mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-02 18:08:58 +00:00
522eefbe31
Differential Revision: https://phabricator.services.mozilla.com/D132278
650 lines
25 KiB
C++
650 lines
25 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/ArrayUtils.h"
|
|
#include "gfxCoreTextShaper.h"
|
|
#include "gfxMacFont.h"
|
|
#include "gfxFontUtils.h"
|
|
#include "gfxTextRun.h"
|
|
#include "mozilla/gfx/2D.h"
|
|
#include "mozilla/UniquePtrExtensions.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include <dlfcn.h>
|
|
|
|
using namespace mozilla;
|
|
|
|
// standard font descriptors that we construct the first time they're needed
|
|
CTFontDescriptorRef gfxCoreTextShaper::sFeaturesDescriptor[kMaxFontInstances];
|
|
|
|
// Helper to create a CFDictionary with the right attributes for shaping our
|
|
// text, including imposing the given directionality.
|
|
CFDictionaryRef gfxCoreTextShaper::CreateAttrDict(bool aRightToLeft) {
|
|
// Because we always shape unidirectional runs, and may have applied
|
|
// directional overrides, we want to force a direction rather than
|
|
// allowing CoreText to do its own unicode-based bidi processing.
|
|
SInt16 dirOverride = kCTWritingDirectionOverride |
|
|
(aRightToLeft ? kCTWritingDirectionRightToLeft
|
|
: kCTWritingDirectionLeftToRight);
|
|
CFNumberRef dirNumber =
|
|
::CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt16Type, &dirOverride);
|
|
CFArrayRef dirArray = ::CFArrayCreate(
|
|
kCFAllocatorDefault, (const void**)&dirNumber, 1, &kCFTypeArrayCallBacks);
|
|
::CFRelease(dirNumber);
|
|
CFTypeRef attrs[] = {kCTFontAttributeName, kCTWritingDirectionAttributeName};
|
|
CFTypeRef values[] = {mCTFont[0], dirArray};
|
|
CFDictionaryRef attrDict = ::CFDictionaryCreate(
|
|
kCFAllocatorDefault, attrs, values, ArrayLength(attrs),
|
|
&kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
|
|
::CFRelease(dirArray);
|
|
return attrDict;
|
|
}
|
|
|
|
gfxCoreTextShaper::gfxCoreTextShaper(gfxMacFont* aFont)
|
|
: gfxFontShaper(aFont),
|
|
mAttributesDictLTR(nullptr),
|
|
mAttributesDictRTL(nullptr) {
|
|
for (size_t i = 0; i < kMaxFontInstances; i++) {
|
|
mCTFont[i] = nullptr;
|
|
}
|
|
// Create our default CTFontRef
|
|
mCTFont[0] = CreateCTFontWithFeatures(
|
|
aFont->GetAdjustedSize(), GetFeaturesDescriptor(kDefaultFeatures));
|
|
}
|
|
|
|
gfxCoreTextShaper::~gfxCoreTextShaper() {
|
|
if (mAttributesDictLTR) {
|
|
::CFRelease(mAttributesDictLTR);
|
|
}
|
|
if (mAttributesDictRTL) {
|
|
::CFRelease(mAttributesDictRTL);
|
|
}
|
|
for (size_t i = 0; i < kMaxFontInstances; i++) {
|
|
if (mCTFont[i]) {
|
|
::CFRelease(mCTFont[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool IsBuggyIndicScript(intl::Script aScript) {
|
|
return aScript == intl::Script::BENGALI || aScript == intl::Script::KANNADA ||
|
|
aScript == intl::Script::ORIYA || aScript == intl::Script::KHMER;
|
|
}
|
|
|
|
bool gfxCoreTextShaper::ShapeText(DrawTarget* aDrawTarget,
|
|
const char16_t* aText, uint32_t aOffset,
|
|
uint32_t aLength, Script aScript,
|
|
nsAtom* aLanguage, bool aVertical,
|
|
RoundingFlags aRounding,
|
|
gfxShapedText* aShapedText) {
|
|
// Create a CFAttributedString with text and style info, so we can use
|
|
// CoreText to lay it out.
|
|
bool isRightToLeft = aShapedText->IsRightToLeft();
|
|
const UniChar* text = reinterpret_cast<const UniChar*>(aText);
|
|
|
|
CFStringRef stringObj = ::CFStringCreateWithCharactersNoCopy(
|
|
kCFAllocatorDefault, text, aLength, kCFAllocatorNull);
|
|
|
|
// Figure out whether we should try to set the AAT small-caps feature:
|
|
// examine OpenType tags for the requested style, and see if 'smcp' is
|
|
// among them.
|
|
const gfxFontStyle* style = mFont->GetStyle();
|
|
gfxFontEntry* entry = mFont->GetFontEntry();
|
|
auto handleFeatureTag = [](const uint32_t& aTag, uint32_t& aValue,
|
|
void* aUserArg) -> void {
|
|
if (aTag == HB_TAG('s', 'm', 'c', 'p') && aValue) {
|
|
*static_cast<bool*>(aUserArg) = true;
|
|
}
|
|
};
|
|
bool addSmallCaps = false;
|
|
MergeFontFeatures(style, entry->mFeatureSettings, false, entry->FamilyName(),
|
|
false, handleFeatureTag, &addSmallCaps);
|
|
|
|
// Get an attributes dictionary suitable for shaping text in the
|
|
// current direction, creating it if necessary.
|
|
CFDictionaryRef attrObj =
|
|
isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR;
|
|
if (!attrObj) {
|
|
attrObj = CreateAttrDict(isRightToLeft);
|
|
(isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR) = attrObj;
|
|
}
|
|
|
|
FeatureFlags featureFlags = kDefaultFeatures;
|
|
if (IsBuggyIndicScript(aScript)) {
|
|
// To work around buggy Indic AAT fonts shipped with OS X,
|
|
// we re-enable the Line Initial Smart Swashes feature that is needed
|
|
// for "split vowels" to work in at least Bengali and Kannada fonts.
|
|
// Affected fonts include Bangla MN, Bangla Sangam MN, Kannada MN,
|
|
// Kannada Sangam MN. See bugs 686225, 728557, 953231, 1145515.
|
|
// Also applies to Oriya and Khmer, see bug 1370927 and bug 1403166.
|
|
featureFlags |= kIndicFeatures;
|
|
}
|
|
if (aShapedText->DisableLigatures()) {
|
|
// For letterspacing (or maybe other situations) we need to make
|
|
// a copy of the CTFont with the ligature feature disabled.
|
|
featureFlags |= kDisableLigatures;
|
|
}
|
|
if (addSmallCaps) {
|
|
featureFlags |= kAddSmallCaps;
|
|
}
|
|
|
|
// For the disabled-ligature, buggy-indic-font or small-caps case, replace
|
|
// the default CTFont in the attribute dictionary with a tweaked version.
|
|
CFMutableDictionaryRef mutableAttr = nullptr;
|
|
if (featureFlags != 0) {
|
|
if (!mCTFont[featureFlags]) {
|
|
mCTFont[featureFlags] = CreateCTFontWithFeatures(
|
|
mFont->GetAdjustedSize(), GetFeaturesDescriptor(featureFlags));
|
|
}
|
|
mutableAttr =
|
|
::CFDictionaryCreateMutableCopy(kCFAllocatorDefault, 2, attrObj);
|
|
::CFDictionaryReplaceValue(mutableAttr, kCTFontAttributeName,
|
|
mCTFont[featureFlags]);
|
|
attrObj = mutableAttr;
|
|
}
|
|
|
|
// Now we can create an attributed string
|
|
CFAttributedStringRef attrStringObj =
|
|
::CFAttributedStringCreate(kCFAllocatorDefault, stringObj, attrObj);
|
|
::CFRelease(stringObj);
|
|
|
|
// Create the CoreText line from our string, then we're done with it
|
|
CTLineRef line = ::CTLineCreateWithAttributedString(attrStringObj);
|
|
::CFRelease(attrStringObj);
|
|
|
|
// and finally retrieve the glyph data and store into the gfxTextRun
|
|
CFArrayRef glyphRuns = ::CTLineGetGlyphRuns(line);
|
|
uint32_t numRuns = ::CFArrayGetCount(glyphRuns);
|
|
|
|
// Iterate through the glyph runs.
|
|
bool success = true;
|
|
for (uint32_t runIndex = 0; runIndex < numRuns; runIndex++) {
|
|
CTRunRef aCTRun = (CTRunRef)::CFArrayGetValueAtIndex(glyphRuns, runIndex);
|
|
CFRange range = ::CTRunGetStringRange(aCTRun);
|
|
CFDictionaryRef runAttr = ::CTRunGetAttributes(aCTRun);
|
|
if (runAttr != attrObj) {
|
|
// If Core Text manufactured a new dictionary, this may indicate
|
|
// unexpected font substitution. In that case, we fail (and fall
|
|
// back to harfbuzz shaping)...
|
|
const void* font1 = ::CFDictionaryGetValue(attrObj, kCTFontAttributeName);
|
|
const void* font2 = ::CFDictionaryGetValue(runAttr, kCTFontAttributeName);
|
|
if (font1 != font2) {
|
|
// ...except that if the fallback was only for a variation
|
|
// selector or join control that is otherwise unsupported,
|
|
// we just ignore it.
|
|
if (range.length == 1) {
|
|
char16_t ch = aText[range.location];
|
|
if (gfxFontUtils::IsJoinControl(ch) ||
|
|
gfxFontUtils::IsVarSelector(ch)) {
|
|
continue;
|
|
}
|
|
}
|
|
NS_WARNING("unexpected font fallback in Core Text");
|
|
success = false;
|
|
break;
|
|
}
|
|
}
|
|
if (SetGlyphsFromRun(aShapedText, aOffset, aLength, aCTRun) != NS_OK) {
|
|
success = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mutableAttr) {
|
|
::CFRelease(mutableAttr);
|
|
}
|
|
::CFRelease(line);
|
|
|
|
return success;
|
|
}
|
|
|
|
#define SMALL_GLYPH_RUN \
|
|
128 // preallocated size of our auto arrays for per-glyph data;
|
|
// some testing indicates that 90%+ of glyph runs will fit
|
|
// without requiring a separate allocation
|
|
|
|
nsresult gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText* aShapedText,
|
|
uint32_t aOffset, uint32_t aLength,
|
|
CTRunRef aCTRun) {
|
|
typedef gfxShapedText::CompressedGlyph CompressedGlyph;
|
|
|
|
int32_t direction = aShapedText->IsRightToLeft() ? -1 : 1;
|
|
|
|
int32_t numGlyphs = ::CTRunGetGlyphCount(aCTRun);
|
|
if (numGlyphs == 0) {
|
|
return NS_OK;
|
|
}
|
|
|
|
int32_t wordLength = aLength;
|
|
|
|
// character offsets get really confusing here, as we have to keep track of
|
|
// (a) the text in the actual textRun we're constructing
|
|
// (c) the string that was handed to CoreText, which contains the text of
|
|
// the font run
|
|
// (d) the CTRun currently being processed, which may be a sub-run of the
|
|
// CoreText line
|
|
|
|
// get the source string range within the CTLine's text
|
|
CFRange stringRange = ::CTRunGetStringRange(aCTRun);
|
|
// skip the run if it is entirely outside the actual range of the font run
|
|
if (stringRange.location + stringRange.length <= 0 ||
|
|
stringRange.location >= wordLength) {
|
|
return NS_OK;
|
|
}
|
|
|
|
// retrieve the laid-out glyph data from the CTRun
|
|
UniquePtr<CGGlyph[]> glyphsArray;
|
|
UniquePtr<CGPoint[]> positionsArray;
|
|
UniquePtr<CFIndex[]> glyphToCharArray;
|
|
const CGGlyph* glyphs = nullptr;
|
|
const CGPoint* positions = nullptr;
|
|
const CFIndex* glyphToChar = nullptr;
|
|
|
|
// Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds,
|
|
// and so allocating a new array and copying data with CTRunGetGlyphs
|
|
// will be extremely rare.
|
|
// If this were not the case, we could use an AutoTArray<> to
|
|
// try and avoid the heap allocation for small runs.
|
|
// It's possible that some future change to CoreText will mean that
|
|
// CTRunGetGlyphsPtr fails more often; if this happens, AutoTArray<>
|
|
// may become an attractive option.
|
|
glyphs = ::CTRunGetGlyphsPtr(aCTRun);
|
|
if (!glyphs) {
|
|
glyphsArray = MakeUniqueFallible<CGGlyph[]>(numGlyphs);
|
|
if (!glyphsArray) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
::CTRunGetGlyphs(aCTRun, ::CFRangeMake(0, 0), glyphsArray.get());
|
|
glyphs = glyphsArray.get();
|
|
}
|
|
|
|
positions = ::CTRunGetPositionsPtr(aCTRun);
|
|
if (!positions) {
|
|
positionsArray = MakeUniqueFallible<CGPoint[]>(numGlyphs);
|
|
if (!positionsArray) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
::CTRunGetPositions(aCTRun, ::CFRangeMake(0, 0), positionsArray.get());
|
|
positions = positionsArray.get();
|
|
}
|
|
|
|
// Remember that the glyphToChar indices relate to the CoreText line,
|
|
// not to the beginning of the textRun, the font run,
|
|
// or the stringRange of the glyph run
|
|
glyphToChar = ::CTRunGetStringIndicesPtr(aCTRun);
|
|
if (!glyphToChar) {
|
|
glyphToCharArray = MakeUniqueFallible<CFIndex[]>(numGlyphs);
|
|
if (!glyphToCharArray) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
::CTRunGetStringIndices(aCTRun, ::CFRangeMake(0, 0),
|
|
glyphToCharArray.get());
|
|
glyphToChar = glyphToCharArray.get();
|
|
}
|
|
|
|
double runWidth = ::CTRunGetTypographicBounds(aCTRun, ::CFRangeMake(0, 0),
|
|
nullptr, nullptr, nullptr);
|
|
|
|
AutoTArray<gfxShapedText::DetailedGlyph, 1> detailedGlyphs;
|
|
CompressedGlyph* charGlyphs = aShapedText->GetCharacterGlyphs() + aOffset;
|
|
|
|
// CoreText gives us the glyphindex-to-charindex mapping, which relates each
|
|
// glyph to a source text character; we also need the charindex-to-glyphindex
|
|
// mapping to find the glyph for a given char. Note that some chars may not
|
|
// map to any glyph (ligature continuations), and some may map to several
|
|
// glyphs (eg Indic split vowels). We set the glyph index to NO_GLYPH for
|
|
// chars that have no associated glyph, and we record the last glyph index for
|
|
// cases where the char maps to several glyphs, so that our clumping will
|
|
// include all the glyph fragments for the character.
|
|
|
|
// The charToGlyph array is indexed by char position within the stringRange of
|
|
// the glyph run.
|
|
|
|
static const int32_t NO_GLYPH = -1;
|
|
AutoTArray<int32_t, SMALL_GLYPH_RUN> charToGlyphArray;
|
|
if (!charToGlyphArray.SetLength(stringRange.length, fallible)) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
int32_t* charToGlyph = charToGlyphArray.Elements();
|
|
for (int32_t offset = 0; offset < stringRange.length; ++offset) {
|
|
charToGlyph[offset] = NO_GLYPH;
|
|
}
|
|
for (int32_t i = 0; i < numGlyphs; ++i) {
|
|
int32_t loc = glyphToChar[i] - stringRange.location;
|
|
if (loc >= 0 && loc < stringRange.length) {
|
|
charToGlyph[loc] = i;
|
|
}
|
|
}
|
|
|
|
// Find character and glyph clumps that correspond, allowing for ligatures,
|
|
// indic reordering, split glyphs, etc.
|
|
//
|
|
// The idea is that we'll find a character sequence starting at the first char
|
|
// of stringRange, and extend it until it includes the character associated
|
|
// with the first glyph; we also extend it as long as there are "holes" in the
|
|
// range of glyphs. So we will eventually have a contiguous sequence of
|
|
// characters, starting at the beginning of the range, that map to a
|
|
// contiguous sequence of glyphs, starting at the beginning of the glyph
|
|
// array. That's a clump; then we update the starting positions and repeat.
|
|
//
|
|
// NB: In the case of RTL layouts, we iterate over the stringRange in reverse.
|
|
//
|
|
|
|
// This may find characters that fall outside the range 0:wordLength,
|
|
// so we won't necessarily use everything we find here.
|
|
|
|
bool isRightToLeft = aShapedText->IsRightToLeft();
|
|
int32_t glyphStart =
|
|
0; // looking for a clump that starts at this glyph index
|
|
int32_t charStart =
|
|
isRightToLeft
|
|
? stringRange.length - 1
|
|
: 0; // and this char index (in the stringRange of the glyph run)
|
|
|
|
while (glyphStart <
|
|
numGlyphs) { // keep finding groups until all glyphs are accounted for
|
|
bool inOrder = true;
|
|
int32_t charEnd = glyphToChar[glyphStart] - stringRange.location;
|
|
NS_WARNING_ASSERTION(charEnd >= 0 && charEnd < stringRange.length,
|
|
"glyph-to-char mapping points outside string range");
|
|
// clamp charEnd to the valid range of the string
|
|
charEnd = std::max(charEnd, 0);
|
|
charEnd = std::min(charEnd, int32_t(stringRange.length));
|
|
|
|
int32_t glyphEnd = glyphStart;
|
|
int32_t charLimit = isRightToLeft ? -1 : stringRange.length;
|
|
do {
|
|
// This is normally executed once for each iteration of the outer loop,
|
|
// but in unusual cases where the character/glyph association is complex,
|
|
// the initial character range might correspond to a non-contiguous
|
|
// glyph range with "holes" in it. If so, we will repeat this loop to
|
|
// extend the character range until we have a contiguous glyph sequence.
|
|
NS_ASSERTION((direction > 0 && charEnd < charLimit) ||
|
|
(direction < 0 && charEnd > charLimit),
|
|
"no characters left in range?");
|
|
charEnd += direction;
|
|
while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) {
|
|
charEnd += direction;
|
|
}
|
|
|
|
// find the maximum glyph index covered by the clump so far
|
|
if (isRightToLeft) {
|
|
for (int32_t i = charStart; i > charEnd; --i) {
|
|
if (charToGlyph[i] != NO_GLYPH) {
|
|
// update extent of glyph range
|
|
glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
|
|
}
|
|
}
|
|
} else {
|
|
for (int32_t i = charStart; i < charEnd; ++i) {
|
|
if (charToGlyph[i] != NO_GLYPH) {
|
|
// update extent of glyph range
|
|
glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (glyphEnd == glyphStart + 1) {
|
|
// for the common case of a single-glyph clump, we can skip the
|
|
// following checks
|
|
break;
|
|
}
|
|
|
|
if (glyphEnd == glyphStart) {
|
|
// no glyphs, try to extend the clump
|
|
continue;
|
|
}
|
|
|
|
// check whether all glyphs in the range are associated with the
|
|
// characters in our clump; if not, we have a discontinuous range, and
|
|
// should extend it unless we've reached the end of the text
|
|
bool allGlyphsAreWithinCluster = true;
|
|
int32_t prevGlyphCharIndex = charStart;
|
|
for (int32_t i = glyphStart; i < glyphEnd; ++i) {
|
|
int32_t glyphCharIndex = glyphToChar[i] - stringRange.location;
|
|
if (isRightToLeft) {
|
|
if (glyphCharIndex > charStart || glyphCharIndex <= charEnd) {
|
|
allGlyphsAreWithinCluster = false;
|
|
break;
|
|
}
|
|
if (glyphCharIndex > prevGlyphCharIndex) {
|
|
inOrder = false;
|
|
}
|
|
prevGlyphCharIndex = glyphCharIndex;
|
|
} else {
|
|
if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) {
|
|
allGlyphsAreWithinCluster = false;
|
|
break;
|
|
}
|
|
if (glyphCharIndex < prevGlyphCharIndex) {
|
|
inOrder = false;
|
|
}
|
|
prevGlyphCharIndex = glyphCharIndex;
|
|
}
|
|
}
|
|
if (allGlyphsAreWithinCluster) {
|
|
break;
|
|
}
|
|
} while (charEnd != charLimit);
|
|
|
|
NS_WARNING_ASSERTION(glyphStart < glyphEnd,
|
|
"character/glyph clump contains no glyphs!");
|
|
if (glyphStart == glyphEnd) {
|
|
++glyphStart; // make progress - avoid potential infinite loop
|
|
charStart = charEnd;
|
|
continue;
|
|
}
|
|
|
|
NS_WARNING_ASSERTION(charStart != charEnd,
|
|
"character/glyph clump contains no characters!");
|
|
if (charStart == charEnd) {
|
|
glyphStart = glyphEnd; // this is bad - we'll discard the glyph(s),
|
|
// as there's nowhere to attach them
|
|
continue;
|
|
}
|
|
|
|
// Now charStart..charEnd is a ligature clump, corresponding to
|
|
// glyphStart..glyphEnd; Set baseCharIndex to the char we'll actually attach
|
|
// the glyphs to (1st of ligature), and endCharIndex to the limit (position
|
|
// beyond the last char), adjusting for the offset of the stringRange
|
|
// relative to the textRun.
|
|
int32_t baseCharIndex, endCharIndex;
|
|
if (isRightToLeft) {
|
|
while (charEnd >= 0 && charToGlyph[charEnd] == NO_GLYPH) {
|
|
charEnd--;
|
|
}
|
|
baseCharIndex = charEnd + stringRange.location + 1;
|
|
endCharIndex = charStart + stringRange.location + 1;
|
|
} else {
|
|
while (charEnd < stringRange.length && charToGlyph[charEnd] == NO_GLYPH) {
|
|
charEnd++;
|
|
}
|
|
baseCharIndex = charStart + stringRange.location;
|
|
endCharIndex = charEnd + stringRange.location;
|
|
}
|
|
|
|
// Then we check if the clump falls outside our actual string range; if so,
|
|
// just go to the next.
|
|
if (endCharIndex <= 0 || baseCharIndex >= wordLength) {
|
|
glyphStart = glyphEnd;
|
|
charStart = charEnd;
|
|
continue;
|
|
}
|
|
// Ensure we won't try to go beyond the valid length of the word's text
|
|
baseCharIndex = std::max(baseCharIndex, 0);
|
|
endCharIndex = std::min(endCharIndex, wordLength);
|
|
|
|
// Now we're ready to set the glyph info in the textRun; measure the glyph
|
|
// width of the first (perhaps only) glyph, to see if it is "Simple"
|
|
int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit();
|
|
double toNextGlyph;
|
|
if (glyphStart < numGlyphs - 1) {
|
|
toNextGlyph = positions[glyphStart + 1].x - positions[glyphStart].x;
|
|
} else {
|
|
toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
|
|
}
|
|
int32_t advance = int32_t(toNextGlyph * appUnitsPerDevUnit);
|
|
|
|
// Check if it's a simple one-to-one mapping
|
|
int32_t glyphsInClump = glyphEnd - glyphStart;
|
|
if (glyphsInClump == 1 &&
|
|
gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs[glyphStart]) &&
|
|
gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance) &&
|
|
charGlyphs[baseCharIndex].IsClusterStart() &&
|
|
positions[glyphStart].y == 0.0) {
|
|
charGlyphs[baseCharIndex].SetSimpleGlyph(advance, glyphs[glyphStart]);
|
|
} else {
|
|
// collect all glyphs in a list to be assigned to the first char;
|
|
// there must be at least one in the clump, and we already measured its
|
|
// advance, hence the placement of the loop-exit test and the measurement
|
|
// of the next glyph
|
|
while (true) {
|
|
gfxTextRun::DetailedGlyph* details = detailedGlyphs.AppendElement();
|
|
details->mGlyphID = glyphs[glyphStart];
|
|
details->mOffset.y = -positions[glyphStart].y * appUnitsPerDevUnit;
|
|
details->mAdvance = advance;
|
|
if (++glyphStart >= glyphEnd) {
|
|
break;
|
|
}
|
|
if (glyphStart < numGlyphs - 1) {
|
|
toNextGlyph = positions[glyphStart + 1].x - positions[glyphStart].x;
|
|
} else {
|
|
toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
|
|
}
|
|
advance = int32_t(toNextGlyph * appUnitsPerDevUnit);
|
|
}
|
|
|
|
aShapedText->SetDetailedGlyphs(aOffset + baseCharIndex,
|
|
detailedGlyphs.Length(),
|
|
detailedGlyphs.Elements());
|
|
|
|
detailedGlyphs.Clear();
|
|
}
|
|
|
|
// the rest of the chars in the group are ligature continuations, no
|
|
// associated glyphs
|
|
while (++baseCharIndex != endCharIndex && baseCharIndex < wordLength) {
|
|
CompressedGlyph& shapedTextGlyph = charGlyphs[baseCharIndex];
|
|
NS_ASSERTION(!shapedTextGlyph.IsSimpleGlyph(),
|
|
"overwriting a simple glyph");
|
|
shapedTextGlyph.SetComplex(inOrder && shapedTextGlyph.IsClusterStart(),
|
|
false);
|
|
}
|
|
|
|
glyphStart = glyphEnd;
|
|
charStart = charEnd;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
#undef SMALL_GLYPH_RUN
|
|
|
|
// Construct the font attribute descriptor that we'll apply by default when
|
|
// creating a CTFontRef. This will turn off line-edge swashes by default,
|
|
// because we don't know the actual line breaks when doing glyph shaping.
|
|
|
|
// We also cache feature descriptors for shaping with disabled ligatures, and
|
|
// for buggy Indic AAT font workarounds, created on an as-needed basis.
|
|
|
|
#define MAX_FEATURES 5 // max used by any of our Get*Descriptor functions
|
|
|
|
CTFontDescriptorRef gfxCoreTextShaper::CreateFontFeaturesDescriptor(
|
|
const std::pair<SInt16, SInt16>* aFeatures, size_t aCount) {
|
|
MOZ_ASSERT(aCount <= MAX_FEATURES);
|
|
|
|
CFDictionaryRef featureSettings[MAX_FEATURES];
|
|
|
|
for (size_t i = 0; i < aCount; i++) {
|
|
CFNumberRef type = ::CFNumberCreate(
|
|
kCFAllocatorDefault, kCFNumberSInt16Type, &aFeatures[i].first);
|
|
CFNumberRef selector = ::CFNumberCreate(
|
|
kCFAllocatorDefault, kCFNumberSInt16Type, &aFeatures[i].second);
|
|
|
|
CFTypeRef keys[] = {kCTFontFeatureTypeIdentifierKey,
|
|
kCTFontFeatureSelectorIdentifierKey};
|
|
CFTypeRef values[] = {type, selector};
|
|
featureSettings[i] = ::CFDictionaryCreate(
|
|
kCFAllocatorDefault, (const void**)keys, (const void**)values,
|
|
ArrayLength(keys), &kCFTypeDictionaryKeyCallBacks,
|
|
&kCFTypeDictionaryValueCallBacks);
|
|
|
|
::CFRelease(selector);
|
|
::CFRelease(type);
|
|
}
|
|
|
|
CFArrayRef featuresArray =
|
|
::CFArrayCreate(kCFAllocatorDefault, (const void**)featureSettings,
|
|
aCount, // not ArrayLength(featureSettings), as we
|
|
// may not have used all the allocated slots
|
|
&kCFTypeArrayCallBacks);
|
|
|
|
for (size_t i = 0; i < aCount; i++) {
|
|
::CFRelease(featureSettings[i]);
|
|
}
|
|
|
|
const CFTypeRef attrKeys[] = {kCTFontFeatureSettingsAttribute};
|
|
const CFTypeRef attrValues[] = {featuresArray};
|
|
CFDictionaryRef attributesDict = ::CFDictionaryCreate(
|
|
kCFAllocatorDefault, (const void**)attrKeys, (const void**)attrValues,
|
|
ArrayLength(attrKeys), &kCFTypeDictionaryKeyCallBacks,
|
|
&kCFTypeDictionaryValueCallBacks);
|
|
::CFRelease(featuresArray);
|
|
|
|
CTFontDescriptorRef descriptor =
|
|
::CTFontDescriptorCreateWithAttributes(attributesDict);
|
|
::CFRelease(attributesDict);
|
|
|
|
return descriptor;
|
|
}
|
|
|
|
CTFontDescriptorRef gfxCoreTextShaper::GetFeaturesDescriptor(
|
|
FeatureFlags aFeatureFlags) {
|
|
MOZ_ASSERT(aFeatureFlags < kMaxFontInstances);
|
|
if (!sFeaturesDescriptor[aFeatureFlags]) {
|
|
typedef std::pair<SInt16, SInt16> FeatT;
|
|
AutoTArray<FeatT, MAX_FEATURES> features;
|
|
features.AppendElement(
|
|
FeatT(kSmartSwashType, kLineFinalSwashesOffSelector));
|
|
if ((aFeatureFlags & kIndicFeatures) == 0) {
|
|
features.AppendElement(
|
|
FeatT(kSmartSwashType, kLineInitialSwashesOffSelector));
|
|
}
|
|
if (aFeatureFlags & kAddSmallCaps) {
|
|
features.AppendElement(FeatT(kLetterCaseType, kSmallCapsSelector));
|
|
features.AppendElement(
|
|
FeatT(kLowerCaseType, kLowerCaseSmallCapsSelector));
|
|
}
|
|
if (aFeatureFlags & kDisableLigatures) {
|
|
features.AppendElement(
|
|
FeatT(kLigaturesType, kCommonLigaturesOffSelector));
|
|
}
|
|
MOZ_ASSERT(features.Length() <= MAX_FEATURES);
|
|
sFeaturesDescriptor[aFeatureFlags] =
|
|
CreateFontFeaturesDescriptor(features.Elements(), features.Length());
|
|
}
|
|
return sFeaturesDescriptor[aFeatureFlags];
|
|
}
|
|
|
|
CTFontRef gfxCoreTextShaper::CreateCTFontWithFeatures(
|
|
CGFloat aSize, CTFontDescriptorRef aDescriptor) {
|
|
const gfxFontEntry* fe = mFont->GetFontEntry();
|
|
bool isInstalledFont = !fe->IsUserFont() || fe->IsLocalUserFont();
|
|
CGFontRef cgFont = static_cast<gfxMacFont*>(mFont)->GetCGFontRef();
|
|
return gfxMacFont::CreateCTFontFromCGFontWithVariations(
|
|
cgFont, aSize, isInstalledFont, aDescriptor);
|
|
}
|
|
|
|
void gfxCoreTextShaper::Shutdown() // [static]
|
|
{
|
|
for (size_t i = 0; i < kMaxFontInstances; i++) {
|
|
if (sFeaturesDescriptor[i] != nullptr) {
|
|
::CFRelease(sFeaturesDescriptor[i]);
|
|
sFeaturesDescriptor[i] = nullptr;
|
|
}
|
|
}
|
|
}
|