mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-10-31 06:05:44 +00:00
7577c40539
For those cpp files, it's sufficient to use Corner to refer to mozilla::Corner. MozReview-Commit-ID: JmDEJ3gGm8K --HG-- extra : rebase_source : 79d7fc74fdb827894dd9ea17d6bb382eb75e81e8
340 lines
9.8 KiB
C++
340 lines
9.8 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
// vim:cindent:ts=2:et:sw=2:
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "BezierUtils.h"
|
|
|
|
#include "PathHelpers.h"
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
Point
|
|
GetBezierPoint(const Bezier& aBezier, Float t)
|
|
{
|
|
Float s = 1.0f - t;
|
|
|
|
return Point(
|
|
aBezier.mPoints[0].x * s * s * s +
|
|
3.0f * aBezier.mPoints[1].x * t * s * s +
|
|
3.0f * aBezier.mPoints[2].x * t * t * s +
|
|
aBezier.mPoints[3].x * t * t * t,
|
|
aBezier.mPoints[0].y * s * s * s +
|
|
3.0f * aBezier.mPoints[1].y * t * s * s +
|
|
3.0f * aBezier.mPoints[2].y * t * t * s +
|
|
aBezier.mPoints[3].y * t * t * t
|
|
);
|
|
}
|
|
|
|
Point
|
|
GetBezierDifferential(const Bezier& aBezier, Float t)
|
|
{
|
|
// Return P'(t).
|
|
|
|
Float s = 1.0f - t;
|
|
|
|
return Point(
|
|
-3.0f * ((aBezier.mPoints[0].x - aBezier.mPoints[1].x) * s * s +
|
|
2.0f * (aBezier.mPoints[1].x - aBezier.mPoints[2].x) * t * s +
|
|
(aBezier.mPoints[2].x - aBezier.mPoints[3].x) * t * t),
|
|
-3.0f * ((aBezier.mPoints[0].y - aBezier.mPoints[1].y) * s * s +
|
|
2.0f * (aBezier.mPoints[1].y - aBezier.mPoints[2].y) * t * s+
|
|
(aBezier.mPoints[2].y - aBezier.mPoints[3].y) * t * t)
|
|
);
|
|
}
|
|
|
|
Point
|
|
GetBezierDifferential2(const Bezier& aBezier, Float t)
|
|
{
|
|
// Return P''(t).
|
|
|
|
Float s = 1.0f - t;
|
|
|
|
return Point(
|
|
6.0f * ((aBezier.mPoints[0].x - aBezier.mPoints[1].x) * s -
|
|
(aBezier.mPoints[1].x - aBezier.mPoints[2].x) * (s - t) -
|
|
(aBezier.mPoints[2].x - aBezier.mPoints[3].x) * t),
|
|
6.0f * ((aBezier.mPoints[0].y - aBezier.mPoints[1].y) * s -
|
|
(aBezier.mPoints[1].y - aBezier.mPoints[2].y) * (s - t) -
|
|
(aBezier.mPoints[2].y - aBezier.mPoints[3].y) * t)
|
|
);
|
|
}
|
|
|
|
Float
|
|
GetBezierLength(const Bezier& aBezier, Float a, Float b)
|
|
{
|
|
if (a < 0.5f && b > 0.5f) {
|
|
// To increase the accuracy, split into two parts.
|
|
return GetBezierLength(aBezier, a, 0.5f) +
|
|
GetBezierLength(aBezier, 0.5f, b);
|
|
}
|
|
|
|
// Calculate length of simple bezier curve with Simpson's rule.
|
|
// _
|
|
// / b
|
|
// length = | |P'(x)| dx
|
|
// _/ a
|
|
//
|
|
// b - a a + b
|
|
// = ----- [ |P'(a)| + 4 |P'(-----)| + |P'(b)| ]
|
|
// 6 2
|
|
|
|
Float fa = GetBezierDifferential(aBezier, a).Length();
|
|
Float fab = GetBezierDifferential(aBezier, (a + b) / 2.0f).Length();
|
|
Float fb = GetBezierDifferential(aBezier, b).Length();
|
|
|
|
return (b - a) / 6.0f * (fa + 4.0f * fab + fb);
|
|
}
|
|
|
|
static void
|
|
SplitBezierA(Bezier* aSubBezier, const Bezier& aBezier, Float t)
|
|
{
|
|
// Split bezier curve into [0,t] and [t,1] parts, and return [0,t] part.
|
|
|
|
Float s = 1.0f - t;
|
|
|
|
Point tmp1;
|
|
Point tmp2;
|
|
|
|
aSubBezier->mPoints[0] = aBezier.mPoints[0];
|
|
|
|
aSubBezier->mPoints[1] = aBezier.mPoints[0] * s + aBezier.mPoints[1] * t;
|
|
tmp1 = aBezier.mPoints[1] * s + aBezier.mPoints[2] * t;
|
|
tmp2 = aBezier.mPoints[2] * s + aBezier.mPoints[3] * t;
|
|
|
|
aSubBezier->mPoints[2] = aSubBezier->mPoints[1] * s + tmp1 * t;
|
|
tmp1 = tmp1 * s + tmp2 * t;
|
|
|
|
aSubBezier->mPoints[3] = aSubBezier->mPoints[2] * s + tmp1 * t;
|
|
}
|
|
|
|
static void
|
|
SplitBezierB(Bezier* aSubBezier, const Bezier& aBezier, Float t)
|
|
{
|
|
// Split bezier curve into [0,t] and [t,1] parts, and return [t,1] part.
|
|
|
|
Float s = 1.0f - t;
|
|
|
|
Point tmp1;
|
|
Point tmp2;
|
|
|
|
aSubBezier->mPoints[3] = aBezier.mPoints[3];
|
|
|
|
aSubBezier->mPoints[2] = aBezier.mPoints[2] * s + aBezier.mPoints[3] * t;
|
|
tmp1 = aBezier.mPoints[1] * s + aBezier.mPoints[2] * t;
|
|
tmp2 = aBezier.mPoints[0] * s + aBezier.mPoints[1] * t;
|
|
|
|
aSubBezier->mPoints[1] = tmp1 * s + aSubBezier->mPoints[2] * t;
|
|
tmp1 = tmp2 * s + tmp1 * t;
|
|
|
|
aSubBezier->mPoints[0] = tmp1 * s + aSubBezier->mPoints[1] * t;
|
|
}
|
|
|
|
void
|
|
GetSubBezier(Bezier* aSubBezier, const Bezier& aBezier, Float t1, Float t2)
|
|
{
|
|
Bezier tmp;
|
|
SplitBezierB(&tmp, aBezier, t1);
|
|
|
|
Float range = 1.0f - t1;
|
|
if (range == 0.0f) {
|
|
*aSubBezier = tmp;
|
|
} else {
|
|
SplitBezierA(aSubBezier, tmp, (t2 - t1) / range);
|
|
}
|
|
}
|
|
|
|
static Point
|
|
BisectBezierNearestPoint(const Bezier& aBezier, const Point& aTarget,
|
|
Float* aT)
|
|
{
|
|
// Find a nearest point on bezier curve with Binary search.
|
|
// Called from FindBezierNearestPoint.
|
|
|
|
Float lower = 0.0f;
|
|
Float upper = 1.0f;
|
|
Float t;
|
|
|
|
Point P, lastP;
|
|
const size_t MAX_LOOP = 32;
|
|
const Float DIST_MARGIN = 0.1f;
|
|
const Float DIST_MARGIN_SQUARE = DIST_MARGIN * DIST_MARGIN;
|
|
const Float DIFF = 0.0001f;
|
|
for (size_t i = 0; i < MAX_LOOP; i++) {
|
|
t = (upper + lower) / 2.0f;
|
|
P = GetBezierPoint(aBezier, t);
|
|
|
|
// Check if it converged.
|
|
if (i > 0 && (lastP - P).LengthSquare() < DIST_MARGIN_SQUARE) {
|
|
break;
|
|
}
|
|
|
|
Float distSquare = (P - aTarget).LengthSquare();
|
|
if ((GetBezierPoint(aBezier, t + DIFF) - aTarget).LengthSquare() <
|
|
distSquare) {
|
|
lower = t;
|
|
} else if ((GetBezierPoint(aBezier, t - DIFF) - aTarget).LengthSquare() <
|
|
distSquare) {
|
|
upper = t;
|
|
} else {
|
|
break;
|
|
}
|
|
|
|
lastP = P;
|
|
}
|
|
|
|
if (aT) {
|
|
*aT = t;
|
|
}
|
|
|
|
return P;
|
|
}
|
|
|
|
Point
|
|
FindBezierNearestPoint(const Bezier& aBezier, const Point& aTarget,
|
|
Float aInitialT, Float* aT)
|
|
{
|
|
// Find a nearest point on bezier curve with Newton's method.
|
|
// It converges within 4 iterations in most cases.
|
|
//
|
|
// f(t_n)
|
|
// t_{n+1} = t_n - ---------
|
|
// f'(t_n)
|
|
//
|
|
// d 2
|
|
// f(t) = ---- | P(t) - aTarget |
|
|
// dt
|
|
|
|
Float t = aInitialT;
|
|
Point P;
|
|
Point lastP = GetBezierPoint(aBezier, t);
|
|
|
|
const size_t MAX_LOOP = 4;
|
|
const Float DIST_MARGIN = 0.1f;
|
|
const Float DIST_MARGIN_SQUARE = DIST_MARGIN * DIST_MARGIN;
|
|
for (size_t i = 0; i <= MAX_LOOP; i++) {
|
|
Point dP = GetBezierDifferential(aBezier, t);
|
|
Point ddP = GetBezierDifferential2(aBezier, t);
|
|
Float f = 2.0f * (lastP.DotProduct(dP) - aTarget.DotProduct(dP));
|
|
Float df = 2.0f * (dP.DotProduct(dP) + lastP.DotProduct(ddP) -
|
|
aTarget.DotProduct(ddP));
|
|
t = t - f / df;
|
|
P = GetBezierPoint(aBezier, t);
|
|
if ((P - lastP).LengthSquare() < DIST_MARGIN_SQUARE) {
|
|
break;
|
|
}
|
|
lastP = P;
|
|
|
|
if (i == MAX_LOOP) {
|
|
// If aInitialT is too bad, it won't converge in a few iterations,
|
|
// fallback to binary search.
|
|
return BisectBezierNearestPoint(aBezier, aTarget, aT);
|
|
}
|
|
}
|
|
|
|
if (aT) {
|
|
*aT = t;
|
|
}
|
|
|
|
return P;
|
|
}
|
|
|
|
void
|
|
GetBezierPointsForCorner(Bezier* aBezier, Corner aCorner,
|
|
const Point& aCornerPoint, const Size& aCornerSize)
|
|
{
|
|
// Calculate bezier control points for elliptic arc.
|
|
|
|
const Float signsList[4][2] = {
|
|
{ +1.0f, +1.0f },
|
|
{ -1.0f, +1.0f },
|
|
{ -1.0f, -1.0f },
|
|
{ +1.0f, -1.0f }
|
|
};
|
|
const Float (& signs)[2] = signsList[aCorner];
|
|
|
|
aBezier->mPoints[0] = aCornerPoint;
|
|
aBezier->mPoints[0].x += signs[0] * aCornerSize.width;
|
|
|
|
aBezier->mPoints[1] = aBezier->mPoints[0];
|
|
aBezier->mPoints[1].x -= signs[0] * aCornerSize.width * kKappaFactor;
|
|
|
|
aBezier->mPoints[3] = aCornerPoint;
|
|
aBezier->mPoints[3].y += signs[1] * aCornerSize.height;
|
|
|
|
aBezier->mPoints[2] = aBezier->mPoints[3];
|
|
aBezier->mPoints[2].y -= signs[1] * aCornerSize.height * kKappaFactor;
|
|
}
|
|
|
|
Float
|
|
GetQuarterEllipticArcLength(Float a, Float b)
|
|
{
|
|
// Calculate the approximate length of a quarter elliptic arc formed by radii
|
|
// (a, b), by Ramanujan's approximation of the perimeter p of an ellipse.
|
|
// _ _
|
|
// | 2 |
|
|
// | 3 * (a - b) |
|
|
// p = PI | (a + b) + ------------------------------------------- |
|
|
// | 2 2 |
|
|
// |_ 10 * (a + b) + sqrt(a + 14 * a * b + b ) _|
|
|
//
|
|
// _ _
|
|
// | 2 |
|
|
// | 3 * (a - b) |
|
|
// = PI | (a + b) + -------------------------------------------------- |
|
|
// | 2 2 |
|
|
// |_ 10 * (a + b) + sqrt(4 * (a + b) - 3 * (a - b) ) _|
|
|
//
|
|
// _ _
|
|
// | 2 |
|
|
// | 3 * S |
|
|
// = PI | A + -------------------------------------- |
|
|
// | 2 2 |
|
|
// |_ 10 * A + sqrt(4 * A - 3 * S ) _|
|
|
//
|
|
// where A = a + b, S = a - b
|
|
|
|
Float A = a + b, S = a - b;
|
|
Float A2 = A * A, S2 = S * S;
|
|
Float p = M_PI * (A + 3.0f * S2 / (10.0f * A + sqrt(4.0f * A2 - 3.0f * S2)));
|
|
return p / 4.0f;
|
|
}
|
|
|
|
Float
|
|
CalculateDistanceToEllipticArc(const Point& P, const Point& normal,
|
|
const Point& origin, Float width, Float height)
|
|
{
|
|
// Solve following equations with n and return smaller n.
|
|
//
|
|
// / (x, y) = P + n * normal
|
|
// |
|
|
// < _ _ 2 _ _ 2
|
|
// | | x - origin.x | | y - origin.y |
|
|
// | | ------------ | + | ------------ | = 1
|
|
// \ |_ width _| |_ height _|
|
|
|
|
Float a = (P.x - origin.x) / width;
|
|
Float b = normal.x / width;
|
|
Float c = (P.y - origin.y) / height;
|
|
Float d = normal.y / height;
|
|
|
|
Float A = b * b + d * d;
|
|
Float B = a * b + c * d;
|
|
Float C = a * a + c * c - 1;
|
|
|
|
Float S = sqrt(B * B - A * C);
|
|
|
|
Float n1 = (- B + S) / A;
|
|
Float n2 = (- B - S) / A;
|
|
|
|
MOZ_ASSERT(n1 >= 0);
|
|
MOZ_ASSERT(n2 >= 0);
|
|
|
|
return n1 < n2 ? n1 : n2;
|
|
}
|
|
|
|
} // namespace gfx
|
|
} // namespace mozilla
|