8x16_t aM2)
|
|
{
|
|
return From8<Scalaru8x16_t>(umin(aM1.u8[0], aM2.u8[0]), umin(aM1.u8[1], aM2.u8[1]),
|
|
umin(aM1.u8[2], aM2.u8[2]), umin(aM1.u8[3], aM2.u8[3]),
|
|
umin(aM1.u8[4], aM2.u8[4]), umin(aM1.u8[5], aM2.u8[5]),
|
|
umin(aM1.u8[6], aM2.u8[6]), umin(aM1.u8[7], aM2.u8[7]),
|
|
umin(aM1.u8[8+0], aM2.u8[8+0]), umin(aM1.u8[8+1], aM2.u8[8+1]),
|
|
umin(aM1.u8[8+2], aM2.u8[8+2]), umin(aM1.u8[8+3], aM2.u8[8+3]),
|
|
umin(aM1.u8[8+4], aM2.u8[8+4]), umin(aM1.u8[8+5], aM2.u8[8+5]),
|
|
umin(aM1.u8[8+6], aM2.u8[8+6]), umin(aM1.u8[8+7], aM2.u8[8+7]));
|
|
}
|
|
|
|
inline Scalaru8x16_t Max8(Scalaru8x16_t aM1, Scalaru8x16_t aM2)
|
|
{
|
|
return From8<Scalaru8x16_t>(umax(aM1.u8[0], aM2.u8[0]), umax(aM1.u8[1], aM2.u8[1]),
|
|
umax(aM1.u8[2], aM2.u8[2]), umax(aM1.u8[3], aM2.u8[3]),
|
|
umax(aM1.u8[4], aM2.u8[4]), umax(aM1.u8[5], aM2.u8[5]),
|
|
umax(aM1.u8[6], aM2.u8[6]), umax(aM1.u8[7], aM2.u8[7]),
|
|
umax(aM1.u8[8+0], aM2.u8[8+0]), umax(aM1.u8[8+1], aM2.u8[8+1]),
|
|
umax(aM1.u8[8+2], aM2.u8[8+2]), umax(aM1.u8[8+3], aM2.u8[8+3]),
|
|
umax(aM1.u8[8+4], aM2.u8[8+4]), umax(aM1.u8[8+5], aM2.u8[8+5]),
|
|
umax(aM1.u8[8+6], aM2.u8[8+6]), umax(aM1.u8[8+7], aM2.u8[8+7]));
|
|
}
|
|
|
|
inline Scalari32x4_t Min32(Scalari32x4_t aM1, Scalari32x4_t aM2)
|
|
{
|
|
return From32<Scalari32x4_t>(umin(aM1.i32[0], aM2.i32[0]), umin(aM1.i32[1], aM2.i32[1]),
|
|
umin(aM1.i32[2], aM2.i32[2]), umin(aM1.i32[3], aM2.i32[3]));
|
|
}
|
|
|
|
inline Scalari32x4_t Max32(Scalari32x4_t aM1, Scalari32x4_t aM2)
|
|
{
|
|
return From32<Scalari32x4_t>(umax(aM1.i32[0], aM2.i32[0]), umax(aM1.i32[1], aM2.i32[1]),
|
|
umax(aM1.i32[2], aM2.i32[2]), umax(aM1.i32[3], aM2.i32[3]));
|
|
}
|
|
|
|
inline Scalaru16x8_t Mul16(Scalaru16x8_t aM1, Scalaru16x8_t aM2)
|
|
{
|
|
return FromU16<Scalaru16x8_t>(uint16_t(int32_t(aM1.u16[0]) * int32_t(aM2.u16[0])), uint16_t(int32_t(aM1.u16[1]) * int32_t(aM2.u16[1])),
|
|
uint16_t(int32_t(aM1.u16[2]) * int32_t(aM2.u16[2])), uint16_t(int32_t(aM1.u16[3]) * int32_t(aM2.u16[3])),
|
|
uint16_t(int32_t(aM1.u16[4]) * int32_t(aM2.u16[4])), uint16_t(int32_t(aM1.u16[5]) * int32_t(aM2.u16[5])),
|
|
uint16_t(int32_t(aM1.u16[6]) * int32_t(aM2.u16[6])), uint16_t(int32_t(aM1.u16[7]) * int32_t(aM2.u16[7])));
|
|
}
|
|
|
|
inline void Mul16x4x2x2To32x4x2(Scalari16x8_t aFactorsA1B1,
|
|
Scalari16x8_t aFactorsA2B2,
|
|
Scalari32x4_t& aProductA,
|
|
Scalari32x4_t& aProductB)
|
|
{
|
|
aProductA = From32<Scalari32x4_t>(aFactorsA1B1.i16[0] * aFactorsA2B2.i16[0],
|
|
aFactorsA1B1.i16[1] * aFactorsA2B2.i16[1],
|
|
aFactorsA1B1.i16[2] * aFactorsA2B2.i16[2],
|
|
aFactorsA1B1.i16[3] * aFactorsA2B2.i16[3]);
|
|
aProductB = From32<Scalari32x4_t>(aFactorsA1B1.i16[4] * aFactorsA2B2.i16[4],
|
|
aFactorsA1B1.i16[5] * aFactorsA2B2.i16[5],
|
|
aFactorsA1B1.i16[6] * aFactorsA2B2.i16[6],
|
|
aFactorsA1B1.i16[7] * aFactorsA2B2.i16[7]);
|
|
}
|
|
|
|
inline Scalari32x4_t MulAdd16x8x2To32x4(Scalari16x8_t aFactorsA,
|
|
Scalari16x8_t aFactorsB)
|
|
{
|
|
return From32<Scalari32x4_t>(aFactorsA.i16[0] * aFactorsB.i16[0] + aFactorsA.i16[1] * aFactorsB.i16[1],
|
|
aFactorsA.i16[2] * aFactorsB.i16[2] + aFactorsA.i16[3] * aFactorsB.i16[3],
|
|
aFactorsA.i16[4] * aFactorsB.i16[4] + aFactorsA.i16[5] * aFactorsB.i16[5],
|
|
aFactorsA.i16[6] * aFactorsB.i16[6] + aFactorsA.i16[7] * aFactorsB.i16[7]);
|
|
}
|
|
|
|
template<int8_t aIndex>
|
|
inline void AssertIndex()
|
|
{
|
|
static_assert(aIndex == 0 || aIndex == 1 || aIndex == 2 || aIndex == 3,
|
|
"Invalid splat index");
|
|
}
|
|
|
|
template<int8_t aIndex>
|
|
inline Scalari32x4_t Splat32(Scalari32x4_t aM)
|
|
{
|
|
AssertIndex<aIndex>();
|
|
return From32<Scalari32x4_t>(aM.i32[aIndex], aM.i32[aIndex],
|
|
aM.i32[aIndex], aM.i32[aIndex]);
|
|
}
|
|
|
|
template<int8_t i>
|
|
inline Scalaru8x16_t Splat32On8(Scalaru8x16_t aM)
|
|
{
|
|
AssertIndex<i>();
|
|
return From8<Scalaru8x16_t>(aM.u8[i*4], aM.u8[i*4+1], aM.u8[i*4+2], aM.u8[i*4+3],
|
|
aM.u8[i*4], aM.u8[i*4+1], aM.u8[i*4+2], aM.u8[i*4+3],
|
|
aM.u8[i*4], aM.u8[i*4+1], aM.u8[i*4+2], aM.u8[i*4+3],
|
|
aM.u8[i*4], aM.u8[i*4+1], aM.u8[i*4+2], aM.u8[i*4+3]);
|
|
}
|
|
|
|
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
|
|
inline Scalari32x4_t Shuffle32(Scalari32x4_t aM)
|
|
{
|
|
AssertIndex<i0>();
|
|
AssertIndex<i1>();
|
|
AssertIndex<i2>();
|
|
AssertIndex<i3>();
|
|
Scalari32x4_t m = aM;
|
|
m.i32[0] = aM.i32[i3];
|
|
m.i32[1] = aM.i32[i2];
|
|
m.i32[2] = aM.i32[i1];
|
|
m.i32[3] = aM.i32[i0];
|
|
return m;
|
|
}
|
|
|
|
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
|
|
inline Scalari16x8_t ShuffleLo16(Scalari16x8_t aM)
|
|
{
|
|
AssertIndex<i0>();
|
|
AssertIndex<i1>();
|
|
AssertIndex<i2>();
|
|
AssertIndex<i3>();
|
|
Scalari16x8_t m = aM;
|
|
m.i16[0] = aM.i16[i3];
|
|
m.i16[1] = aM.i16[i2];
|
|
m.i16[2] = aM.i16[i1];
|
|
m.i16[3] = aM.i16[i0];
|
|
return m;
|
|
}
|
|
|
|
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
|
|
inline Scalari16x8_t ShuffleHi16(Scalari16x8_t aM)
|
|
{
|
|
AssertIndex<i0>();
|
|
AssertIndex<i1>();
|
|
AssertIndex<i2>();
|
|
AssertIndex<i3>();
|
|
Scalari16x8_t m = aM;
|
|
m.i16[4 + 0] = aM.i16[4 + i3];
|
|
m.i16[4 + 1] = aM.i16[4 + i2];
|
|
m.i16[4 + 2] = aM.i16[4 + i1];
|
|
m.i16[4 + 3] = aM.i16[4 + i0];
|
|
return m;
|
|
}
|
|
|
|
template<int8_t aIndexLo, int8_t aIndexHi>
|
|
inline Scalaru16x8_t Splat16(Scalaru16x8_t aM)
|
|
{
|
|
AssertIndex<aIndexLo>();
|
|
AssertIndex<aIndexHi>();
|
|
Scalaru16x8_t m;
|
|
int16_t chosenValueLo = aM.u16[aIndexLo];
|
|
m.u16[0] = chosenValueLo;
|
|
m.u16[1] = chosenValueLo;
|
|
m.u16[2] = chosenValueLo;
|
|
m.u16[3] = chosenValueLo;
|
|
int16_t chosenValueHi = aM.u16[4 + aIndexHi];
|
|
m.u16[4] = chosenValueHi;
|
|
m.u16[5] = chosenValueHi;
|
|
m.u16[6] = chosenValueHi;
|
|
m.u16[7] = chosenValueHi;
|
|
return m;
|
|
}
|
|
|
|
inline Scalaru8x16_t
|
|
InterleaveLo8(Scalaru8x16_t m1, Scalaru8x16_t m2)
|
|
{
|
|
return From8<Scalaru8x16_t>(m1.u8[0], m2.u8[0], m1.u8[1], m2.u8[1],
|
|
m1.u8[2], m2.u8[2], m1.u8[3], m2.u8[3],
|
|
m1.u8[4], m2.u8[4], m1.u8[5], m2.u8[5],
|
|
m1.u8[6], m2.u8[6], m1.u8[7], m2.u8[7]);
|
|
}
|
|
|
|
inline Scalaru8x16_t
|
|
InterleaveHi8(Scalaru8x16_t m1, Scalaru8x16_t m2)
|
|
{
|
|
return From8<Scalaru8x16_t>(m1.u8[8+0], m2.u8[8+0], m1.u8[8+1], m2.u8[8+1],
|
|
m1.u8[8+2], m2.u8[8+2], m1.u8[8+3], m2.u8[8+3],
|
|
m1.u8[8+4], m2.u8[8+4], m1.u8[8+5], m2.u8[8+5],
|
|
m1.u8[8+6], m2.u8[8+6], m1.u8[8+7], m2.u8[8+7]);
|
|
}
|
|
|
|
inline Scalaru16x8_t
|
|
InterleaveLo16(Scalaru16x8_t m1, Scalaru16x8_t m2)
|
|
{
|
|
return FromU16<Scalaru16x8_t>(m1.u16[0], m2.u16[0], m1.u16[1], m2.u16[1],
|
|
m1.u16[2], m2.u16[2], m1.u16[3], m2.u16[3]);
|
|
}
|
|
|
|
inline Scalaru16x8_t
|
|
InterleaveHi16(Scalaru16x8_t m1, Scalaru16x8_t m2)
|
|
{
|
|
return FromU16<Scalaru16x8_t>(m1.u16[4], m2.u16[4], m1.u16[5], m2.u16[5],
|
|
m1.u16[6], m2.u16[6], m1.u16[7], m2.u16[7]);
|
|
}
|
|
|
|
inline Scalari32x4_t
|
|
InterleaveLo32(Scalari32x4_t m1, Scalari32x4_t m2)
|
|
{
|
|
return From32<Scalari32x4_t>(m1.i32[0], m2.i32[0], m1.i32[1], m2.i32[1]);
|
|
}
|
|
|
|
inline Scalari16x8_t
|
|
UnpackLo8x8ToI16x8(Scalaru8x16_t aM)
|
|
{
|
|
Scalari16x8_t m;
|
|
m.i16[0] = aM.u8[0];
|
|
m.i16[1] = aM.u8[1];
|
|
m.i16[2] = aM.u8[2];
|
|
m.i16[3] = aM.u8[3];
|
|
m.i16[4] = aM.u8[4];
|
|
m.i16[5] = aM.u8[5];
|
|
m.i16[6] = aM.u8[6];
|
|
m.i16[7] = aM.u8[7];
|
|
return m;
|
|
}
|
|
|
|
inline Scalari16x8_t
|
|
UnpackHi8x8ToI16x8(Scalaru8x16_t aM)
|
|
{
|
|
Scalari16x8_t m;
|
|
m.i16[0] = aM.u8[8+0];
|
|
m.i16[1] = aM.u8[8+1];
|
|
m.i16[2] = aM.u8[8+2];
|
|
m.i16[3] = aM.u8[8+3];
|
|
m.i16[4] = aM.u8[8+4];
|
|
m.i16[5] = aM.u8[8+5];
|
|
m.i16[6] = aM.u8[8+6];
|
|
m.i16[7] = aM.u8[8+7];
|
|
return m;
|
|
}
|
|
|
|
inline Scalaru16x8_t
|
|
UnpackLo8x8ToU16x8(Scalaru8x16_t aM)
|
|
{
|
|
return FromU16<Scalaru16x8_t>(uint16_t(aM.u8[0]), uint16_t(aM.u8[1]), uint16_t(aM.u8[2]), uint16_t(aM.u8[3]),
|
|
uint16_t(aM.u8[4]), uint16_t(aM.u8[5]), uint16_t(aM.u8[6]), uint16_t(aM.u8[7]));
|
|
}
|
|
|
|
inline Scalaru16x8_t
|
|
UnpackHi8x8ToU16x8(Scalaru8x16_t aM)
|
|
{
|
|
return FromU16<Scalaru16x8_t>(aM.u8[8+0], aM.u8[8+1], aM.u8[8+2], aM.u8[8+3],
|
|
aM.u8[8+4], aM.u8[8+5], aM.u8[8+6], aM.u8[8+7]);
|
|
}
|
|
|
|
template<uint8_t aNumBytes>
|
|
inline Scalaru8x16_t
|
|
Rotate8(Scalaru8x16_t a1234, Scalaru8x16_t a5678)
|
|
{
|
|
Scalaru8x16_t m;
|
|
for (uint8_t i = 0; i < 16; i++) {
|
|
uint8_t sourceByte = i + aNumBytes;
|
|
m.u8[i] = sourceByte < 16 ? a1234.u8[sourceByte] : a5678.u8[sourceByte - 16];
|
|
}
|
|
return m;
|
|
}
|
|
|
|
template<typename T>
|
|
inline int16_t
|
|
SaturateTo16(T a)
|
|
{
|
|
return int16_t(a >= INT16_MIN ? (a <= INT16_MAX ? a : INT16_MAX) : INT16_MIN);
|
|
}
|
|
|
|
inline Scalari16x8_t
|
|
PackAndSaturate32To16(Scalari32x4_t m1, Scalari32x4_t m2)
|
|
{
|
|
Scalari16x8_t m;
|
|
m.i16[0] = SaturateTo16(m1.i32[0]);
|
|
m.i16[1] = SaturateTo16(m1.i32[1]);
|
|
m.i16[2] = SaturateTo16(m1.i32[2]);
|
|
m.i16[3] = SaturateTo16(m1.i32[3]);
|
|
m.i16[4] = SaturateTo16(m2.i32[0]);
|
|
m.i16[5] = SaturateTo16(m2.i32[1]);
|
|
m.i16[6] = SaturateTo16(m2.i32[2]);
|
|
m.i16[7] = SaturateTo16(m2.i32[3]);
|
|
return m;
|
|
}
|
|
|
|
template<typename T>
|
|
inline uint16_t
|
|
SaturateToU16(T a)
|
|
{
|
|
return uint16_t(umin(a & -(a >= 0), INT16_MAX));
|
|
}
|
|
|
|
inline Scalaru16x8_t
|
|
PackAndSaturate32ToU16(Scalari32x4_t m1, Scalari32x4_t m2)
|
|
{
|
|
Scalaru16x8_t m;
|
|
m.u16[0] = SaturateToU16(m1.i32[0]);
|
|
m.u16[1] = SaturateToU16(m1.i32[1]);
|
|
m.u16[2] = SaturateToU16(m1.i32[2]);
|
|
m.u16[3] = SaturateToU16(m1.i32[3]);
|
|
m.u16[4] = SaturateToU16(m2.i32[0]);
|
|
m.u16[5] = SaturateToU16(m2.i32[1]);
|
|
m.u16[6] = SaturateToU16(m2.i32[2]);
|
|
m.u16[7] = SaturateToU16(m2.i32[3]);
|
|
return m;
|
|
}
|
|
|
|
template<typename T>
|
|
inline uint8_t
|
|
SaturateTo8(T a)
|
|
{
|
|
return uint8_t(umin(a & -(a >= 0), 255));
|
|
}
|
|
|
|
inline Scalaru8x16_t
|
|
PackAndSaturate32To8(Scalari32x4_t m1, Scalari32x4_t m2, Scalari32x4_t m3, const Scalari32x4_t& m4)
|
|
{
|
|
Scalaru8x16_t m;
|
|
m.u8[0] = SaturateTo8(m1.i32[0]);
|
|
m.u8[1] = SaturateTo8(m1.i32[1]);
|
|
m.u8[2] = SaturateTo8(m1.i32[2]);
|
|
m.u8[3] = SaturateTo8(m1.i32[3]);
|
|
m.u8[4] = SaturateTo8(m2.i32[0]);
|
|
m.u8[5] = SaturateTo8(m2.i32[1]);
|
|
m.u8[6] = SaturateTo8(m2.i32[2]);
|
|
m.u8[7] = SaturateTo8(m2.i32[3]);
|
|
m.u8[8] = SaturateTo8(m3.i32[0]);
|
|
m.u8[9] = SaturateTo8(m3.i32[1]);
|
|
m.u8[10] = SaturateTo8(m3.i32[2]);
|
|
m.u8[11] = SaturateTo8(m3.i32[3]);
|
|
m.u8[12] = SaturateTo8(m4.i32[0]);
|
|
m.u8[13] = SaturateTo8(m4.i32[1]);
|
|
m.u8[14] = SaturateTo8(m4.i32[2]);
|
|
m.u8[15] = SaturateTo8(m4.i32[3]);
|
|
return m;
|
|
}
|
|
|
|
inline Scalaru8x16_t
|
|
PackAndSaturate16To8(Scalari16x8_t m1, Scalari16x8_t m2)
|
|
{
|
|
Scalaru8x16_t m;
|
|
m.u8[0] = SaturateTo8(m1.i16[0]);
|
|
m.u8[1] = SaturateTo8(m1.i16[1]);
|
|
m.u8[2] = SaturateTo8(m1.i16[2]);
|
|
m.u8[3] = SaturateTo8(m1.i16[3]);
|
|
m.u8[4] = SaturateTo8(m1.i16[4]);
|
|
m.u8[5] = SaturateTo8(m1.i16[5]);
|
|
m.u8[6] = SaturateTo8(m1.i16[6]);
|
|
m.u8[7] = SaturateTo8(m1.i16[7]);
|
|
m.u8[8] = SaturateTo8(m2.i16[0]);
|
|
m.u8[9] = SaturateTo8(m2.i16[1]);
|
|
m.u8[10] = SaturateTo8(m2.i16[2]);
|
|
m.u8[11] = SaturateTo8(m2.i16[3]);
|
|
m.u8[12] = SaturateTo8(m2.i16[4]);
|
|
m.u8[13] = SaturateTo8(m2.i16[5]);
|
|
m.u8[14] = SaturateTo8(m2.i16[6]);
|
|
m.u8[15] = SaturateTo8(m2.i16[7]);
|
|
return m;
|
|
}
|
|
|
|
// Fast approximate division by 255. It has the property that
|
|
// for all 0 <= n <= 255*255, FAST_DIVIDE_BY_255(n) == n/255.
|
|
// But it only uses two adds and two shifts instead of an
|
|
// integer division (which is expensive on many processors).
|
|
//
|
|
// equivalent to v/255
|
|
template<class B, class A>
|
|
inline B FastDivideBy255(A v)
|
|
{
|
|
return ((v << 8) + v + 255) >> 16;
|
|
}
|
|
|
|
inline Scalaru16x8_t
|
|
FastDivideBy255_16(Scalaru16x8_t m)
|
|
{
|
|
return FromU16<Scalaru16x8_t>(FastDivideBy255<uint16_t>(int32_t(m.u16[0])),
|
|
FastDivideBy255<uint16_t>(int32_t(m.u16[1])),
|
|
FastDivideBy255<uint16_t>(int32_t(m.u16[2])),
|
|
FastDivideBy255<uint16_t>(int32_t(m.u16[3])),
|
|
FastDivideBy255<uint16_t>(int32_t(m.u16[4])),
|
|
FastDivideBy255<uint16_t>(int32_t(m.u16[5])),
|
|
FastDivideBy255<uint16_t>(int32_t(m.u16[6])),
|
|
FastDivideBy255<uint16_t>(int32_t(m.u16[7])));
|
|
}
|
|
|
|
inline Scalari32x4_t
|
|
FastDivideBy255(Scalari32x4_t m)
|
|
{
|
|
return From32<Scalari32x4_t>(FastDivideBy255<int32_t>(m.i32[0]),
|
|
FastDivideBy255<int32_t>(m.i32[1]),
|
|
FastDivideBy255<int32_t>(m.i32[2]),
|
|
FastDivideBy255<int32_t>(m.i32[3]));
|
|
}
|
|
|
|
inline Scalaru8x16_t
|
|
Pick(Scalaru8x16_t mask, Scalaru8x16_t a, Scalaru8x16_t b)
|
|
{
|
|
return From8<Scalaru8x16_t>((a.u8[0] & (~mask.u8[0])) | (b.u8[0] & mask.u8[0]),
|
|
(a.u8[1] & (~mask.u8[1])) | (b.u8[1] & mask.u8[1]),
|
|
(a.u8[2] & (~mask.u8[2])) | (b.u8[2] & mask.u8[2]),
|
|
(a.u8[3] & (~mask.u8[3])) | (b.u8[3] & mask.u8[3]),
|
|
(a.u8[4] & (~mask.u8[4])) | (b.u8[4] & mask.u8[4]),
|
|
(a.u8[5] & (~mask.u8[5])) | (b.u8[5] & mask.u8[5]),
|
|
(a.u8[6] & (~mask.u8[6])) | (b.u8[6] & mask.u8[6]),
|
|
(a.u8[7] & (~mask.u8[7])) | (b.u8[7] & mask.u8[7]),
|
|
(a.u8[8+0] & (~mask.u8[8+0])) | (b.u8[8+0] & mask.u8[8+0]),
|
|
(a.u8[8+1] & (~mask.u8[8+1])) | (b.u8[8+1] & mask.u8[8+1]),
|
|
(a.u8[8+2] & (~mask.u8[8+2])) | (b.u8[8+2] & mask.u8[8+2]),
|
|
(a.u8[8+3] & (~mask.u8[8+3])) | (b.u8[8+3] & mask.u8[8+3]),
|
|
(a.u8[8+4] & (~mask.u8[8+4])) | (b.u8[8+4] & mask.u8[8+4]),
|
|
(a.u8[8+5] & (~mask.u8[8+5])) | (b.u8[8+5] & mask.u8[8+5]),
|
|
(a.u8[8+6] & (~mask.u8[8+6])) | (b.u8[8+6] & mask.u8[8+6]),
|
|
(a.u8[8+7] & (~mask.u8[8+7])) | (b.u8[8+7] & mask.u8[8+7]));
|
|
}
|
|
|
|
inline Scalari32x4_t
|
|
Pick(Scalari32x4_t mask, Scalari32x4_t a, Scalari32x4_t b)
|
|
{
|
|
return From32<Scalari32x4_t>((a.i32[0] & (~mask.i32[0])) | (b.i32[0] & mask.i32[0]),
|
|
(a.i32[1] & (~mask.i32[1])) | (b.i32[1] & mask.i32[1]),
|
|
(a.i32[2] & (~mask.i32[2])) | (b.i32[2] & mask.i32[2]),
|
|
(a.i32[3] & (~mask.i32[3])) | (b.i32[3] & mask.i32[3]));
|
|
}
|
|
|
|
inline Scalarf32x4_t MixF32(Scalarf32x4_t a, Scalarf32x4_t b, float t)
|
|
{
|
|
return FromF32<Scalarf32x4_t>(a.f32[0] + (b.f32[0] - a.f32[0]) * t,
|
|
a.f32[1] + (b.f32[1] - a.f32[1]) * t,
|
|
a.f32[2] + (b.f32[2] - a.f32[2]) * t,
|
|
a.f32[3] + (b.f32[3] - a.f32[3]) * t);
|
|
}
|
|
|
|
inline Scalarf32x4_t WSumF32(Scalarf32x4_t a, Scalarf32x4_t b, float wa, float wb)
|
|
{
|
|
return FromF32<Scalarf32x4_t>(a.f32[0] * wa + b.f32[0] * wb,
|
|
a.f32[1] * wa + b.f32[1] * wb,
|
|
a.f32[2] * wa + b.f32[2] * wb,
|
|
a.f32[3] * wa + b.f32[3] * wb);
|
|
}
|
|
|
|
inline Scalarf32x4_t AbsF32(Scalarf32x4_t a)
|
|
{
|
|
return FromF32<Scalarf32x4_t>(fabs(a.f32[0]),
|
|
fabs(a.f32[1]),
|
|
fabs(a.f32[2]),
|
|
fabs(a.f32[3]));
|
|
}
|
|
|
|
inline Scalarf32x4_t AddF32(Scalarf32x4_t a, Scalarf32x4_t b)
|
|
{
|
|
return FromF32<Scalarf32x4_t>(a.f32[0] + b.f32[0],
|
|
a.f32[1] + b.f32[1],
|
|
a.f32[2] + b.f32[2],
|
|
a.f32[3] + b.f32[3]);
|
|
}
|
|
|
|
inline Scalarf32x4_t MulF32(Scalarf32x4_t a, Scalarf32x4_t b)
|
|
{
|
|
return FromF32<Scalarf32x4_t>(a.f32[0] * b.f32[0],
|
|
a.f32[1] * b.f32[1],
|
|
a.f32[2] * b.f32[2],
|
|
a.f32[3] * b.f32[3]);
|
|
}
|
|
|
|
inline Scalarf32x4_t DivF32(Scalarf32x4_t a, Scalarf32x4_t b)
|
|
{
|
|
return FromF32<Scalarf32x4_t>(a.f32[0] / b.f32[0],
|
|
a.f32[1] / b.f32[1],
|
|
a.f32[2] / b.f32[2],
|
|
a.f32[3] / b.f32[3]);
|
|
}
|
|
|
|
template<uint8_t aIndex>
|
|
inline Scalarf32x4_t SplatF32(Scalarf32x4_t m)
|
|
{
|
|
AssertIndex<aIndex>();
|
|
return FromF32<Scalarf32x4_t>(m.f32[aIndex],
|
|
m.f32[aIndex],
|
|
m.f32[aIndex],
|
|
m.f32[aIndex]);
|
|
}
|
|
|
|
inline Scalari32x4_t F32ToI32(Scalarf32x4_t m)
|
|
{
|
|
return From32<Scalari32x4_t>(int32_t(floor(m.f32[0] + 0.5f)),
|
|
int32_t(floor(m.f32[1] + 0.5f)),
|
|
int32_t(floor(m.f32[2] + 0.5f)),
|
|
int32_t(floor(m.f32[3] + 0.5f)));
|
|
}
|
|
|
|
#ifdef SIMD_COMPILE_SSE2
|
|
|
|
// SSE2
|
|
|
|
template<>
|
|
inline __m128i
|
|
Load8<__m128i>(const uint8_t* aSource)
|
|
{
|
|
return _mm_load_si128((const __m128i*)aSource);
|
|
}
|
|
|
|
inline void Store8(uint8_t* aTarget, __m128i aM)
|
|
{
|
|
_mm_store_si128((__m128i*)aTarget, aM);
|
|
}
|
|
|
|
template<>
|
|
inline __m128i FromZero8<__m128i>()
|
|
{
|
|
return _mm_setzero_si128();
|
|
}
|
|
|
|
template<>
|
|
inline __m128i From8<__m128i>(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h,
|
|
uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p)
|
|
{
|
|
return _mm_setr_epi16((b << 8) + a, (d << 8) + c, (e << 8) + f, (h << 8) + g,
|
|
(j << 8) + i, (l << 8) + k, (m << 8) + n, (p << 8) + o);
|
|
}
|
|
|
|
template<>
|
|
inline __m128i FromI16<__m128i>(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e, int16_t f, int16_t g, int16_t h)
|
|
{
|
|
return _mm_setr_epi16(a, b, c, d, e, f, g, h);
|
|
}
|
|
|
|
template<>
|
|
inline __m128i FromU16<__m128i>(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h)
|
|
{
|
|
return _mm_setr_epi16(a, b, c, d, e, f, g, h);
|
|
}
|
|
|
|
template<>
|
|
inline __m128i FromI16<__m128i>(int16_t a)
|
|
{
|
|
return _mm_set1_epi16(a);
|
|
}
|
|
|
|
template<>
|
|
inline __m128i FromU16<__m128i>(uint16_t a)
|
|
{
|
|
return _mm_set1_epi16((int16_t)a);
|
|
}
|
|
|
|
template<>
|
|
inline __m128i From32<__m128i>(int32_t a, int32_t b, int32_t c, int32_t d)
|
|
{
|
|
return _mm_setr_epi32(a, b, c, d);
|
|
}
|
|
|
|
template<>
|
|
inline __m128i From32<__m128i>(int32_t a)
|
|
{
|
|
return _mm_set1_epi32(a);
|
|
}
|
|
|
|
template<>
|
|
inline __m128 FromF32<__m128>(float a, float b, float c, float d)
|
|
{
|
|
return _mm_setr_ps(a, b, c, d);
|
|
}
|
|
|
|
template<>
|
|
inline __m128 FromF32<__m128>(float a)
|
|
{
|
|
return _mm_set1_ps(a);
|
|
}
|
|
|
|
template<int32_t aNumberOfBits>
|
|
inline __m128i ShiftRight16(__m128i aM)
|
|
{
|
|
return _mm_srli_epi16(aM, aNumberOfBits);
|
|
}
|
|
|
|
template<int32_t aNumberOfBits>
|
|
inline __m128i ShiftRight32(__m128i aM)
|
|
{
|
|
return _mm_srai_epi32(aM, aNumberOfBits);
|
|
}
|
|
|
|
inline __m128i Add16(__m128i aM1, __m128i aM2)
|
|
{
|
|
return _mm_add_epi16(aM1, aM2);
|
|
}
|
|
|
|
inline __m128i Add32(__m128i aM1, __m128i aM2)
|
|
{
|
|
return _mm_add_epi32(aM1, aM2);
|
|
}
|
|
|
|
inline __m128i Sub16(__m128i aM1, __m128i aM2)
|
|
{
|
|
return _mm_sub_epi16(aM1, aM2);
|
|
}
|
|
|
|
inline __m128i Sub32(__m128i aM1, __m128i aM2)
|
|
{
|
|
return _mm_sub_epi32(aM1, aM2);
|
|
}
|
|
|
|
inline __m128i Min8(__m128i aM1, __m128i aM2)
|
|
{
|
|
return _mm_min_epu8(aM1, aM2);
|
|
}
|
|
|
|
inline __m128i Max8(__m128i aM1, __m128i aM2)
|
|
{
|
|
return _mm_max_epu8(aM1, aM2);
|
|
}
|
|
|
|
inline __m128i Min32(__m128i aM1, __m128i aM2)
|
|
{
|
|
__m128i m1_minus_m2 = _mm_sub_epi32(aM1, aM2);
|
|
__m128i m1_greater_than_m2 = _mm_cmpgt_epi32(aM1, aM2);
|
|
return _mm_sub_epi32(aM1, _mm_and_si128(m1_minus_m2, m1_greater_than_m2));
|
|
}
|
|
|
|
inline __m128i Max32(__m128i aM1, __m128i aM2)
|
|
{
|
|
__m128i m1_minus_m2 = _mm_sub_epi32(aM1, aM2);
|
|
__m128i m2_greater_than_m1 = _mm_cmpgt_epi32(aM2, aM1);
|
|
return _mm_sub_epi32(aM1, _mm_and_si128(m1_minus_m2, m2_greater_than_m1));
|
|
}
|
|
|
|
inline __m128i Mul16(__m128i aM1, __m128i aM2)
|
|
{
|
|
return _mm_mullo_epi16(aM1, aM2);
|
|
}
|
|
|
|
inline __m128i MulU16(__m128i aM1, __m128i aM2)
|
|
{
|
|
return _mm_mullo_epi16(aM1, aM2);
|
|
}
|
|
|
|
inline void Mul16x4x2x2To32x4x2(__m128i aFactorsA1B1,
|
|
__m128i aFactorsA2B2,
|
|
__m128i& aProductA,
|
|
__m128i& aProductB)
|
|
{
|
|
__m128i prodAB_lo = _mm_mullo_epi16(aFactorsA1B1, aFactorsA2B2);
|
|
__m128i prodAB_hi = _mm_mulhi_epi16(aFactorsA1B1, aFactorsA2B2);
|
|
aProductA = _mm_unpacklo_epi16(prodAB_lo, prodAB_hi);
|
|
aProductB = _mm_unpackhi_epi16(prodAB_lo, prodAB_hi);
|
|
}
|
|
|
|
inline __m128i MulAdd16x8x2To32x4(__m128i aFactorsA,
|
|
__m128i aFactorsB)
|
|
{
|
|
return _mm_madd_epi16(aFactorsA, aFactorsB);
|
|
}
|
|
|
|
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
|
|
inline __m128i Shuffle32(__m128i aM)
|
|
{
|
|
AssertIndex<i0>();
|
|
AssertIndex<i1>();
|
|
AssertIndex<i2>();
|
|
AssertIndex<i3>();
|
|
return _mm_shuffle_epi32(aM, _MM_SHUFFLE(i0, i1, i2, i3));
|
|
}
|
|
|
|
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
|
|
inline __m128i ShuffleLo16(__m128i aM)
|
|
{
|
|
AssertIndex<i0>();
|
|
AssertIndex<i1>();
|
|
AssertIndex<i2>();
|
|
AssertIndex<i3>();
|
|
return _mm_shufflelo_epi16(aM, _MM_SHUFFLE(i0, i1, i2, i3));
|
|
}
|
|
|
|
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3>
|
|
inline __m128i ShuffleHi16(__m128i aM)
|
|
{
|
|
AssertIndex<i0>();
|
|
AssertIndex<i1>();
|
|
AssertIndex<i2>();
|
|
AssertIndex<i3>();
|
|
return _mm_shufflehi_epi16(aM, _MM_SHUFFLE(i0, i1, i2, i3));
|
|
}
|
|
|
|
template<int8_t aIndex>
|
|
inline __m128i Splat32(__m128i aM)
|
|
{
|
|
return Shuffle32<aIndex,aIndex,aIndex,aIndex>(aM);
|
|
}
|
|
|
|
template<int8_t aIndex>
|
|
inline __m128i Splat32On8(__m128i aM)
|
|
{
|
|
return Shuffle32<aIndex,aIndex,aIndex,aIndex>(aM);
|
|
}
|
|
|
|
template<int8_t aIndexLo, int8_t aIndexHi>
|
|
inline __m128i Splat16(__m128i aM)
|
|
{
|
|
AssertIndex<aIndexLo>();
|
|
AssertIndex<aIndexHi>();
|
|
return ShuffleHi16<aIndexHi,aIndexHi,aIndexHi,aIndexHi>(
|
|
ShuffleLo16<aIndexLo,aIndexLo,aIndexLo,aIndexLo>(aM));
|
|
}
|
|
|
|
inline __m128i
|
|
UnpackLo8x8ToI16x8(__m128i m)
|
|
{
|
|
__m128i zero = _mm_set1_epi8(0);
|
|
return _mm_unpacklo_epi8(m, zero);
|
|
}
|
|
|
|
inline __m128i
|
|
UnpackHi8x8ToI16x8(__m128i m)
|
|
{
|
|
__m128i zero = _mm_set1_epi8(0);
|
|
return _mm_unpackhi_epi8(m, zero);
|
|
}
|
|
|
|
inline __m128i
|
|
UnpackLo8x8ToU16x8(__m128i m)
|
|
{
|
|
__m128i zero = _mm_set1_epi8(0);
|
|
return _mm_unpacklo_epi8(m, zero);
|
|
}
|
|
|
|
inline __m128i
|
|
UnpackHi8x8ToU16x8(__m128i m)
|
|
{
|
|
__m128i zero = _mm_set1_epi8(0);
|
|
return _mm_unpackhi_epi8(m, zero);
|
|
}
|
|
|
|
inline __m128i
|
|
InterleaveLo8(__m128i m1, __m128i m2)
|
|
{
|
|
return _mm_unpacklo_epi8(m1, m2);
|
|
}
|
|
|
|
inline __m128i
|
|
InterleaveHi8(__m128i m1, __m128i m2)
|
|
{
|
|
return _mm_unpackhi_epi8(m1, m2);
|
|
}
|
|
|
|
inline __m128i
|
|
InterleaveLo16(__m128i m1, __m128i m2)
|
|
{
|
|
return _mm_unpacklo_epi16(m1, m2);
|
|
}
|
|
|
|
inline __m128i
|
|
InterleaveHi16(__m128i m1, __m128i m2)
|
|
{
|
|
return _mm_unpackhi_epi16(m1, m2);
|
|
}
|
|
|
|
inline __m128i
|
|
InterleaveLo32(__m128i m1, __m128i m2)
|
|
{
|
|
return _mm_unpacklo_epi32(m1, m2);
|
|
}
|
|
|
|
template<uint8_t aNumBytes>
|
|
inline __m128i
|
|
Rotate8(__m128i a1234, __m128i a5678)
|
|
{
|
|
return _mm_or_si128(_mm_srli_si128(a1234, aNumBytes), _mm_slli_si128(a5678, 16 - aNumBytes));
|
|
}
|
|
|
|
inline __m128i
|
|
PackAndSaturate32To16(__m128i m1, __m128i m2)
|
|
{
|
|
return _mm_packs_epi32(m1, m2);
|
|
}
|
|
|
|
inline __m128i
|
|
PackAndSaturate32ToU16(__m128i m1, __m128i m2)
|
|
{
|
|
return _mm_packs_epi32(m1, m2);
|
|
}
|
|
|
|
inline __m128i
|
|
PackAndSaturate32To8(__m128i m1, __m128i m2, __m128i m3, const __m128i& m4)
|
|
{
|
|
// Pack into 8 16bit signed integers (saturating).
|
|
__m128i m12 = _mm_packs_epi32(m1, m2);
|
|
__m128i m34 = _mm_packs_epi32(m3, m4);
|
|
|
|
// Pack into 16 8bit unsigned integers (saturating).
|
|
return _mm_packus_epi16(m12, m34);
|
|
}
|
|
|
|
inline __m128i
|
|
PackAndSaturate16To8(__m128i m1, __m128i m2)
|
|
{
|
|
// Pack into 16 8bit unsigned integers (saturating).
|
|
return _mm_packus_epi16(m1, m2);
|
|
}
|
|
|
|
inline __m128i
|
|
FastDivideBy255(__m128i m)
|
|
{
|
|
// v = m << 8
|
|
__m128i v = _mm_slli_epi32(m, 8);
|
|
// v = v + (m + (255,255,255,255))
|
|
v = _mm_add_epi32(v, _mm_add_epi32(m, _mm_set1_epi32(255)));
|
|
// v = v >> 16
|
|
return _mm_srai_epi32(v, 16);
|
|
}
|
|
|
|
inline __m128i
|
|
FastDivideBy255_16(__m128i m)
|
|
{
|
|
__m128i zero = _mm_set1_epi16(0);
|
|
__m128i lo = _mm_unpacklo_epi16(m, zero);
|
|
__m128i hi = _mm_unpackhi_epi16(m, zero);
|
|
return _mm_packs_epi32(FastDivideBy255(lo), FastDivideBy255(hi));
|
|
}
|
|
|
|
inline __m128i
|
|
Pick(__m128i mask, __m128i a, __m128i b)
|
|
{
|
|
return _mm_or_si128(_mm_andnot_si128(mask, a), _mm_and_si128(mask, b));
|
|
}
|
|
|
|
inline __m128 MixF32(__m128 a, __m128 b, float t)
|
|
{
|
|
return _mm_add_ps(a, _mm_mul_ps(_mm_sub_ps(b, a), _mm_set1_ps(t)));
|
|
}
|
|
|
|
inline __m128 WSumF32(__m128 a, __m128 b, float wa, float wb)
|
|
{
|
|
return _mm_add_ps(_mm_mul_ps(a, _mm_set1_ps(wa)), _mm_mul_ps(b, _mm_set1_ps(wb)));
|
|
}
|
|
|
|
inline __m128 AbsF32(__m128 a)
|
|
{
|
|
return _mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a), a);
|
|
}
|
|
|
|
inline __m128 AddF32(__m128 a, __m128 b)
|
|
{
|
|
return _mm_add_ps(a, b);
|
|
}
|
|
|
|
inline __m128 MulF32(__m128 a, __m128 b)
|
|
{
|
|
return _mm_mul_ps(a, b);
|
|
}
|
|
|
|
inline __m128 DivF32(__m128 a, __m128 b)
|
|
{
|
|
return _mm_div_ps(a, b);
|
|
}
|
|
|
|
template<uint8_t aIndex>
|
|
inline __m128 SplatF32(__m128 m)
|
|
{
|
|
AssertIndex<aIndex>();
|
|
return _mm_shuffle_ps(m, m, _MM_SHUFFLE(aIndex, aIndex, aIndex, aIndex));
|
|
}
|
|
|
|
inline __m128i F32ToI32(__m128 m)
|
|
{
|
|
return _mm_cvtps_epi32(m);
|
|
}
|
|
|
|
#endif // SIMD_COMPILE_SSE2
|
|
|
|
} // namespace simd
|
|
|
|
} // namespace gfx
|
|
} // namespace mozilla
|
|
|
|
#endif // _MOZILLA_GFX_SIMD_H_
|