gecko-dev/security/manager/ssl/nsNSSIOLayer.cpp

2610 lines
84 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsNSSIOLayer.h"
#include <algorithm>
#include "NSSCertDBTrustDomain.h"
#include "NSSErrorsService.h"
#include "PSMRunnable.h"
#include "SSLServerCertVerification.h"
#include "ScopedNSSTypes.h"
#include "SharedSSLState.h"
#include "keyhi.h"
#include "mozilla/Base64.h"
#include "mozilla/Casting.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Logging.h"
#include "mozilla/Move.h"
#include "mozilla/Preferences.h"
#include "mozilla/Telemetry.h"
#include "nsArray.h"
#include "nsArrayUtils.h"
#include "nsCRT.h"
#include "nsCharSeparatedTokenizer.h"
#include "nsClientAuthRemember.h"
#include "nsContentUtils.h"
#include "nsIClientAuthDialogs.h"
#include "nsIConsoleService.h"
#include "nsIPrefService.h"
#include "nsISocketProvider.h"
#include "nsIWebProgressListener.h"
#include "nsNSSCertHelper.h"
#include "nsNSSComponent.h"
#include "nsNSSHelper.h"
#include "nsPrintfCString.h"
#include "nsServiceManagerUtils.h"
#include "mozpkix/pkixnss.h"
#include "mozpkix/pkixtypes.h"
#include "prmem.h"
#include "prnetdb.h"
#include "secder.h"
#include "secerr.h"
#include "ssl.h"
#include "sslerr.h"
#include "sslproto.h"
#include "sslexp.h"
using namespace mozilla;
using namespace mozilla::psm;
//#define DEBUG_SSL_VERBOSE //Enable this define to get minimal
// reports when doing SSL read/write
//#define DUMP_BUFFER //Enable this define along with
// DEBUG_SSL_VERBOSE to dump SSL
// read/write buffer to a log.
// Uses PR_LOG except on Mac where
// we always write out to our own
// file.
namespace {
// The NSSSocketInfo tls flags are meant to be opaque to most calling
// applications but provide a mechanism for direct TLS manipulation when
// experimenting with new features in the scope of a single socket. They do not
// create a persistent ABI.
//
// Use of these flags creates a new 'sharedSSLState' so existing states for
// intolerance are not carried to sockets that use these flags (and intolerance
// they discover does not impact other normal sockets not using the flags.)
//
// Their current definitions are:
//
// bits 0-2 (mask 0x07) specify the max tls version
// 0 means no override 1->4 are 1.0, 1.1, 1.2, 1.3, 4->7 unused
// bits 3-5 (mask 0x38) specify the tls fallback limit
// 0 means no override, values 1->4 match prefs
// bit 6 (mask 0x40) was used to specify compat mode. Temporarily reserved.
enum {
kTLSProviderFlagMaxVersion10 = 0x01,
kTLSProviderFlagMaxVersion11 = 0x02,
kTLSProviderFlagMaxVersion12 = 0x03,
kTLSProviderFlagMaxVersion13 = 0x04,
};
static uint32_t getTLSProviderFlagMaxVersion(uint32_t flags) {
return (flags & 0x07);
}
static uint32_t getTLSProviderFlagFallbackLimit(uint32_t flags) {
return (flags & 0x38) >> 3;
}
#define MAX_ALPN_LENGTH 255
void getSiteKey(const nsACString& hostName, uint16_t port,
/*out*/ nsACString& key) {
key = hostName;
key.AppendLiteral(":");
key.AppendInt(port);
}
} // unnamed namespace
extern LazyLogModule gPIPNSSLog;
nsNSSSocketInfo::nsNSSSocketInfo(SharedSSLState& aState, uint32_t providerFlags,
uint32_t providerTlsFlags)
: mFd(nullptr),
mCertVerificationState(before_cert_verification),
mSharedState(aState),
mForSTARTTLS(false),
mHandshakePending(true),
mRememberClientAuthCertificate(false),
mPreliminaryHandshakeDone(false),
mNPNCompleted(false),
mEarlyDataAccepted(false),
mDenyClientCert(false),
mFalseStartCallbackCalled(false),
mFalseStarted(false),
mIsFullHandshake(false),
mHandshakeCompleted(false),
mJoined(false),
mSentClientCert(false),
mNotedTimeUntilReady(false),
mFailedVerification(false),
mResumed(false),
mIsShortWritePending(false),
mShortWritePendingByte(0),
mShortWriteOriginalAmount(-1),
mKEAUsed(nsISSLSocketControl::KEY_EXCHANGE_UNKNOWN),
mKEAKeyBits(0),
mSSLVersionUsed(nsISSLSocketControl::SSL_VERSION_UNKNOWN),
mMACAlgorithmUsed(nsISSLSocketControl::SSL_MAC_UNKNOWN),
mBypassAuthentication(false),
mProviderFlags(providerFlags),
mProviderTlsFlags(providerTlsFlags),
mSocketCreationTimestamp(TimeStamp::Now()),
mPlaintextBytesRead(0),
mClientCert(nullptr) {
mTLSVersionRange.min = 0;
mTLSVersionRange.max = 0;
}
nsNSSSocketInfo::~nsNSSSocketInfo() {}
NS_IMPL_ISUPPORTS_INHERITED(nsNSSSocketInfo, TransportSecurityInfo,
nsISSLSocketControl, nsIClientAuthUserDecision)
NS_IMETHODIMP
nsNSSSocketInfo::GetProviderFlags(uint32_t* aProviderFlags) {
*aProviderFlags = mProviderFlags;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetProviderTlsFlags(uint32_t* aProviderTlsFlags) {
*aProviderTlsFlags = mProviderTlsFlags;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetKEAUsed(int16_t* aKea) {
*aKea = mKEAUsed;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetKEAKeyBits(uint32_t* aKeyBits) {
*aKeyBits = mKEAKeyBits;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetSSLVersionUsed(int16_t* aSSLVersionUsed) {
*aSSLVersionUsed = mSSLVersionUsed;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetSSLVersionOffered(int16_t* aSSLVersionOffered) {
*aSSLVersionOffered = mTLSVersionRange.max;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetMACAlgorithmUsed(int16_t* aMac) {
*aMac = mMACAlgorithmUsed;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetClientCert(nsIX509Cert** aClientCert) {
NS_ENSURE_ARG_POINTER(aClientCert);
*aClientCert = mClientCert;
NS_IF_ADDREF(*aClientCert);
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::SetClientCert(nsIX509Cert* aClientCert) {
mClientCert = aClientCert;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetClientCertSent(bool* arg) {
*arg = mSentClientCert;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetBypassAuthentication(bool* arg) {
*arg = mBypassAuthentication;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetFailedVerification(bool* arg) {
*arg = mFailedVerification;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetRememberClientAuthCertificate(bool* aRemember) {
NS_ENSURE_ARG_POINTER(aRemember);
*aRemember = mRememberClientAuthCertificate;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::SetRememberClientAuthCertificate(bool aRemember) {
mRememberClientAuthCertificate = aRemember;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetNotificationCallbacks(nsIInterfaceRequestor** aCallbacks) {
*aCallbacks = mCallbacks;
NS_IF_ADDREF(*aCallbacks);
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::SetNotificationCallbacks(nsIInterfaceRequestor* aCallbacks) {
if (!aCallbacks) {
mCallbacks = nullptr;
return NS_OK;
}
mCallbacks = aCallbacks;
return NS_OK;
}
void nsNSSSocketInfo::NoteTimeUntilReady() {
if (mNotedTimeUntilReady) return;
mNotedTimeUntilReady = true;
// This will include TCP and proxy tunnel wait time
Telemetry::AccumulateTimeDelta(Telemetry::SSL_TIME_UNTIL_READY,
mSocketCreationTimestamp, TimeStamp::Now());
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] nsNSSSocketInfo::NoteTimeUntilReady\n", mFd));
}
void nsNSSSocketInfo::SetHandshakeCompleted() {
if (!mHandshakeCompleted) {
enum HandshakeType {
Resumption = 1,
FalseStarted = 2,
ChoseNotToFalseStart = 3,
NotAllowedToFalseStart = 4,
};
HandshakeType handshakeType =
!IsFullHandshake() ? Resumption
: mFalseStarted ? FalseStarted
: mFalseStartCallbackCalled
? ChoseNotToFalseStart
: NotAllowedToFalseStart;
// This will include TCP and proxy tunnel wait time
Telemetry::AccumulateTimeDelta(
Telemetry::SSL_TIME_UNTIL_HANDSHAKE_FINISHED_KEYED_BY_KA, mKeaGroup,
mSocketCreationTimestamp, TimeStamp::Now());
// If the handshake is completed for the first time from just 1 callback
// that means that TLS session resumption must have been used.
Telemetry::Accumulate(Telemetry::SSL_RESUMED_SESSION,
handshakeType == Resumption);
Telemetry::Accumulate(Telemetry::SSL_HANDSHAKE_TYPE, handshakeType);
}
// Remove the plaintext layer as it is not needed anymore.
// The plaintext layer is not always present - so it's not a fatal error if it
// cannot be removed.
// Note that PR_PopIOLayer may modify its stack, so a pointer returned by
// PR_GetIdentitiesLayer may not point to what we think it points to after
// calling PR_PopIOLayer. We must operate on the pointer returned by
// PR_PopIOLayer.
if (PR_GetIdentitiesLayer(mFd,
nsSSLIOLayerHelpers::nsSSLPlaintextLayerIdentity)) {
PRFileDesc* poppedPlaintext =
PR_PopIOLayer(mFd, nsSSLIOLayerHelpers::nsSSLPlaintextLayerIdentity);
poppedPlaintext->dtor(poppedPlaintext);
}
mHandshakeCompleted = true;
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] nsNSSSocketInfo::SetHandshakeCompleted\n", (void*)mFd));
mIsFullHandshake = false; // reset for next handshake on this connection
}
void nsNSSSocketInfo::SetNegotiatedNPN(const char* value, uint32_t length) {
if (!value) {
mNegotiatedNPN.Truncate();
} else {
mNegotiatedNPN.Assign(value, length);
}
mNPNCompleted = true;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetNegotiatedNPN(nsACString& aNegotiatedNPN) {
if (!mNPNCompleted) return NS_ERROR_NOT_CONNECTED;
aNegotiatedNPN = mNegotiatedNPN;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetAlpnEarlySelection(nsACString& aAlpnSelected) {
aAlpnSelected.Truncate();
SSLPreliminaryChannelInfo info;
SECStatus rv = SSL_GetPreliminaryChannelInfo(mFd, &info, sizeof(info));
if (rv != SECSuccess || !info.canSendEarlyData) {
return NS_ERROR_NOT_AVAILABLE;
}
SSLNextProtoState alpnState;
unsigned char chosenAlpn[MAX_ALPN_LENGTH];
unsigned int chosenAlpnLen;
rv = SSL_GetNextProto(mFd, &alpnState, chosenAlpn, &chosenAlpnLen,
AssertedCast<unsigned int>(ArrayLength(chosenAlpn)));
if (rv != SECSuccess) {
return NS_ERROR_NOT_AVAILABLE;
}
if (alpnState == SSL_NEXT_PROTO_EARLY_VALUE) {
aAlpnSelected.Assign(BitwiseCast<char*, unsigned char*>(chosenAlpn),
chosenAlpnLen);
}
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetEarlyDataAccepted(bool* aAccepted) {
*aAccepted = mEarlyDataAccepted;
return NS_OK;
}
void nsNSSSocketInfo::SetEarlyDataAccepted(bool aAccepted) {
mEarlyDataAccepted = aAccepted;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetResumed(bool* aResumed) {
*aResumed = mResumed;
return NS_OK;
}
void nsNSSSocketInfo::SetResumed(bool aResumed) { mResumed = aResumed; }
bool nsNSSSocketInfo::GetDenyClientCert() { return mDenyClientCert; }
void nsNSSSocketInfo::SetDenyClientCert(bool aDenyClientCert) {
mDenyClientCert = aDenyClientCert;
}
NS_IMETHODIMP
nsNSSSocketInfo::DriveHandshake() {
if (!mFd) {
return NS_ERROR_FAILURE;
}
if (IsCanceled()) {
PRErrorCode errorCode = GetErrorCode();
return GetXPCOMFromNSSError(errorCode);
}
SECStatus rv = SSL_ForceHandshake(mFd);
if (rv != SECSuccess) {
PRErrorCode errorCode = PR_GetError();
if (errorCode == PR_WOULD_BLOCK_ERROR) {
return NS_BASE_STREAM_WOULD_BLOCK;
}
SetCanceled(errorCode);
return GetXPCOMFromNSSError(errorCode);
}
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::IsAcceptableForHost(const nsACString& hostname,
bool* _retval) {
NS_ENSURE_ARG(_retval);
*_retval = false;
// If this is the same hostname then the certicate status does not
// need to be considered. They are joinable.
if (hostname.Equals(GetHostName())) {
*_retval = true;
return NS_OK;
}
// Before checking the server certificate we need to make sure the
// handshake has completed.
if (!mHandshakeCompleted || !HasServerCert()) {
return NS_OK;
}
// If the cert has error bits (e.g. it is untrusted) then do not join.
// The value of mHaveCertErrorBits is only reliable because we know that
// the handshake completed.
if (mHaveCertErrorBits) {
return NS_OK;
}
// If the connection is using client certificates then do not join
// because the user decides on whether to send client certs to hosts on a
// per-domain basis.
if (mSentClientCert) return NS_OK;
// Ensure that the server certificate covers the hostname that would
// like to join this connection
UniqueCERTCertificate nssCert;
nsCOMPtr<nsIX509Cert> cert;
if (NS_FAILED(GetServerCert(getter_AddRefs(cert)))) {
return NS_OK;
}
if (cert) {
nssCert.reset(cert->GetCert());
}
if (!nssCert) {
return NS_OK;
}
// Attempt to verify the joinee's certificate using the joining hostname.
// This ensures that any hostname-specific verification logic (e.g. key
// pinning) is satisfied by the joinee's certificate chain.
// This verification only uses local information; since we're on the network
// thread, we would be blocking on ourselves if we attempted any network i/o.
// TODO(bug 1056935): The certificate chain built by this verification may be
// different than the certificate chain originally built during the joined
// connection's TLS handshake. Consequently, we may report a wrong and/or
// misleading certificate chain for HTTP transactions coalesced onto this
// connection. This may become problematic in the future. For example,
// if/when we begin relying on intermediate certificates being stored in the
// securityInfo of a cached HTTPS response, that cached certificate chain may
// actually be the wrong chain. We should consider having JoinConnection
// return the certificate chain built here, so that the calling Necko code
// can associate the correct certificate chain with the HTTP transactions it
// is trying to join onto this connection.
RefPtr<SharedCertVerifier> certVerifier(GetDefaultCertVerifier());
if (!certVerifier) {
return NS_OK;
}
CertVerifier::Flags flags = CertVerifier::FLAG_LOCAL_ONLY;
UniqueCERTCertList unusedBuiltChain;
mozilla::pkix::Result result =
certVerifier->VerifySSLServerCert(nssCert,
nullptr, // stapledOCSPResponse
nullptr, // sctsFromTLSExtension
mozilla::pkix::Now(),
nullptr, // pinarg
hostname, unusedBuiltChain,
false, // save intermediates
flags);
if (result != mozilla::pkix::Success) {
return NS_OK;
}
// All tests pass
*_retval = true;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::TestJoinConnection(const nsACString& npnProtocol,
const nsACString& hostname, int32_t port,
bool* _retval) {
*_retval = false;
// Different ports may not be joined together
if (port != GetPort()) return NS_OK;
// Make sure NPN has been completed and matches requested npnProtocol
if (!mNPNCompleted || !mNegotiatedNPN.Equals(npnProtocol)) return NS_OK;
if (mBypassAuthentication) {
// An unauthenticated connection does not know whether or not it
// is acceptable for a particular hostname
return NS_OK;
}
IsAcceptableForHost(hostname, _retval); // sets _retval
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::JoinConnection(const nsACString& npnProtocol,
const nsACString& hostname, int32_t port,
bool* _retval) {
nsresult rv = TestJoinConnection(npnProtocol, hostname, port, _retval);
if (NS_SUCCEEDED(rv) && *_retval) {
// All tests pass - this is joinable
mJoined = true;
}
return rv;
}
bool nsNSSSocketInfo::GetForSTARTTLS() { return mForSTARTTLS; }
void nsNSSSocketInfo::SetForSTARTTLS(bool aForSTARTTLS) {
mForSTARTTLS = aForSTARTTLS;
}
NS_IMETHODIMP
nsNSSSocketInfo::ProxyStartSSL() { return ActivateSSL(); }
NS_IMETHODIMP
nsNSSSocketInfo::StartTLS() { return ActivateSSL(); }
NS_IMETHODIMP
nsNSSSocketInfo::SetNPNList(nsTArray<nsCString>& protocolArray) {
if (!mFd) return NS_ERROR_FAILURE;
// the npn list is a concatenated list of 8 bit byte strings.
nsCString npnList;
for (uint32_t index = 0; index < protocolArray.Length(); ++index) {
if (protocolArray[index].IsEmpty() || protocolArray[index].Length() > 255)
return NS_ERROR_ILLEGAL_VALUE;
npnList.Append(protocolArray[index].Length());
npnList.Append(protocolArray[index]);
}
if (SSL_SetNextProtoNego(
mFd, BitwiseCast<const unsigned char*, const char*>(npnList.get()),
npnList.Length()) != SECSuccess)
return NS_ERROR_FAILURE;
return NS_OK;
}
nsresult nsNSSSocketInfo::ActivateSSL() {
if (SECSuccess != SSL_OptionSet(mFd, SSL_SECURITY, true))
return NS_ERROR_FAILURE;
if (SECSuccess != SSL_ResetHandshake(mFd, false)) return NS_ERROR_FAILURE;
mHandshakePending = true;
return NS_OK;
}
nsresult nsNSSSocketInfo::GetFileDescPtr(PRFileDesc** aFilePtr) {
*aFilePtr = mFd;
return NS_OK;
}
nsresult nsNSSSocketInfo::SetFileDescPtr(PRFileDesc* aFilePtr) {
mFd = aFilePtr;
return NS_OK;
}
void nsNSSSocketInfo::SetCertVerificationWaiting() {
// mCertVerificationState may be before_cert_verification for the first
// handshake on the connection, or after_cert_verification for subsequent
// renegotiation handshakes.
MOZ_ASSERT(mCertVerificationState != waiting_for_cert_verification,
"Invalid state transition to waiting_for_cert_verification");
mCertVerificationState = waiting_for_cert_verification;
}
// Be careful that SetCertVerificationResult does NOT get called while we are
// processing a SSL callback function, because SSL_AuthCertificateComplete will
// attempt to acquire locks that are already held by libssl when it calls
// callbacks.
void nsNSSSocketInfo::SetCertVerificationResult(PRErrorCode errorCode) {
MOZ_ASSERT(mCertVerificationState == waiting_for_cert_verification,
"Invalid state transition to cert_verification_finished");
if (mFd) {
SECStatus rv = SSL_AuthCertificateComplete(mFd, errorCode);
// Only replace errorCode if there was originally no error
if (rv != SECSuccess && errorCode == 0) {
errorCode = PR_GetError();
if (errorCode == 0) {
NS_ERROR("SSL_AuthCertificateComplete didn't set error code");
errorCode = PR_INVALID_STATE_ERROR;
}
}
}
if (errorCode) {
mFailedVerification = true;
SetCanceled(errorCode);
}
if (mPlaintextBytesRead && !errorCode) {
Telemetry::Accumulate(Telemetry::SSL_BYTES_BEFORE_CERT_CALLBACK,
AssertedCast<uint32_t>(mPlaintextBytesRead));
}
mCertVerificationState = after_cert_verification;
}
SharedSSLState& nsNSSSocketInfo::SharedState() { return mSharedState; }
void nsNSSSocketInfo::SetSharedOwningReference(SharedSSLState* aRef) {
mOwningSharedRef = aRef;
}
void nsSSLIOLayerHelpers::Cleanup() {
MutexAutoLock lock(mutex);
mTLSIntoleranceInfo.Clear();
mInsecureFallbackSites.Clear();
}
namespace {
enum Operation { reading, writing, not_reading_or_writing };
int32_t checkHandshake(int32_t bytesTransfered, bool wasReading,
PRFileDesc* ssl_layer_fd, nsNSSSocketInfo* socketInfo);
nsNSSSocketInfo* getSocketInfoIfRunning(PRFileDesc* fd, Operation op) {
if (!fd || !fd->lower || !fd->secret ||
fd->identity != nsSSLIOLayerHelpers::nsSSLIOLayerIdentity) {
NS_ERROR("bad file descriptor passed to getSocketInfoIfRunning");
PR_SetError(PR_BAD_DESCRIPTOR_ERROR, 0);
return nullptr;
}
nsNSSSocketInfo* socketInfo = (nsNSSSocketInfo*)fd->secret;
if (socketInfo->IsCanceled()) {
PRErrorCode err = socketInfo->GetErrorCode();
PR_SetError(err, 0);
if (op == reading || op == writing) {
// We must do TLS intolerance checks for reads and writes, for timeouts
// in particular.
(void)checkHandshake(-1, op == reading, fd, socketInfo);
}
// If we get here, it is probably because cert verification failed and this
// is the first I/O attempt since that failure.
return nullptr;
}
return socketInfo;
}
} // namespace
static PRStatus nsSSLIOLayerConnect(PRFileDesc* fd, const PRNetAddr* addr,
PRIntervalTime timeout) {
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] connecting SSL socket\n", (void*)fd));
if (!getSocketInfoIfRunning(fd, not_reading_or_writing)) return PR_FAILURE;
PRStatus status = fd->lower->methods->connect(fd->lower, addr, timeout);
if (status != PR_SUCCESS) {
MOZ_LOG(gPIPNSSLog, LogLevel::Error,
("[%p] Lower layer connect error: %d\n", (void*)fd, PR_GetError()));
return status;
}
MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p] Connect\n", (void*)fd));
return status;
}
void nsSSLIOLayerHelpers::rememberTolerantAtVersion(const nsACString& hostName,
int16_t port,
uint16_t tolerant) {
nsCString key;
getSiteKey(hostName, port, key);
MutexAutoLock lock(mutex);
IntoleranceEntry entry;
if (mTLSIntoleranceInfo.Get(key, &entry)) {
entry.AssertInvariant();
entry.tolerant = std::max(entry.tolerant, tolerant);
if (entry.intolerant != 0 && entry.intolerant <= entry.tolerant) {
entry.intolerant = entry.tolerant + 1;
entry.intoleranceReason = 0; // lose the reason
}
} else {
entry.tolerant = tolerant;
entry.intolerant = 0;
entry.intoleranceReason = 0;
}
entry.AssertInvariant();
mTLSIntoleranceInfo.Put(key, entry);
}
void nsSSLIOLayerHelpers::forgetIntolerance(const nsACString& hostName,
int16_t port) {
nsCString key;
getSiteKey(hostName, port, key);
MutexAutoLock lock(mutex);
IntoleranceEntry entry;
if (mTLSIntoleranceInfo.Get(key, &entry)) {
entry.AssertInvariant();
entry.intolerant = 0;
entry.intoleranceReason = 0;
entry.AssertInvariant();
mTLSIntoleranceInfo.Put(key, entry);
}
}
bool nsSSLIOLayerHelpers::fallbackLimitReached(const nsACString& hostName,
uint16_t intolerant) {
if (isInsecureFallbackSite(hostName)) {
return intolerant <= SSL_LIBRARY_VERSION_TLS_1_0;
}
return intolerant <= mVersionFallbackLimit;
}
// returns true if we should retry the handshake
bool nsSSLIOLayerHelpers::rememberIntolerantAtVersion(
const nsACString& hostName, int16_t port, uint16_t minVersion,
uint16_t intolerant, PRErrorCode intoleranceReason) {
if (intolerant <= minVersion || fallbackLimitReached(hostName, intolerant)) {
// We can't fall back any further. Assume that intolerance isn't the issue.
forgetIntolerance(hostName, port);
return false;
}
nsCString key;
getSiteKey(hostName, port, key);
MutexAutoLock lock(mutex);
IntoleranceEntry entry;
if (mTLSIntoleranceInfo.Get(key, &entry)) {
entry.AssertInvariant();
if (intolerant <= entry.tolerant) {
// We already know the server is tolerant at an equal or higher version.
return false;
}
if ((entry.intolerant != 0 && intolerant >= entry.intolerant)) {
// We already know that the server is intolerant at a lower version.
return true;
}
} else {
entry.tolerant = 0;
}
entry.intolerant = intolerant;
entry.intoleranceReason = intoleranceReason;
entry.AssertInvariant();
mTLSIntoleranceInfo.Put(key, entry);
return true;
}
void nsSSLIOLayerHelpers::adjustForTLSIntolerance(
const nsACString& hostName, int16_t port,
/*in/out*/ SSLVersionRange& range) {
IntoleranceEntry entry;
{
nsCString key;
getSiteKey(hostName, port, key);
MutexAutoLock lock(mutex);
if (!mTLSIntoleranceInfo.Get(key, &entry)) {
return;
}
}
entry.AssertInvariant();
if (entry.intolerant != 0) {
// We've tried connecting at a higher range but failed, so try at the
// version we haven't tried yet, unless we have reached the minimum.
if (range.min < entry.intolerant) {
range.max = entry.intolerant - 1;
}
}
}
PRErrorCode nsSSLIOLayerHelpers::getIntoleranceReason(
const nsACString& hostName, int16_t port) {
IntoleranceEntry entry;
{
nsCString key;
getSiteKey(hostName, port, key);
MutexAutoLock lock(mutex);
if (!mTLSIntoleranceInfo.Get(key, &entry)) {
return 0;
}
}
entry.AssertInvariant();
return entry.intoleranceReason;
}
bool nsSSLIOLayerHelpers::nsSSLIOLayerInitialized = false;
PRDescIdentity nsSSLIOLayerHelpers::nsSSLIOLayerIdentity;
PRDescIdentity nsSSLIOLayerHelpers::nsSSLPlaintextLayerIdentity;
PRIOMethods nsSSLIOLayerHelpers::nsSSLIOLayerMethods;
PRIOMethods nsSSLIOLayerHelpers::nsSSLPlaintextLayerMethods;
static PRStatus nsSSLIOLayerClose(PRFileDesc* fd) {
if (!fd) return PR_FAILURE;
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] Shutting down socket\n", (void*)fd));
nsNSSSocketInfo* socketInfo = (nsNSSSocketInfo*)fd->secret;
MOZ_ASSERT(socketInfo, "nsNSSSocketInfo was null for an fd");
return socketInfo->CloseSocketAndDestroy();
}
PRStatus nsNSSSocketInfo::CloseSocketAndDestroy() {
PRFileDesc* popped = PR_PopIOLayer(mFd, PR_TOP_IO_LAYER);
MOZ_ASSERT(
popped && popped->identity == nsSSLIOLayerHelpers::nsSSLIOLayerIdentity,
"SSL Layer not on top of stack");
// The plaintext layer is not always present - so it's not a fatal error if it
// cannot be removed.
// Note that PR_PopIOLayer may modify its stack, so a pointer returned by
// PR_GetIdentitiesLayer may not point to what we think it points to after
// calling PR_PopIOLayer. We must operate on the pointer returned by
// PR_PopIOLayer.
if (PR_GetIdentitiesLayer(mFd,
nsSSLIOLayerHelpers::nsSSLPlaintextLayerIdentity)) {
PRFileDesc* poppedPlaintext =
PR_PopIOLayer(mFd, nsSSLIOLayerHelpers::nsSSLPlaintextLayerIdentity);
poppedPlaintext->dtor(poppedPlaintext);
}
PRStatus status = mFd->methods->close(mFd);
// the nsNSSSocketInfo instance can out-live the connection, so we need some
// indication that the connection has been closed. mFd == nullptr is that
// indication. This is needed, for example, when the connection is closed
// before we have finished validating the server's certificate.
mFd = nullptr;
if (status != PR_SUCCESS) return status;
popped->identity = PR_INVALID_IO_LAYER;
NS_RELEASE_THIS();
popped->dtor(popped);
return PR_SUCCESS;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetEsniTxt(nsACString& aEsniTxt) {
aEsniTxt = mEsniTxt;
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::SetEsniTxt(const nsACString& aEsniTxt) {
mEsniTxt = aEsniTxt;
if (mEsniTxt.Length()) {
nsAutoCString esniBin;
if (NS_OK != Base64Decode(mEsniTxt, esniBin)) {
MOZ_LOG(gPIPNSSLog, LogLevel::Error,
("[%p] Invalid ESNIKeys record. Couldn't base64 decode\n",
(void*)mFd));
return NS_OK;
}
if (SECSuccess !=
SSL_EnableESNI(mFd, reinterpret_cast<const PRUint8*>(esniBin.get()),
esniBin.Length(), nullptr)) {
MOZ_LOG(gPIPNSSLog, LogLevel::Error,
("[%p] Invalid ESNIKeys record %s\n", (void*)mFd,
PR_ErrorToName(PR_GetError())));
return NS_OK;
}
}
return NS_OK;
}
NS_IMETHODIMP
nsNSSSocketInfo::GetServerRootCertIsBuiltInRoot(bool* aIsBuiltInRoot) {
*aIsBuiltInRoot = false;
if (!HasServerCert()) {
return NS_ERROR_NOT_AVAILABLE;
}
nsCOMPtr<nsIX509CertList> certList;
nsresult rv = GetSucceededCertChain(getter_AddRefs(certList));
if (NS_SUCCEEDED(rv)) {
if (!certList) {
return NS_ERROR_NOT_AVAILABLE;
}
RefPtr<nsNSSCertList> nssCertList = certList->GetCertList();
nsCOMPtr<nsIX509Cert> cert;
rv = nssCertList->GetRootCertificate(cert);
if (NS_SUCCEEDED(rv)) {
if (!cert) {
return NS_ERROR_NOT_AVAILABLE;
}
rv = cert->GetIsBuiltInRoot(aIsBuiltInRoot);
}
}
return rv;
}
#if defined(DEBUG_SSL_VERBOSE) && defined(DUMP_BUFFER)
// Dumps a (potentially binary) buffer using SSM_DEBUG. (We could have used
// the version in ssltrace.c, but that's specifically tailored to SSLTRACE.)
# define DUMPBUF_LINESIZE 24
static void nsDumpBuffer(unsigned char* buf, int len) {
char hexbuf[DUMPBUF_LINESIZE * 3 + 1];
char chrbuf[DUMPBUF_LINESIZE + 1];
static const char* hex = "0123456789abcdef";
int i = 0;
int l = 0;
char ch;
char* c;
char* h;
if (len == 0) return;
hexbuf[DUMPBUF_LINESIZE * 3] = '\0';
chrbuf[DUMPBUF_LINESIZE] = '\0';
(void)memset(hexbuf, 0x20, DUMPBUF_LINESIZE * 3);
(void)memset(chrbuf, 0x20, DUMPBUF_LINESIZE);
h = hexbuf;
c = chrbuf;
while (i < len) {
ch = buf[i];
if (l == DUMPBUF_LINESIZE) {
MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("%s%s\n", hexbuf, chrbuf));
(void)memset(hexbuf, 0x20, DUMPBUF_LINESIZE * 3);
(void)memset(chrbuf, 0x20, DUMPBUF_LINESIZE);
h = hexbuf;
c = chrbuf;
l = 0;
}
// Convert a character to hex.
*h++ = hex[(ch >> 4) & 0xf];
*h++ = hex[ch & 0xf];
h++;
// Put the character (if it's printable) into the character buffer.
if ((ch >= 0x20) && (ch <= 0x7e)) {
*c++ = ch;
} else {
*c++ = '.';
}
i++;
l++;
}
MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("%s%s\n", hexbuf, chrbuf));
}
# define DEBUG_DUMP_BUFFER(buf, len) nsDumpBuffer(buf, len)
#else
# define DEBUG_DUMP_BUFFER(buf, len)
#endif
namespace {
uint32_t tlsIntoleranceTelemetryBucket(PRErrorCode err) {
// returns a numeric code for where we track various errors in telemetry
// only errors that cause version fallback are tracked,
// so this is also used to determine which errors can cause version fallback
switch (err) {
case SSL_ERROR_BAD_MAC_ALERT:
return 1;
case SSL_ERROR_BAD_MAC_READ:
return 2;
case SSL_ERROR_HANDSHAKE_FAILURE_ALERT:
return 3;
case SSL_ERROR_HANDSHAKE_UNEXPECTED_ALERT:
return 4;
case SSL_ERROR_ILLEGAL_PARAMETER_ALERT:
return 6;
case SSL_ERROR_NO_CYPHER_OVERLAP:
return 7;
case SSL_ERROR_UNSUPPORTED_VERSION:
return 10;
case SSL_ERROR_PROTOCOL_VERSION_ALERT:
return 11;
case SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE:
return 13;
case SSL_ERROR_DECODE_ERROR_ALERT:
return 14;
case PR_CONNECT_RESET_ERROR:
return 16;
case PR_END_OF_FILE_ERROR:
return 17;
case SSL_ERROR_INTERNAL_ERROR_ALERT:
return 18;
default:
return 0;
}
}
bool retryDueToTLSIntolerance(PRErrorCode err, nsNSSSocketInfo* socketInfo) {
// This function is supposed to decide which error codes should
// be used to conclude server is TLS intolerant.
// Note this only happens during the initial SSL handshake.
SSLVersionRange range = socketInfo->GetTLSVersionRange();
nsSSLIOLayerHelpers& helpers = socketInfo->SharedState().IOLayerHelpers();
if (err == SSL_ERROR_UNSUPPORTED_VERSION &&
range.min == SSL_LIBRARY_VERSION_TLS_1_0) {
socketInfo->SetSecurityState(nsIWebProgressListener::STATE_IS_INSECURE |
nsIWebProgressListener::STATE_USES_SSL_3);
}
// NSS will return SSL_ERROR_RX_MALFORMED_SERVER_HELLO if anti-downgrade
// detected the downgrade.
if (err == SSL_ERROR_INAPPROPRIATE_FALLBACK_ALERT ||
err == SSL_ERROR_RX_MALFORMED_SERVER_HELLO) {
// This is a clear signal that we've fallen back too many versions. Treat
// this as a hard failure, but forget any intolerance so that later attempts
// don't use this version (i.e., range.max) and trigger the error again.
// First, track the original cause of the version fallback. This uses the
// same buckets as the telemetry below, except that bucket 0 will include
// all cases where there wasn't an original reason.
PRErrorCode originalReason = helpers.getIntoleranceReason(
socketInfo->GetHostName(), socketInfo->GetPort());
Telemetry::Accumulate(Telemetry::SSL_VERSION_FALLBACK_INAPPROPRIATE,
tlsIntoleranceTelemetryBucket(originalReason));
helpers.forgetIntolerance(socketInfo->GetHostName(), socketInfo->GetPort());
return false;
}
// When not using a proxy we'll see a connection reset error.
// When using a proxy, we'll see an end of file error.
// Don't allow STARTTLS connections to fall back on connection resets or
// EOF.
if ((err == PR_CONNECT_RESET_ERROR || err == PR_END_OF_FILE_ERROR) &&
socketInfo->GetForSTARTTLS()) {
return false;
}
uint32_t reason = tlsIntoleranceTelemetryBucket(err);
if (reason == 0) {
return false;
}
Telemetry::HistogramID pre;
Telemetry::HistogramID post;
switch (range.max) {
case SSL_LIBRARY_VERSION_TLS_1_3:
pre = Telemetry::SSL_TLS13_INTOLERANCE_REASON_PRE;
post = Telemetry::SSL_TLS13_INTOLERANCE_REASON_POST;
break;
case SSL_LIBRARY_VERSION_TLS_1_2:
pre = Telemetry::SSL_TLS12_INTOLERANCE_REASON_PRE;
post = Telemetry::SSL_TLS12_INTOLERANCE_REASON_POST;
break;
case SSL_LIBRARY_VERSION_TLS_1_1:
pre = Telemetry::SSL_TLS11_INTOLERANCE_REASON_PRE;
post = Telemetry::SSL_TLS11_INTOLERANCE_REASON_POST;
break;
case SSL_LIBRARY_VERSION_TLS_1_0:
pre = Telemetry::SSL_TLS10_INTOLERANCE_REASON_PRE;
post = Telemetry::SSL_TLS10_INTOLERANCE_REASON_POST;
break;
default:
MOZ_CRASH("impossible TLS version");
return false;
}
// The difference between _PRE and _POST represents how often we avoided
// TLS intolerance fallback due to remembered tolerance.
Telemetry::Accumulate(pre, reason);
if (!helpers.rememberIntolerantAtVersion(socketInfo->GetHostName(),
socketInfo->GetPort(), range.min,
range.max, err)) {
return false;
}
Telemetry::Accumulate(post, reason);
return true;
}
// Ensure that we haven't added too many errors to fit.
static_assert((SSL_ERROR_END_OF_LIST - SSL_ERROR_BASE) <= 256,
"too many SSL errors");
static_assert((SEC_ERROR_END_OF_LIST - SEC_ERROR_BASE) <= 256,
"too many SEC errors");
static_assert((PR_MAX_ERROR - PR_NSPR_ERROR_BASE) <= 128,
"too many NSPR errors");
static_assert((mozilla::pkix::ERROR_BASE - mozilla::pkix::END_OF_LIST) < 31,
"too many moz::pkix errors");
static void reportHandshakeResult(int32_t bytesTransferred, bool wasReading,
PRErrorCode err) {
uint32_t bucket;
// A negative bytesTransferred or a 0 read are errors.
if (bytesTransferred > 0) {
bucket = 0;
} else if ((bytesTransferred == 0) && !wasReading) {
// PR_Write() is defined to never return 0, but let's make sure.
// https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR/Reference/PR_Write.
MOZ_ASSERT(false);
bucket = 671;
} else if (IS_SSL_ERROR(err)) {
bucket = err - SSL_ERROR_BASE;
MOZ_ASSERT(bucket > 0); // SSL_ERROR_EXPORT_ONLY_SERVER isn't used.
} else if (IS_SEC_ERROR(err)) {
bucket = (err - SEC_ERROR_BASE) + 256;
} else if ((err >= PR_NSPR_ERROR_BASE) && (err < PR_MAX_ERROR)) {
bucket = (err - PR_NSPR_ERROR_BASE) + 512;
} else if ((err >= mozilla::pkix::ERROR_BASE) &&
(err < mozilla::pkix::ERROR_LIMIT)) {
bucket = (err - mozilla::pkix::ERROR_BASE) + 640;
} else {
bucket = 671;
}
Telemetry::Accumulate(Telemetry::SSL_HANDSHAKE_RESULT, bucket);
}
int32_t checkHandshake(int32_t bytesTransfered, bool wasReading,
PRFileDesc* ssl_layer_fd, nsNSSSocketInfo* socketInfo) {
const PRErrorCode originalError = PR_GetError();
PRErrorCode err = originalError;
// This is where we work around all of those SSL servers that don't
// conform to the SSL spec and shutdown a connection when we request
// SSL v3.1 (aka TLS). The spec says the client says what version
// of the protocol we're willing to perform, in our case SSL v3.1
// In its response, the server says which version it wants to perform.
// Many servers out there only know how to do v3.0. Next, we're supposed
// to send back the version of the protocol we requested (ie v3.1). At
// this point many servers's implementations are broken and they shut
// down the connection when they don't see the version they sent back.
// This is supposed to prevent a man in the middle from forcing one
// side to dumb down to a lower level of the protocol. Unfortunately,
// there are enough broken servers out there that such a gross work-around
// is necessary. :(
// Do NOT assume TLS intolerance on a closed connection after bad cert ui was
// shown. Simply retry. This depends on the fact that Cert UI will not be
// shown again, should the user override the bad cert.
bool handleHandshakeResultNow = socketInfo->IsHandshakePending();
bool wantRetry = false;
if (0 > bytesTransfered) {
if (handleHandshakeResultNow) {
if (PR_WOULD_BLOCK_ERROR == err) {
PR_SetError(err, 0);
return bytesTransfered;
}
wantRetry = retryDueToTLSIntolerance(err, socketInfo);
}
// This is the common place where we trigger non-cert-errors on a SSL
// socket. This might be reached at any time of the connection.
//
// IsCanceled() is backed by an atomic boolean. It will only ever go from
// false to true, so we will never erroneously not call SetCanceled here. We
// could in theory overwrite a previously-set error code, but we'll always
// have some sort of error.
if (!wantRetry && mozilla::psm::IsNSSErrorCode(err) &&
!socketInfo->IsCanceled()) {
socketInfo->SetCanceled(err);
}
} else if (wasReading && 0 == bytesTransfered) {
// zero bytes on reading, socket closed
if (handleHandshakeResultNow) {
wantRetry = retryDueToTLSIntolerance(PR_END_OF_FILE_ERROR, socketInfo);
}
}
if (wantRetry) {
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] checkHandshake: will retry with lower max TLS version\n",
ssl_layer_fd));
// We want to cause the network layer to retry the connection.
err = PR_CONNECT_RESET_ERROR;
if (wasReading) bytesTransfered = -1;
}
// TLS intolerant servers only cause the first transfer to fail, so let's
// set the HandshakePending attribute to false so that we don't try the logic
// above again in a subsequent transfer.
if (handleHandshakeResultNow) {
// Report the result once for each handshake. Note that this does not
// get handshakes which are cancelled before any reads or writes
// happen.
reportHandshakeResult(bytesTransfered, wasReading, originalError);
socketInfo->SetHandshakeNotPending();
}
if (bytesTransfered < 0) {
// Remember that we encountered an error so that getSocketInfoIfRunning
// will correctly cause us to fail if another part of Gecko
// (erroneously) calls an I/O function (PR_Send/PR_Recv/etc.) again on
// this socket. Note that we use the original error because if we use
// PR_CONNECT_RESET_ERROR, we'll repeated try to reconnect.
if (originalError != PR_WOULD_BLOCK_ERROR && !socketInfo->IsCanceled()) {
socketInfo->SetCanceled(originalError);
}
PR_SetError(err, 0);
}
return bytesTransfered;
}
} // namespace
static int16_t nsSSLIOLayerPoll(PRFileDesc* fd, int16_t in_flags,
int16_t* out_flags) {
if (!out_flags) {
NS_WARNING("nsSSLIOLayerPoll called with null out_flags");
return 0;
}
*out_flags = 0;
nsNSSSocketInfo* socketInfo =
getSocketInfoIfRunning(fd, not_reading_or_writing);
if (!socketInfo) {
// If we get here, it is probably because certificate validation failed
// and this is the first I/O operation after the failure.
MOZ_LOG(
gPIPNSSLog, LogLevel::Debug,
("[%p] polling SSL socket right after certificate verification failed "
"or NSS shutdown or SDR logout %d\n",
fd, (int)in_flags));
MOZ_ASSERT(in_flags & PR_POLL_EXCEPT,
"Caller did not poll for EXCEPT (canceled)");
// Since this poll method cannot return errors, we want the caller to call
// PR_Send/PR_Recv right away to get the error, so we tell that we are
// ready for whatever I/O they are asking for. (See getSocketInfoIfRunning).
*out_flags = in_flags | PR_POLL_EXCEPT; // see also bug 480619
return in_flags;
}
MOZ_LOG(gPIPNSSLog, LogLevel::Verbose,
(socketInfo->IsWaitingForCertVerification()
? "[%p] polling SSL socket during certificate verification "
"using lower %d\n"
: "[%p] poll SSL socket using lower %d\n",
fd, (int)in_flags));
// We want the handshake to continue during certificate validation, so we
// don't need to do anything special here. libssl automatically blocks when
// it reaches any point that would be unsafe to send/receive something before
// cert validation is complete.
int16_t result = fd->lower->methods->poll(fd->lower, in_flags, out_flags);
MOZ_LOG(gPIPNSSLog, LogLevel::Verbose,
("[%p] poll SSL socket returned %d\n", (void*)fd, (int)result));
return result;
}
nsSSLIOLayerHelpers::nsSSLIOLayerHelpers(uint32_t aTlsFlags)
: mTreatUnsafeNegotiationAsBroken(false),
mTLSIntoleranceInfo(),
mVersionFallbackLimit(SSL_LIBRARY_VERSION_TLS_1_0),
mutex("nsSSLIOLayerHelpers.mutex"),
mTlsFlags(aTlsFlags) {}
// PSMAvailable and PSMAvailable64 are reachable, but they're unimplemented in
// PSM, so we set an error and return -1.
static int32_t PSMAvailable(PRFileDesc*) {
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return -1;
}
static int64_t PSMAvailable64(PRFileDesc*) {
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return -1;
}
static PRStatus PSMGetsockname(PRFileDesc* fd, PRNetAddr* addr) {
if (!getSocketInfoIfRunning(fd, not_reading_or_writing)) return PR_FAILURE;
return fd->lower->methods->getsockname(fd->lower, addr);
}
static PRStatus PSMGetpeername(PRFileDesc* fd, PRNetAddr* addr) {
if (!getSocketInfoIfRunning(fd, not_reading_or_writing)) return PR_FAILURE;
return fd->lower->methods->getpeername(fd->lower, addr);
}
static PRStatus PSMGetsocketoption(PRFileDesc* fd, PRSocketOptionData* data) {
if (!getSocketInfoIfRunning(fd, not_reading_or_writing)) return PR_FAILURE;
return fd->lower->methods->getsocketoption(fd, data);
}
static PRStatus PSMSetsocketoption(PRFileDesc* fd,
const PRSocketOptionData* data) {
if (!getSocketInfoIfRunning(fd, not_reading_or_writing)) return PR_FAILURE;
return fd->lower->methods->setsocketoption(fd, data);
}
static int32_t PSMRecv(PRFileDesc* fd, void* buf, int32_t amount, int flags,
PRIntervalTime timeout) {
nsNSSSocketInfo* socketInfo = getSocketInfoIfRunning(fd, reading);
if (!socketInfo) return -1;
if (flags != PR_MSG_PEEK && flags != 0) {
PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0);
return -1;
}
int32_t bytesRead =
fd->lower->methods->recv(fd->lower, buf, amount, flags, timeout);
MOZ_LOG(gPIPNSSLog, LogLevel::Verbose,
("[%p] read %d bytes\n", (void*)fd, bytesRead));
#ifdef DEBUG_SSL_VERBOSE
DEBUG_DUMP_BUFFER((unsigned char*)buf, bytesRead);
#endif
return checkHandshake(bytesRead, true, fd, socketInfo);
}
static int32_t PSMSend(PRFileDesc* fd, const void* buf, int32_t amount,
int flags, PRIntervalTime timeout) {
nsNSSSocketInfo* socketInfo = getSocketInfoIfRunning(fd, writing);
if (!socketInfo) return -1;
if (flags != 0) {
PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0);
return -1;
}
#ifdef DEBUG_SSL_VERBOSE
DEBUG_DUMP_BUFFER((unsigned char*)buf, amount);
#endif
if (socketInfo->IsShortWritePending() && amount > 0) {
// We got "SSL short write" last time, try to flush the pending byte.
#ifdef DEBUG
socketInfo->CheckShortWrittenBuffer(static_cast<const unsigned char*>(buf),
amount);
#endif
buf = socketInfo->GetShortWritePendingByteRef();
amount = 1;
MOZ_LOG(gPIPNSSLog, LogLevel::Verbose,
("[%p] pushing 1 byte after SSL short write", fd));
}
int32_t bytesWritten =
fd->lower->methods->send(fd->lower, buf, amount, flags, timeout);
// NSS indicates that it can't write all requested data (due to network
// congestion, for example) by returning either one less than the amount
// of data requested or 16383, if the requested amount is greater than
// 16384. We refer to this as a "short write". If we simply returned
// the amount that NSS did write, the layer above us would then call
// PSMSend with a very small amount of data (often 1). This is inefficient
// and can lead to alternating between sending large packets and very small
// packets. To prevent this, we alert the layer calling us that the operation
// would block and that it should be retried later, with the same data.
// When it does, we tell NSS to write the remaining byte it didn't write
// in the previous call. We then return the total number of bytes written,
// which is the number that caused the short write plus the additional byte
// we just wrote out.
// The 16384 value is based on libssl's maximum buffer size:
// MAX_FRAGMENT_LENGTH - 1
//
// It's in a private header, though, filed bug 1394822 to expose it.
static const int32_t kShortWrite16k = 16383;
if ((amount > 1 && bytesWritten == (amount - 1)) ||
(amount > kShortWrite16k && bytesWritten == kShortWrite16k)) {
// This is indication of an "SSL short write", block to force retry.
socketInfo->SetShortWritePending(
bytesWritten + 1, // The amount to return after the flush
*(static_cast<const unsigned char*>(buf) + bytesWritten));
MOZ_LOG(
gPIPNSSLog, LogLevel::Verbose,
("[%p] indicated SSL short write for %d bytes (written just %d bytes)",
fd, amount, bytesWritten));
bytesWritten = -1;
PR_SetError(PR_WOULD_BLOCK_ERROR, 0);
#ifdef DEBUG
socketInfo->RememberShortWrittenBuffer(
static_cast<const unsigned char*>(buf));
#endif
} else if (socketInfo->IsShortWritePending() && bytesWritten == 1) {
// We have now flushed all pending data in the SSL socket
// after the indicated short write. Tell the upper layer
// it has sent all its data now.
MOZ_LOG(gPIPNSSLog, LogLevel::Verbose,
("[%p] finished SSL short write", fd));
bytesWritten = socketInfo->ResetShortWritePending();
}
MOZ_LOG(gPIPNSSLog, LogLevel::Verbose,
("[%p] wrote %d bytes\n", fd, bytesWritten));
return checkHandshake(bytesWritten, false, fd, socketInfo);
}
static PRStatus PSMBind(PRFileDesc* fd, const PRNetAddr* addr) {
if (!getSocketInfoIfRunning(fd, not_reading_or_writing)) return PR_FAILURE;
return fd->lower->methods->bind(fd->lower, addr);
}
static int32_t nsSSLIOLayerRead(PRFileDesc* fd, void* buf, int32_t amount) {
return PSMRecv(fd, buf, amount, 0, PR_INTERVAL_NO_TIMEOUT);
}
static int32_t nsSSLIOLayerWrite(PRFileDesc* fd, const void* buf,
int32_t amount) {
return PSMSend(fd, buf, amount, 0, PR_INTERVAL_NO_TIMEOUT);
}
static PRStatus PSMConnectcontinue(PRFileDesc* fd, int16_t out_flags) {
if (!getSocketInfoIfRunning(fd, not_reading_or_writing)) {
return PR_FAILURE;
}
return fd->lower->methods->connectcontinue(fd, out_flags);
}
namespace {
class PrefObserver : public nsIObserver {
public:
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSIOBSERVER
explicit PrefObserver(nsSSLIOLayerHelpers* aOwner) : mOwner(aOwner) {}
protected:
virtual ~PrefObserver() {}
private:
nsSSLIOLayerHelpers* mOwner;
};
} // unnamed namespace
NS_IMPL_ISUPPORTS(PrefObserver, nsIObserver)
NS_IMETHODIMP
PrefObserver::Observe(nsISupports* aSubject, const char* aTopic,
const char16_t* someData) {
if (nsCRT::strcmp(aTopic, NS_PREFBRANCH_PREFCHANGE_TOPIC_ID) == 0) {
NS_ConvertUTF16toUTF8 prefName(someData);
if (prefName.EqualsLiteral(
"security.ssl.treat_unsafe_negotiation_as_broken")) {
bool enabled;
Preferences::GetBool("security.ssl.treat_unsafe_negotiation_as_broken",
&enabled);
mOwner->setTreatUnsafeNegotiationAsBroken(enabled);
} else if (prefName.EqualsLiteral("security.tls.version.fallback-limit")) {
mOwner->loadVersionFallbackLimit();
} else if (prefName.EqualsLiteral("security.tls.insecure_fallback_hosts")) {
// Changes to the whitelist on the public side will update the pref.
// Don't propagate the changes to the private side.
if (mOwner->isPublic()) {
mOwner->initInsecureFallbackSites();
}
}
}
return NS_OK;
}
static int32_t PlaintextRecv(PRFileDesc* fd, void* buf, int32_t amount,
int flags, PRIntervalTime timeout) {
// The shutdownlocker is not needed here because it will already be
// held higher in the stack
nsNSSSocketInfo* socketInfo = nullptr;
int32_t bytesRead =
fd->lower->methods->recv(fd->lower, buf, amount, flags, timeout);
if (fd->identity == nsSSLIOLayerHelpers::nsSSLPlaintextLayerIdentity)
socketInfo = (nsNSSSocketInfo*)fd->secret;
if ((bytesRead > 0) && socketInfo)
socketInfo->AddPlaintextBytesRead(bytesRead);
return bytesRead;
}
nsSSLIOLayerHelpers::~nsSSLIOLayerHelpers() {
// mPrefObserver will only be set if this->Init was called. The GTest tests
// do not call Init.
if (mPrefObserver) {
Preferences::RemoveObserver(
mPrefObserver, "security.ssl.treat_unsafe_negotiation_as_broken");
Preferences::RemoveObserver(mPrefObserver,
"security.tls.version.fallback-limit");
Preferences::RemoveObserver(mPrefObserver,
"security.tls.insecure_fallback_hosts");
}
}
template <typename R, R return_value, typename... Args>
static R InvalidPRIOMethod(Args...) {
MOZ_ASSERT_UNREACHABLE("I/O method is invalid");
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return return_value;
}
nsresult nsSSLIOLayerHelpers::Init() {
if (!nsSSLIOLayerInitialized) {
MOZ_ASSERT(NS_IsMainThread());
nsSSLIOLayerInitialized = true;
nsSSLIOLayerIdentity = PR_GetUniqueIdentity("NSS layer");
nsSSLIOLayerMethods = *PR_GetDefaultIOMethods();
nsSSLIOLayerMethods.fsync =
InvalidPRIOMethod<PRStatus, PR_FAILURE, PRFileDesc*>;
nsSSLIOLayerMethods.seek =
InvalidPRIOMethod<int32_t, -1, PRFileDesc*, int32_t, PRSeekWhence>;
nsSSLIOLayerMethods.seek64 =
InvalidPRIOMethod<int64_t, -1, PRFileDesc*, int64_t, PRSeekWhence>;
nsSSLIOLayerMethods.fileInfo =
InvalidPRIOMethod<PRStatus, PR_FAILURE, PRFileDesc*, PRFileInfo*>;
nsSSLIOLayerMethods.fileInfo64 =
InvalidPRIOMethod<PRStatus, PR_FAILURE, PRFileDesc*, PRFileInfo64*>;
nsSSLIOLayerMethods.writev =
InvalidPRIOMethod<int32_t, -1, PRFileDesc*, const PRIOVec*, int32_t,
PRIntervalTime>;
nsSSLIOLayerMethods.accept =
InvalidPRIOMethod<PRFileDesc*, nullptr, PRFileDesc*, PRNetAddr*,
PRIntervalTime>;
nsSSLIOLayerMethods.listen =
InvalidPRIOMethod<PRStatus, PR_FAILURE, PRFileDesc*, int>;
nsSSLIOLayerMethods.shutdown =
InvalidPRIOMethod<PRStatus, PR_FAILURE, PRFileDesc*, int>;
nsSSLIOLayerMethods.recvfrom =
InvalidPRIOMethod<int32_t, -1, PRFileDesc*, void*, int32_t, int,
PRNetAddr*, PRIntervalTime>;
nsSSLIOLayerMethods.sendto =
InvalidPRIOMethod<int32_t, -1, PRFileDesc*, const void*, int32_t, int,
const PRNetAddr*, PRIntervalTime>;
nsSSLIOLayerMethods.acceptread =
InvalidPRIOMethod<int32_t, -1, PRFileDesc*, PRFileDesc**, PRNetAddr**,
void*, int32_t, PRIntervalTime>;
nsSSLIOLayerMethods.transmitfile =
InvalidPRIOMethod<int32_t, -1, PRFileDesc*, PRFileDesc*, const void*,
int32_t, PRTransmitFileFlags, PRIntervalTime>;
nsSSLIOLayerMethods.sendfile =
InvalidPRIOMethod<int32_t, -1, PRFileDesc*, PRSendFileData*,
PRTransmitFileFlags, PRIntervalTime>;
nsSSLIOLayerMethods.available = PSMAvailable;
nsSSLIOLayerMethods.available64 = PSMAvailable64;
nsSSLIOLayerMethods.getsockname = PSMGetsockname;
nsSSLIOLayerMethods.getpeername = PSMGetpeername;
nsSSLIOLayerMethods.getsocketoption = PSMGetsocketoption;
nsSSLIOLayerMethods.setsocketoption = PSMSetsocketoption;
nsSSLIOLayerMethods.recv = PSMRecv;
nsSSLIOLayerMethods.send = PSMSend;
nsSSLIOLayerMethods.connectcontinue = PSMConnectcontinue;
nsSSLIOLayerMethods.bind = PSMBind;
nsSSLIOLayerMethods.connect = nsSSLIOLayerConnect;
nsSSLIOLayerMethods.close = nsSSLIOLayerClose;
nsSSLIOLayerMethods.write = nsSSLIOLayerWrite;
nsSSLIOLayerMethods.read = nsSSLIOLayerRead;
nsSSLIOLayerMethods.poll = nsSSLIOLayerPoll;
nsSSLPlaintextLayerIdentity = PR_GetUniqueIdentity("Plaintxext PSM layer");
nsSSLPlaintextLayerMethods = *PR_GetDefaultIOMethods();
nsSSLPlaintextLayerMethods.recv = PlaintextRecv;
}
loadVersionFallbackLimit();
// non main thread helpers will need to use defaults
if (NS_IsMainThread()) {
bool enabled = false;
Preferences::GetBool("security.ssl.treat_unsafe_negotiation_as_broken",
&enabled);
setTreatUnsafeNegotiationAsBroken(enabled);
initInsecureFallbackSites();
mPrefObserver = new PrefObserver(this);
Preferences::AddStrongObserver(
mPrefObserver, "security.ssl.treat_unsafe_negotiation_as_broken");
Preferences::AddStrongObserver(mPrefObserver,
"security.tls.version.fallback-limit");
Preferences::AddStrongObserver(mPrefObserver,
"security.tls.insecure_fallback_hosts");
} else {
MOZ_ASSERT(mTlsFlags, "Only per socket version can ignore prefs");
}
return NS_OK;
}
void nsSSLIOLayerHelpers::loadVersionFallbackLimit() {
// see nsNSSComponent::setEnabledTLSVersions for pref handling rules
uint32_t limit = 3; // TLS 1.2
if (NS_IsMainThread()) {
limit = Preferences::GetUint("security.tls.version.fallback-limit",
3); // 3 = TLS 1.2
}
// set fallback limit if it is set in the tls flags
uint32_t tlsFlagsFallbackLimit = getTLSProviderFlagFallbackLimit(mTlsFlags);
if (tlsFlagsFallbackLimit) {
limit = tlsFlagsFallbackLimit;
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("loadVersionFallbackLimit overriden by tlsFlags %d\n", limit));
}
SSLVersionRange defaults = {SSL_LIBRARY_VERSION_TLS_1_2,
SSL_LIBRARY_VERSION_TLS_1_2};
SSLVersionRange filledInRange;
nsNSSComponent::FillTLSVersionRange(filledInRange, limit, limit, defaults);
if (filledInRange.max < SSL_LIBRARY_VERSION_TLS_1_2) {
filledInRange.max = SSL_LIBRARY_VERSION_TLS_1_2;
}
mVersionFallbackLimit = filledInRange.max;
}
void nsSSLIOLayerHelpers::clearStoredData() {
MutexAutoLock lock(mutex);
mInsecureFallbackSites.Clear();
mTLSIntoleranceInfo.Clear();
}
void nsSSLIOLayerHelpers::setInsecureFallbackSites(const nsCString& str) {
MutexAutoLock lock(mutex);
mInsecureFallbackSites.Clear();
if (str.IsEmpty()) {
return;
}
nsCCharSeparatedTokenizer toker(str, ',');
while (toker.hasMoreTokens()) {
const nsACString& host = toker.nextToken();
if (!host.IsEmpty()) {
mInsecureFallbackSites.PutEntry(host);
}
}
}
void nsSSLIOLayerHelpers::initInsecureFallbackSites() {
MOZ_ASSERT(NS_IsMainThread());
nsAutoCString insecureFallbackHosts;
Preferences::GetCString("security.tls.insecure_fallback_hosts",
insecureFallbackHosts);
setInsecureFallbackSites(insecureFallbackHosts);
}
bool nsSSLIOLayerHelpers::isPublic() const {
return this == &PublicSSLState()->IOLayerHelpers();
}
class FallbackPrefRemover final : public Runnable {
public:
explicit FallbackPrefRemover(const nsACString& aHost)
: mozilla::Runnable("FallbackPrefRemover"), mHost(aHost) {}
NS_IMETHOD Run() override;
private:
nsCString mHost;
};
NS_IMETHODIMP
FallbackPrefRemover::Run() {
MOZ_ASSERT(NS_IsMainThread());
nsAutoCString oldValue;
Preferences::GetCString("security.tls.insecure_fallback_hosts", oldValue);
nsCCharSeparatedTokenizer toker(oldValue, ',');
nsCString newValue;
while (toker.hasMoreTokens()) {
const nsACString& host = toker.nextToken();
if (host.Equals(mHost)) {
continue;
}
if (!newValue.IsEmpty()) {
newValue.Append(',');
}
newValue.Append(host);
}
Preferences::SetCString("security.tls.insecure_fallback_hosts", newValue);
return NS_OK;
}
void nsSSLIOLayerHelpers::removeInsecureFallbackSite(const nsACString& hostname,
uint16_t port) {
forgetIntolerance(hostname, port);
{
MutexAutoLock lock(mutex);
if (!mInsecureFallbackSites.Contains(hostname)) {
return;
}
mInsecureFallbackSites.RemoveEntry(hostname);
}
if (!isPublic()) {
return;
}
RefPtr<Runnable> runnable = new FallbackPrefRemover(hostname);
if (NS_IsMainThread()) {
runnable->Run();
} else {
NS_DispatchToMainThread(runnable);
}
}
bool nsSSLIOLayerHelpers::isInsecureFallbackSite(const nsACString& hostname) {
MutexAutoLock lock(mutex);
return mInsecureFallbackSites.Contains(hostname);
}
void nsSSLIOLayerHelpers::setTreatUnsafeNegotiationAsBroken(bool broken) {
MutexAutoLock lock(mutex);
mTreatUnsafeNegotiationAsBroken = broken;
}
bool nsSSLIOLayerHelpers::treatUnsafeNegotiationAsBroken() {
MutexAutoLock lock(mutex);
return mTreatUnsafeNegotiationAsBroken;
}
nsresult nsSSLIOLayerNewSocket(int32_t family, const char* host, int32_t port,
nsIProxyInfo* proxy,
const OriginAttributes& originAttributes,
PRFileDesc** fd, nsISupports** info,
bool forSTARTTLS, uint32_t flags,
uint32_t tlsFlags) {
PRFileDesc* sock = PR_OpenTCPSocket(family);
if (!sock) return NS_ERROR_OUT_OF_MEMORY;
nsresult rv =
nsSSLIOLayerAddToSocket(family, host, port, proxy, originAttributes, sock,
info, forSTARTTLS, flags, tlsFlags);
if (NS_FAILED(rv)) {
PR_Close(sock);
return rv;
}
*fd = sock;
return NS_OK;
}
// Creates CA names strings from (CERTDistNames* caNames)
//
// - arena: arena to allocate strings on
// - caNameStrings: filled with CA names strings on return
// - caNames: CERTDistNames to extract strings from
// - return: SECSuccess if successful; error code otherwise
//
// Note: copied in its entirety from Nova code
static SECStatus nsConvertCANamesToStrings(const UniquePLArenaPool& arena,
char** caNameStrings,
CERTDistNames* caNames) {
MOZ_ASSERT(arena.get());
MOZ_ASSERT(caNameStrings);
MOZ_ASSERT(caNames);
if (!arena.get() || !caNameStrings || !caNames) {
PR_SetError(SEC_ERROR_INVALID_ARGS, 0);
return SECFailure;
}
SECItem* dername;
int n;
char* namestring;
for (n = 0; n < caNames->nnames; n++) {
dername = &caNames->names[n];
namestring = CERT_DerNameToAscii(dername);
if (!namestring) {
// XXX - keep going until we fail to convert the name
caNameStrings[n] = const_cast<char*>("");
} else {
caNameStrings[n] = PORT_ArenaStrdup(arena.get(), namestring);
PR_Free(namestring); // CERT_DerNameToAscii() uses PR_Malloc().
if (!caNameStrings[n]) {
return SECFailure;
}
}
}
return SECSuccess;
}
// Possible behaviors for choosing a cert for client auth.
enum class UserCertChoice {
// Ask the user to choose a cert.
Ask = 0,
// Automatically choose a cert.
Auto = 1,
};
// Returns the most appropriate user cert choice based on the value of the
// security.default_personal_cert preference.
UserCertChoice nsGetUserCertChoice() {
nsAutoCString value;
nsresult rv =
Preferences::GetCString("security.default_personal_cert", value);
if (NS_FAILED(rv)) {
return UserCertChoice::Ask;
}
// There are three cases for what the preference could be set to:
// 1. "Select Automatically" -> Auto.
// 2. "Ask Every Time" -> Ask.
// 3. Something else -> Ask. This might be a nickname from a migrated cert,
// but we no longer support this case.
return value.EqualsLiteral("Select Automatically") ? UserCertChoice::Auto
: UserCertChoice::Ask;
}
static bool hasExplicitKeyUsageNonRepudiation(CERTCertificate* cert) {
// There is no extension, v1 or v2 certificate
if (!cert->extensions) return false;
SECStatus srv;
SECItem keyUsageItem;
keyUsageItem.data = nullptr;
srv = CERT_FindKeyUsageExtension(cert, &keyUsageItem);
if (srv == SECFailure) return false;
unsigned char keyUsage = keyUsageItem.data[0];
PORT_Free(keyUsageItem.data);
return !!(keyUsage & KU_NON_REPUDIATION);
}
class ClientAuthDataRunnable : public SyncRunnableBase {
public:
ClientAuthDataRunnable(CERTDistNames* caNames, CERTCertificate** pRetCert,
SECKEYPrivateKey** pRetKey, nsNSSSocketInfo* info,
const UniqueCERTCertificate& serverCert)
: mRV(SECFailure),
mErrorCodeToReport(SEC_ERROR_NO_MEMORY),
mPRetCert(pRetCert),
mPRetKey(pRetKey),
mCANames(caNames),
mSocketInfo(info),
mServerCert(serverCert.get()) {}
SECStatus mRV; // out
PRErrorCode mErrorCodeToReport; // out
CERTCertificate** const mPRetCert; // in/out
SECKEYPrivateKey** const mPRetKey; // in/out
protected:
virtual void RunOnTargetThread() override;
private:
CERTDistNames* const mCANames; // in
nsNSSSocketInfo* const mSocketInfo; // in
CERTCertificate* const mServerCert; // in
};
// This callback function is used to pull client certificate
// information upon server request
//
// - arg: SSL data connection
// - socket: SSL socket we're dealing with
// - caNames: list of CA names
// - pRetCert: returns a pointer to a pointer to a valid certificate if
// successful; otherwise nullptr
// - pRetKey: returns a pointer to a pointer to the corresponding key if
// successful; otherwise nullptr
SECStatus nsNSS_SSLGetClientAuthData(void* arg, PRFileDesc* socket,
CERTDistNames* caNames,
CERTCertificate** pRetCert,
SECKEYPrivateKey** pRetKey) {
if (!socket || !caNames || !pRetCert || !pRetKey) {
PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0);
return SECFailure;
}
Telemetry::ScalarAdd(Telemetry::ScalarID::SECURITY_CLIENT_CERT,
NS_LITERAL_STRING("requested"), 1);
RefPtr<nsNSSSocketInfo> info(
BitwiseCast<nsNSSSocketInfo*, PRFilePrivate*>(socket->higher->secret));
UniqueCERTCertificate serverCert(SSL_PeerCertificate(socket));
if (!serverCert) {
MOZ_ASSERT_UNREACHABLE(
"Missing server cert should have been detected during server cert "
"auth.");
PR_SetError(SSL_ERROR_NO_CERTIFICATE, 0);
return SECFailure;
}
if (info->GetDenyClientCert()) {
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] Not returning client cert due to denyClientCert attribute\n",
socket));
*pRetCert = nullptr;
*pRetKey = nullptr;
return SECSuccess;
}
if (info->GetJoined()) {
// We refuse to send a client certificate when there are multiple hostnames
// joined on this connection, because we only show the user one hostname
// (mHostName) in the client certificate UI.
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] Not returning client cert due to previous join\n", socket));
*pRetCert = nullptr;
*pRetKey = nullptr;
return SECSuccess;
}
// XXX: This should be done asynchronously; see bug 696976
RefPtr<ClientAuthDataRunnable> runnable(
new ClientAuthDataRunnable(caNames, pRetCert, pRetKey, info, serverCert));
nsresult rv = runnable->DispatchToMainThreadAndWait();
if (NS_FAILED(rv)) {
PR_SetError(SEC_ERROR_NO_MEMORY, 0);
return SECFailure;
}
if (runnable->mRV != SECSuccess) {
PR_SetError(runnable->mErrorCodeToReport, 0);
} else if (*runnable->mPRetCert || *runnable->mPRetKey) {
// Make joinConnection prohibit joining after we've sent a client cert
info->SetSentClientCert();
Telemetry::ScalarAdd(Telemetry::ScalarID::SECURITY_CLIENT_CERT,
NS_LITERAL_STRING("sent"), 1);
}
return runnable->mRV;
}
void ClientAuthDataRunnable::RunOnTargetThread() {
// We check the value of a pref in this runnable, so this runnable should only
// be run on the main thread.
MOZ_ASSERT(NS_IsMainThread());
UniquePLArenaPool arena;
char** caNameStrings;
UniqueCERTCertificate cert;
UniqueSECKEYPrivateKey privKey;
void* wincx = mSocketInfo;
nsresult rv;
if (NS_FAILED(CheckForSmartCardChanges())) {
mRV = SECFailure;
*mPRetCert = nullptr;
*mPRetKey = nullptr;
mErrorCodeToReport = SEC_ERROR_LIBRARY_FAILURE;
return;
}
nsCOMPtr<nsIX509Cert> socketClientCert;
mSocketInfo->GetClientCert(getter_AddRefs(socketClientCert));
// If a client cert preference was set on the socket info, use that and skip
// the client cert UI and/or search of the user's past cert decisions.
if (socketClientCert) {
cert.reset(socketClientCert->GetCert());
if (!cert) {
goto loser;
}
// Get the private key
privKey.reset(PK11_FindKeyByAnyCert(cert.get(), wincx));
if (!privKey) {
goto loser;
}
*mPRetCert = cert.release();
*mPRetKey = privKey.release();
mRV = SECSuccess;
return;
}
// create caNameStrings
arena.reset(PORT_NewArena(DER_DEFAULT_CHUNKSIZE));
if (!arena) {
goto loser;
}
caNameStrings = static_cast<char**>(
PORT_ArenaAlloc(arena.get(), sizeof(char*) * mCANames->nnames));
if (!caNameStrings) {
goto loser;
}
mRV = nsConvertCANamesToStrings(arena, caNameStrings, mCANames);
if (mRV != SECSuccess) {
goto loser;
}
// find valid user cert and key pair
if (nsGetUserCertChoice() == UserCertChoice::Auto) {
// automatically find the right cert
// find all user certs that are valid and for SSL
UniqueCERTCertList certList(CERT_FindUserCertsByUsage(
CERT_GetDefaultCertDB(), certUsageSSLClient, false, true, wincx));
if (!certList) {
goto loser;
}
// filter the list to those issued by CAs supported by the server
mRV = CERT_FilterCertListByCANames(certList.get(), mCANames->nnames,
caNameStrings, certUsageSSLClient);
if (mRV != SECSuccess) {
goto loser;
}
// make sure the list is not empty
if (CERT_LIST_END(CERT_LIST_HEAD(certList), certList)) {
goto loser;
}
UniqueCERTCertificate lowPrioNonrepCert;
// loop through the list until we find a cert with a key
for (CERTCertListNode* node = CERT_LIST_HEAD(certList);
!CERT_LIST_END(node, certList); node = CERT_LIST_NEXT(node)) {
// if the certificate has restriction and we do not satisfy it we do not
// use it
privKey.reset(PK11_FindKeyByAnyCert(node->cert, wincx));
if (privKey) {
if (hasExplicitKeyUsageNonRepudiation(node->cert)) {
privKey = nullptr;
// Not a preferred cert
if (!lowPrioNonrepCert) { // did not yet find a low prio cert
lowPrioNonrepCert.reset(CERT_DupCertificate(node->cert));
}
} else {
// this is a good cert to present
cert.reset(CERT_DupCertificate(node->cert));
break;
}
}
if (PR_GetError() == SEC_ERROR_BAD_PASSWORD) {
// problem with password: bail
goto loser;
}
}
if (!cert && lowPrioNonrepCert) {
cert = std::move(lowPrioNonrepCert);
privKey.reset(PK11_FindKeyByAnyCert(cert.get(), wincx));
}
if (!cert) {
goto loser;
}
} else { // Not Auto => ask
// Get the SSL Certificate
const nsACString& hostname = mSocketInfo->GetHostName();
RefPtr<nsClientAuthRememberService> cars =
mSocketInfo->SharedState().GetClientAuthRememberService();
bool hasRemembered = false;
nsCString rememberedDBKey;
if (cars) {
bool found;
rv = cars->HasRememberedDecision(hostname,
mSocketInfo->GetOriginAttributes(),
mServerCert, rememberedDBKey, &found);
if (NS_SUCCEEDED(rv) && found) {
hasRemembered = true;
}
}
if (hasRemembered && !rememberedDBKey.IsEmpty()) {
nsCOMPtr<nsIX509CertDB> certdb = do_GetService(NS_X509CERTDB_CONTRACTID);
if (certdb) {
nsCOMPtr<nsIX509Cert> foundCert;
rv =
certdb->FindCertByDBKey(rememberedDBKey, getter_AddRefs(foundCert));
if (NS_SUCCEEDED(rv) && foundCert) {
nsNSSCertificate* objCert =
BitwiseCast<nsNSSCertificate*, nsIX509Cert*>(foundCert.get());
if (objCert) {
cert.reset(objCert->GetCert());
}
}
if (!cert) {
hasRemembered = false;
}
}
}
if (!hasRemembered) {
// user selects a cert to present
nsCOMPtr<nsIClientAuthDialogs> dialogs;
// find all user certs that are for SSL
// note that we are allowing expired certs in this list
UniqueCERTCertList certList(CERT_FindUserCertsByUsage(
CERT_GetDefaultCertDB(), certUsageSSLClient, false, false, wincx));
if (!certList) {
goto loser;
}
if (mCANames->nnames != 0) {
// filter the list to those issued by CAs supported by the server
mRV = CERT_FilterCertListByCANames(certList.get(), mCANames->nnames,
caNameStrings, certUsageSSLClient);
if (mRV != SECSuccess) {
goto loser;
}
}
if (CERT_LIST_END(CERT_LIST_HEAD(certList), certList)) {
// list is empty - no matching certs
goto loser;
}
UniquePORTString corg(CERT_GetOrgName(&mServerCert->subject));
nsAutoCString org(corg.get());
UniquePORTString cissuer(CERT_GetOrgName(&mServerCert->issuer));
nsAutoCString issuer(cissuer.get());
nsCOMPtr<nsIMutableArray> certArray = nsArrayBase::Create();
if (!certArray) {
goto loser;
}
for (CERTCertListNode* node = CERT_LIST_HEAD(certList);
!CERT_LIST_END(node, certList); node = CERT_LIST_NEXT(node)) {
nsCOMPtr<nsIX509Cert> tempCert = nsNSSCertificate::Create(node->cert);
if (!tempCert) {
goto loser;
}
rv = certArray->AppendElement(tempCert);
if (NS_FAILED(rv)) {
goto loser;
}
}
// Throw up the client auth dialog and get back the index of the selected
// cert
rv = getNSSDialogs(getter_AddRefs(dialogs),
NS_GET_IID(nsIClientAuthDialogs),
NS_CLIENTAUTHDIALOGS_CONTRACTID);
if (NS_FAILED(rv)) {
goto loser;
}
uint32_t selectedIndex = 0;
bool certChosen = false;
rv = dialogs->ChooseCertificate(mSocketInfo, hostname,
mSocketInfo->GetPort(), org, issuer,
certArray, &selectedIndex, &certChosen);
if (NS_FAILED(rv)) {
goto loser;
}
// even if the user has canceled, we want to remember that, to avoid
// repeating prompts
bool wantRemember = false;
mSocketInfo->GetRememberClientAuthCertificate(&wantRemember);
if (certChosen) {
nsCOMPtr<nsIX509Cert> selectedCert =
do_QueryElementAt(certArray, selectedIndex);
if (!selectedCert) {
goto loser;
}
cert.reset(selectedCert->GetCert());
}
if (cars && wantRemember) {
cars->RememberDecision(hostname, mSocketInfo->GetOriginAttributes(),
mServerCert, certChosen ? cert.get() : nullptr);
}
}
if (!cert) {
goto loser;
}
// go get the private key
privKey.reset(PK11_FindKeyByAnyCert(cert.get(), wincx));
if (!privKey) {
goto loser;
}
}
goto done;
loser:
if (mRV == SECSuccess) {
mRV = SECFailure;
}
done:
int error = PR_GetError();
*mPRetCert = cert.release();
*mPRetKey = privKey.release();
if (mRV == SECFailure) {
mErrorCodeToReport = error;
}
}
static PRFileDesc* nsSSLIOLayerImportFD(PRFileDesc* fd,
nsNSSSocketInfo* infoObject,
const char* host, bool haveHTTPSProxy) {
PRFileDesc* sslSock = SSL_ImportFD(nullptr, fd);
if (!sslSock) {
MOZ_ASSERT_UNREACHABLE("NSS: Error importing socket");
return nullptr;
}
SSL_SetPKCS11PinArg(sslSock, (nsIInterfaceRequestor*)infoObject);
SSL_HandshakeCallback(sslSock, HandshakeCallback, infoObject);
SSL_SetCanFalseStartCallback(sslSock, CanFalseStartCallback, infoObject);
// Disable this hook if we connect anonymously. See bug 466080.
uint32_t flags = 0;
infoObject->GetProviderFlags(&flags);
// Provide the client cert to HTTPS proxy no matter if it is anonymous.
if (flags & nsISocketProvider::ANONYMOUS_CONNECT && !haveHTTPSProxy) {
SSL_GetClientAuthDataHook(sslSock, nullptr, infoObject);
} else {
SSL_GetClientAuthDataHook(
sslSock, (SSLGetClientAuthData)nsNSS_SSLGetClientAuthData, infoObject);
}
if (flags & nsISocketProvider::MITM_OK) {
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] nsSSLIOLayerImportFD: bypass authentication flag\n", fd));
infoObject->SetBypassAuthentication(true);
}
if (SECSuccess !=
SSL_AuthCertificateHook(sslSock, AuthCertificateHook, infoObject)) {
MOZ_ASSERT_UNREACHABLE("Failed to configure AuthCertificateHook");
goto loser;
}
if (SECSuccess != SSL_SetURL(sslSock, host)) {
MOZ_ASSERT_UNREACHABLE("SSL_SetURL failed");
goto loser;
}
return sslSock;
loser:
if (sslSock) {
PR_Close(sslSock);
}
return nullptr;
}
// Please change getSignatureName in nsNSSCallbacks.cpp when changing the list
// here.
static const SSLSignatureScheme sEnabledSignatureSchemes[] = {
ssl_sig_ecdsa_secp256r1_sha256, ssl_sig_ecdsa_secp384r1_sha384,
ssl_sig_ecdsa_secp521r1_sha512, ssl_sig_rsa_pss_sha256,
ssl_sig_rsa_pss_sha384, ssl_sig_rsa_pss_sha512,
ssl_sig_rsa_pkcs1_sha256, ssl_sig_rsa_pkcs1_sha384,
ssl_sig_rsa_pkcs1_sha512, ssl_sig_ecdsa_sha1,
ssl_sig_rsa_pkcs1_sha1,
};
static nsresult nsSSLIOLayerSetOptions(PRFileDesc* fd, bool forSTARTTLS,
bool haveProxy, const char* host,
int32_t port,
nsNSSSocketInfo* infoObject) {
if (forSTARTTLS || haveProxy) {
if (SECSuccess != SSL_OptionSet(fd, SSL_SECURITY, false)) {
return NS_ERROR_FAILURE;
}
}
SSLVersionRange range;
if (SSL_VersionRangeGet(fd, &range) != SECSuccess) {
return NS_ERROR_FAILURE;
}
// Set TLS 1.3 compat mode.
if (SECSuccess != SSL_OptionSet(fd, SSL_ENABLE_TLS13_COMPAT_MODE, PR_TRUE)) {
MOZ_LOG(gPIPNSSLog, LogLevel::Error,
("[%p] nsSSLIOLayerSetOptions: Setting compat mode failed\n", fd));
}
// setting TLS max version
uint32_t versionFlags =
getTLSProviderFlagMaxVersion(infoObject->GetProviderTlsFlags());
if (versionFlags) {
MOZ_LOG(
gPIPNSSLog, LogLevel::Debug,
("[%p] nsSSLIOLayerSetOptions: version flags %d\n", fd, versionFlags));
if (versionFlags == kTLSProviderFlagMaxVersion10) {
range.max = SSL_LIBRARY_VERSION_TLS_1_0;
} else if (versionFlags == kTLSProviderFlagMaxVersion11) {
range.max = SSL_LIBRARY_VERSION_TLS_1_1;
} else if (versionFlags == kTLSProviderFlagMaxVersion12) {
range.max = SSL_LIBRARY_VERSION_TLS_1_2;
} else if (versionFlags == kTLSProviderFlagMaxVersion13) {
range.max = SSL_LIBRARY_VERSION_TLS_1_3;
} else {
MOZ_LOG(gPIPNSSLog, LogLevel::Error,
("[%p] nsSSLIOLayerSetOptions: unknown version flags %d\n", fd,
versionFlags));
}
}
if ((infoObject->GetProviderFlags() & nsISocketProvider::BE_CONSERVATIVE) &&
(range.max > SSL_LIBRARY_VERSION_TLS_1_2)) {
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] nsSSLIOLayerSetOptions: range.max limited to 1.2 due to "
"BE_CONSERVATIVE flag\n",
fd));
range.max = SSL_LIBRARY_VERSION_TLS_1_2;
}
uint16_t maxEnabledVersion = range.max;
infoObject->SharedState().IOLayerHelpers().adjustForTLSIntolerance(
infoObject->GetHostName(), infoObject->GetPort(), range);
MOZ_LOG(
gPIPNSSLog, LogLevel::Debug,
("[%p] nsSSLIOLayerSetOptions: using TLS version range (0x%04x,0x%04x)\n",
fd, static_cast<unsigned int>(range.min),
static_cast<unsigned int>(range.max)));
// If the user has set their minimum version to something higher than what
// we've now set the maximum to, this will result in an inconsistent version
// range unless we fix it up. This will override their preference, but we only
// do this for sites critical to the operation of the browser (e.g. update
// servers) and telemetry experiments.
if (range.min > range.max) {
range.min = range.max;
}
if (SSL_VersionRangeSet(fd, &range) != SECSuccess) {
return NS_ERROR_FAILURE;
}
infoObject->SetTLSVersionRange(range);
// when adjustForTLSIntolerance tweaks the maximum version downward,
// we tell the server using this SCSV so they can detect a downgrade attack
if (range.max < maxEnabledVersion) {
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] nsSSLIOLayerSetOptions: enabling TLS_FALLBACK_SCSV\n", fd));
// Some servers will choke if we send the fallback SCSV with TLS 1.2.
if (range.max < SSL_LIBRARY_VERSION_TLS_1_2) {
if (SECSuccess != SSL_OptionSet(fd, SSL_ENABLE_FALLBACK_SCSV, true)) {
return NS_ERROR_FAILURE;
}
}
// tell NSS the max enabled version to make anti-downgrade effective
if (SECSuccess != SSL_SetDowngradeCheckVersion(fd, maxEnabledVersion)) {
return NS_ERROR_FAILURE;
}
}
// Include a modest set of named groups.
// Please change getKeaGroupName in nsNSSCallbacks.cpp when changing the list
// here.
const SSLNamedGroup namedGroups[] = {
ssl_grp_ec_curve25519, ssl_grp_ec_secp256r1, ssl_grp_ec_secp384r1,
ssl_grp_ec_secp521r1, ssl_grp_ffdhe_2048, ssl_grp_ffdhe_3072};
if (SECSuccess != SSL_NamedGroupConfig(fd, namedGroups,
mozilla::ArrayLength(namedGroups))) {
return NS_ERROR_FAILURE;
}
// This ensures that we send key shares for X25519 and P-256 in TLS 1.3, so
// that servers are less likely to use HelloRetryRequest.
if (SECSuccess != SSL_SendAdditionalKeyShares(fd, 1)) {
return NS_ERROR_FAILURE;
}
if (SECSuccess != SSL_SignatureSchemePrefSet(
fd, sEnabledSignatureSchemes,
mozilla::ArrayLength(sEnabledSignatureSchemes))) {
return NS_ERROR_FAILURE;
}
bool enabled = infoObject->SharedState().IsOCSPStaplingEnabled();
if (SECSuccess != SSL_OptionSet(fd, SSL_ENABLE_OCSP_STAPLING, enabled)) {
return NS_ERROR_FAILURE;
}
bool sctsEnabled = infoObject->SharedState().IsSignedCertTimestampsEnabled();
if (SECSuccess !=
SSL_OptionSet(fd, SSL_ENABLE_SIGNED_CERT_TIMESTAMPS, sctsEnabled)) {
return NS_ERROR_FAILURE;
}
if (SECSuccess != SSL_OptionSet(fd, SSL_HANDSHAKE_AS_CLIENT, true)) {
return NS_ERROR_FAILURE;
}
// Set the Peer ID so that SSL proxy connections work properly and to
// separate anonymous and/or private browsing connections.
uint32_t flags = infoObject->GetProviderFlags();
nsAutoCString peerId;
if (flags & nsISocketProvider::ANONYMOUS_CONNECT) { // See bug 466080
peerId.AppendLiteral("anon:");
}
if (flags & nsISocketProvider::NO_PERMANENT_STORAGE) {
peerId.AppendLiteral("private:");
}
if (flags & nsISocketProvider::MITM_OK) {
peerId.AppendLiteral("bypassAuth:");
}
if (flags & nsISocketProvider::BE_CONSERVATIVE) {
peerId.AppendLiteral("beConservative:");
}
peerId.AppendPrintf("tlsflags0x%08x:", infoObject->GetProviderTlsFlags());
peerId.Append(host);
peerId.Append(':');
peerId.AppendInt(port);
nsAutoCString suffix;
infoObject->GetOriginAttributes().CreateSuffix(suffix);
peerId.Append(suffix);
if (SECSuccess != SSL_SetSockPeerID(fd, peerId.get())) {
return NS_ERROR_FAILURE;
}
if (flags & nsISocketProvider::NO_PERMANENT_STORAGE) {
if (SECSuccess != SSL_OptionSet(fd, SSL_ENABLE_SESSION_TICKETS, false)) {
return NS_ERROR_FAILURE;
}
}
return NS_OK;
}
nsresult nsSSLIOLayerAddToSocket(int32_t family, const char* host, int32_t port,
nsIProxyInfo* proxy,
const OriginAttributes& originAttributes,
PRFileDesc* fd, nsISupports** info,
bool forSTARTTLS, uint32_t providerFlags,
uint32_t providerTlsFlags) {
PRFileDesc* layer = nullptr;
PRFileDesc* plaintextLayer = nullptr;
nsresult rv;
PRStatus stat;
SharedSSLState* sharedState = nullptr;
RefPtr<SharedSSLState> allocatedState;
if (providerTlsFlags) {
allocatedState = new SharedSSLState(providerTlsFlags);
sharedState = allocatedState.get();
} else {
sharedState = (providerFlags & nsISocketProvider::NO_PERMANENT_STORAGE)
? PrivateSSLState()
: PublicSSLState();
}
nsNSSSocketInfo* infoObject =
new nsNSSSocketInfo(*sharedState, providerFlags, providerTlsFlags);
if (!infoObject) return NS_ERROR_FAILURE;
NS_ADDREF(infoObject);
infoObject->SetForSTARTTLS(forSTARTTLS);
infoObject->SetHostName(host);
infoObject->SetPort(port);
infoObject->SetOriginAttributes(originAttributes);
if (allocatedState) {
infoObject->SetSharedOwningReference(allocatedState);
}
bool haveProxy = false;
bool haveHTTPSProxy = false;
if (proxy) {
nsAutoCString proxyHost;
proxy->GetHost(proxyHost);
haveProxy = !proxyHost.IsEmpty();
nsAutoCString type;
haveHTTPSProxy = haveProxy && NS_SUCCEEDED(proxy->GetType(type)) &&
type.EqualsLiteral("https");
}
// A plaintext observer shim is inserted so we can observe some protocol
// details without modifying nss
plaintextLayer =
PR_CreateIOLayerStub(nsSSLIOLayerHelpers::nsSSLPlaintextLayerIdentity,
&nsSSLIOLayerHelpers::nsSSLPlaintextLayerMethods);
if (plaintextLayer) {
plaintextLayer->secret = (PRFilePrivate*)infoObject;
stat = PR_PushIOLayer(fd, PR_TOP_IO_LAYER, plaintextLayer);
if (stat == PR_FAILURE) {
plaintextLayer->dtor(plaintextLayer);
plaintextLayer = nullptr;
}
}
PRFileDesc* sslSock =
nsSSLIOLayerImportFD(fd, infoObject, host, haveHTTPSProxy);
if (!sslSock) {
MOZ_ASSERT_UNREACHABLE("NSS: Error importing socket");
goto loser;
}
infoObject->SetFileDescPtr(sslSock);
rv = nsSSLIOLayerSetOptions(sslSock, forSTARTTLS, haveProxy, host, port,
infoObject);
if (NS_FAILED(rv)) goto loser;
// Now, layer ourselves on top of the SSL socket...
layer = PR_CreateIOLayerStub(nsSSLIOLayerHelpers::nsSSLIOLayerIdentity,
&nsSSLIOLayerHelpers::nsSSLIOLayerMethods);
if (!layer) goto loser;
layer->secret = (PRFilePrivate*)infoObject;
stat = PR_PushIOLayer(sslSock, PR_GetLayersIdentity(sslSock), layer);
if (stat == PR_FAILURE) {
goto loser;
}
MOZ_LOG(gPIPNSSLog, LogLevel::Debug,
("[%p] Socket set up\n", (void*)sslSock));
infoObject->QueryInterface(NS_GET_IID(nsISupports), (void**)(info));
// We are going use a clear connection first //
if (forSTARTTLS || haveProxy) {
infoObject->SetHandshakeNotPending();
}
infoObject->SharedState().NoteSocketCreated();
return NS_OK;
loser:
NS_IF_RELEASE(infoObject);
if (layer) {
layer->dtor(layer);
}
if (plaintextLayer) {
// Note that PR_*IOLayer operations may modify the stack of fds, so a
// previously-valid pointer may no longer point to what we think it points
// to after calling PR_PopIOLayer. We must operate on the pointer returned
// by PR_PopIOLayer.
plaintextLayer =
PR_PopIOLayer(fd, nsSSLIOLayerHelpers::nsSSLPlaintextLayerIdentity);
plaintextLayer->dtor(plaintextLayer);
}
return NS_ERROR_FAILURE;
}