gecko-dev/mfbt/tests/TestFastBernoulliTrial.cpp
Jim Blandy cd209ab0b5 Bug 1206357: Add mfbt/FastBernoulliTrial.h, implementing efficient random sampling. r=waldo
--HG--
extra : rebase_source : 63de57cd3fb3317c752f58fb7a0a71f050f198a3
2015-10-08 13:05:31 -07:00

210 lines
5.6 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Assertions.h"
#include "mozilla/FastBernoulliTrial.h"
#include <math.h>
// Note that because we always provide FastBernoulliTrial with a fixed
// pseudorandom seed in these tests, the results here are completely
// deterministic.
//
// A non-optimized version of this test runs in .009s on my laptop. Using larger
// sample sizes lets us meet tighter bounds on the counts.
static void
TestProportions()
{
mozilla::FastBernoulliTrial bernoulli(1.0,
698079309544035222ULL,
6012389156611637584ULL);
for (size_t i = 0; i < 100; i++)
MOZ_RELEASE_ASSERT(bernoulli.trial());
{
bernoulli.setProbability(0.5);
size_t count = 0;
for (size_t i = 0; i < 1000; i++)
count += bernoulli.trial();
MOZ_RELEASE_ASSERT(count == 496);
}
{
bernoulli.setProbability(0.001);
size_t count = 0;
for (size_t i = 0; i < 1000; i++)
count += bernoulli.trial();
MOZ_RELEASE_ASSERT(count == 2);
}
{
bernoulli.setProbability(0.85);
size_t count = 0;
for (size_t i = 0; i < 1000; i++)
count += bernoulli.trial();
MOZ_RELEASE_ASSERT(count == 852);
}
bernoulli.setProbability(0.0);
for (size_t i = 0; i < 100; i++)
MOZ_RELEASE_ASSERT(!bernoulli.trial());
}
static void
TestHarmonics()
{
mozilla::FastBernoulliTrial bernoulli(0.1,
698079309544035222ULL,
6012389156611637584ULL);
const size_t n = 100000;
bool trials[n];
for (size_t i = 0; i < n; i++)
trials[i] = bernoulli.trial();
// For each harmonic and phase, check that the proportion sampled is
// within acceptable bounds.
for (size_t harmonic = 1; harmonic < 20; harmonic++) {
size_t expected = n / harmonic / 10;
size_t low_expected = expected * 85 / 100;
size_t high_expected = expected * 115 / 100;
for (size_t phase = 0; phase < harmonic; phase++) {
size_t count = 0;
for (size_t i = phase; i < n; i += harmonic)
count += trials[i];
MOZ_RELEASE_ASSERT(low_expected <= count && count <= high_expected);
}
}
}
static void
TestTrialN()
{
mozilla::FastBernoulliTrial bernoulli(0.01,
0x67ff17e25d855942ULL,
0x74f298193fe1c5b1ULL);
{
size_t count = 0;
for (size_t i = 0; i < 10000; i++)
count += bernoulli.trial(1);
// Expected value: 0.01 * 10000 == 100
MOZ_RELEASE_ASSERT(count == 97);
}
{
size_t count = 0;
for (size_t i = 0; i < 10000; i++)
count += bernoulli.trial(3);
// Expected value: (1 - (1 - 0.01) ** 3) == 0.0297,
// 0.0297 * 10000 == 297
MOZ_RELEASE_ASSERT(count == 304);
}
{
size_t count = 0;
for (size_t i = 0; i < 10000; i++)
count += bernoulli.trial(10);
// Expected value: (1 - (1 - 0.01) ** 10) == 0.0956,
// 0.0956 * 10000 == 956
MOZ_RELEASE_ASSERT(count == 936);
}
{
size_t count = 0;
for (size_t i = 0; i < 10000; i++)
count += bernoulli.trial(100);
// Expected value: (1 - (1 - 0.01) ** 100) == 0.6339
// 0.6339 * 10000 == 6339
MOZ_RELEASE_ASSERT(count == 6372);
}
{
size_t count = 0;
for (size_t i = 0; i < 10000; i++)
count += bernoulli.trial(1000);
// Expected value: (1 - (1 - 0.01) ** 1000) == 0.9999
// 0.9999 * 10000 == 9999
MOZ_RELEASE_ASSERT(count == 9998);
}
}
static void
TestChangeProbability()
{
mozilla::FastBernoulliTrial bernoulli(1.0,
0x67ff17e25d855942ULL,
0x74f298193fe1c5b1ULL);
// Establish a very high skip count.
bernoulli.setProbability(0.0);
// This should re-establish a zero skip count.
bernoulli.setProbability(1.0);
// So this should return true.
MOZ_RELEASE_ASSERT(bernoulli.trial());
}
static void
TestCuspProbabilities()
{
/*
* FastBernoulliTrial takes care to avoid screwing up on edge cases. The
* checks here all look pretty dumb, but they exercise paths in the code that
* could exhibit undefined behavior if coded naïvely.
*/
/*
* This should not be perceptibly different from 1; for 64-bit doubles, this
* is a one in ten trillion chance of the trial not succeeding. Overflows
* converting doubles to size_t skip counts may change this, though.
*/
mozilla::FastBernoulliTrial bernoulli(nextafter(1, 0),
0x67ff17e25d855942ULL,
0x74f298193fe1c5b1ULL);
for (size_t i = 0; i < 1000; i++)
MOZ_RELEASE_ASSERT(bernoulli.trial());
/*
* This should not be perceptibly different from 0; for 64-bit doubles,
* the FastBernoulliTrial will actually treat this as exactly zero.
*/
bernoulli.setProbability(nextafter(0, 1));
for (size_t i = 0; i < 1000; i++)
MOZ_RELEASE_ASSERT(!bernoulli.trial());
/*
* This should be a vanishingly low probability which FastBernoulliTrial does
* *not* treat as exactly zero.
*/
bernoulli.setProbability(1 - nextafter(1, 0));
for (size_t i = 0; i < 1000; i++)
MOZ_RELEASE_ASSERT(!bernoulli.trial());
}
int
main()
{
TestProportions();
TestHarmonics();
TestTrialN();
TestChangeProbability();
TestCuspProbabilities();
return 0;
}