179 lines
6.6 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* JavaScript date/time computation and creation functions. */
#ifndef js_Date_h
#define js_Date_h
/*
* Dates in JavaScript are defined by IEEE-754 double precision numbers from
* the set:
*
* { t ∈ : -8.64e15 ≤ t ≤ +8.64e15 } { NaN }
*
* The single NaN value represents any invalid-date value. All other values
* represent idealized durations in milliseconds since the UTC epoch. (Leap
* seconds are ignored; leap days are not.) +0 is the only zero in this set.
* The limit represented by 8.64e15 milliseconds is 100 million days either
* side of 00:00 January 1, 1970 UTC.
*
* Dates in the above set are represented by the |ClippedTime| class. The
* double type is a superset of the above set, so it *may* (but need not)
* represent a date. Use ECMAScript's |TimeClip| method to produce a date from
* a double.
*
* Date *objects* are simply wrappers around |TimeClip|'d numbers, with a bunch
* of accessor methods to the various aspects of the represented date.
*/
#include "mozilla/FloatingPoint.h"
#include "mozilla/MathAlgorithms.h"
#include "js/Conversions.h"
#include "js/Value.h"
struct JSContext;
namespace JS {
/**
* Re-query the system to determine the current time zone adjustment from UTC,
* including any component due to DST. If the time zone has changed, this will
* cause all Date object non-UTC methods and formatting functions to produce
* appropriately adjusted results.
*
* Left to its own devices, SpiderMonkey itself may occasionally call this
* method to attempt to keep up with system time changes. However, no
* particular frequency of checking is guaranteed. Embedders unable to accept
* occasional inaccuracies should call this method in response to system time
* changes, or immediately before operations requiring instantaneous
* correctness, to guarantee correct behavior.
*/
extern JS_PUBLIC_API(void)
ResetTimeZone();
class ClippedTime;
inline ClippedTime TimeClip(double time);
/*
* |ClippedTime| represents the limited subset of dates/times described above.
*
* An invalid date/time may be created through the |ClippedTime::invalid|
* method. Otherwise, a |ClippedTime| may be created using the |TimeClip|
* method.
*
* In typical use, the user might wish to manipulate a timestamp. The user
* performs a series of operations on it, but the final value might not be a
* date as defined above -- it could have overflowed, acquired a fractional
* component, &c. So as a *final* step, the user passes that value through
* |TimeClip| to produce a number restricted to JavaScript's date range.
*
* APIs that accept a JavaScript date value thus accept a |ClippedTime|, not a
* double. This ensures that date/time APIs will only ever receive acceptable
* JavaScript dates. This also forces users to perform any desired clipping,
* as only the user knows what behavior is desired when clipping occurs.
*/
class ClippedTime
{
double t;
explicit ClippedTime(double time) : t(time) {}
friend ClippedTime TimeClip(double time);
public:
// Create an invalid date.
ClippedTime() : t(mozilla::UnspecifiedNaN<double>()) {}
// Create an invalid date/time, more explicitly; prefer this to the default
// constructor.
static ClippedTime invalid() { return ClippedTime(); }
double toDouble() const { return t; }
bool isValid() const { return !mozilla::IsNaN(t); }
};
// ES6 20.3.1.15.
//
// Clip a double to JavaScript's date range (or to an invalid date) using the
// ECMAScript TimeClip algorithm.
inline ClippedTime
TimeClip(double time)
{
// Steps 1-2.
const double MaxTimeMagnitude = 8.64e15;
if (!mozilla::IsFinite(time) || mozilla::Abs(time) > MaxTimeMagnitude)
return ClippedTime(mozilla::UnspecifiedNaN<double>());
// Step 3.
return ClippedTime(ToInteger(time) + (+0.0));
}
// Produce a double Value from the given time. Because times may be NaN,
// prefer using this to manual canonicalization.
inline Value
TimeValue(ClippedTime time)
{
return DoubleValue(JS::CanonicalizeNaN(time.toDouble()));
}
// Create a new Date object whose [[DateValue]] internal slot contains the
// clipped |time|. (Users who must represent times outside that range must use
// another representation.)
extern JS_PUBLIC_API(JSObject*)
NewDateObject(JSContext* cx, ClippedTime time);
// Year is a year, month is 0-11, day is 1-based. The return value is a number
// of milliseconds since the epoch.
//
// Consistent with the MakeDate algorithm defined in ECMAScript, this value is
// *not* clipped! Use JS::TimeClip if you need a clipped date.
JS_PUBLIC_API(double)
MakeDate(double year, unsigned month, unsigned day);
// Year is a year, month is 0-11, day is 1-based, and time is in milliseconds.
// The return value is a number of milliseconds since the epoch.
//
// Consistent with the MakeDate algorithm defined in ECMAScript, this value is
// *not* clipped! Use JS::TimeClip if you need a clipped date.
JS_PUBLIC_API(double)
MakeDate(double year, unsigned month, unsigned day, double time);
// Takes an integer number of milliseconds since the epoch and returns the
// year. Can return NaN, and will do so if NaN is passed in.
JS_PUBLIC_API(double)
YearFromTime(double time);
// Takes an integer number of milliseconds since the epoch and returns the
// month (0-11). Can return NaN, and will do so if NaN is passed in.
JS_PUBLIC_API(double)
MonthFromTime(double time);
// Takes an integer number of milliseconds since the epoch and returns the
// day (1-based). Can return NaN, and will do so if NaN is passed in.
JS_PUBLIC_API(double)
DayFromTime(double time);
// Takes an integer year and returns the number of days from epoch to the given
// year.
// NOTE: The calculation performed by this function is literally that given in
// the ECMAScript specification. Nonfinite years, years containing fractional
// components, and years outside ECMAScript's date range are not handled with
// any particular intelligence. Garbage in, garbage out.
JS_PUBLIC_API(double)
DayFromYear(double year);
// Takes an integer number of milliseconds since the epoch and an integer year,
// returns the number of days in that year. If |time| is nonfinite, returns NaN.
// Otherwise |time| *must* correspond to a time within the valid year |year|.
// This should usually be ensured by computing |year| as |JS::DayFromYear(time)|.
JS_PUBLIC_API(double)
DayWithinYear(double time, double year);
} // namespace JS
#endif /* js_Date_h */