mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-08 12:37:37 +00:00
1b1d6ffebf
--HG-- extra : rebase_source : c80c5f9d7ae28286513cdb52ad76b46c240bdd5d
600 lines
21 KiB
C++
600 lines
21 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "WebGLElementArrayCache.h"
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "mozilla/MathAlgorithms.h"
|
|
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <algorithm>
|
|
|
|
namespace mozilla {
|
|
|
|
static void
|
|
UpdateUpperBound(uint32_t* out_upperBound, uint32_t newBound)
|
|
{
|
|
MOZ_ASSERT(out_upperBound);
|
|
*out_upperBound = std::max(*out_upperBound, newBound);
|
|
}
|
|
|
|
/*
|
|
* WebGLElementArrayCacheTree contains most of the implementation of WebGLElementArrayCache,
|
|
* which performs WebGL element array buffer validation for drawElements.
|
|
*
|
|
* Attention: Here lie nontrivial data structures, bug-prone algorithms, and non-canonical tweaks!
|
|
* Whence the explanatory comments, and compiled unit test.
|
|
*
|
|
* *** What problem are we solving here? ***
|
|
*
|
|
* WebGL::DrawElements has to validate that the elements are in range wrt the current vertex attribs.
|
|
* This boils down to the problem, given an array of integers, of computing the maximum in an arbitrary
|
|
* sub-array. The naive algorithm has linear complexity; this has been a major performance problem,
|
|
* see bug 569431. In that bug, we took the approach of caching the max for the whole array, which
|
|
* does cover most cases (DrawElements typically consumes the whole element array buffer) but doesn't
|
|
* help in other use cases:
|
|
* - when doing "partial DrawElements" i.e. consuming only part of the element array buffer
|
|
* - when doing frequent "partial buffer updates" i.e. bufferSubData calls updating parts of the
|
|
* element array buffer
|
|
*
|
|
* *** The solution: a binary tree ***
|
|
*
|
|
* The solution implemented here is to use a binary tree as the cache data structure. Each tree node
|
|
* contains the max of its two children nodes. In this way, finding the maximum in any contiguous sub-array
|
|
* has log complexity instead of linear complexity.
|
|
*
|
|
* Simplistically, if the element array is
|
|
*
|
|
* 1 4 3 2
|
|
*
|
|
* then the corresponding tree is
|
|
*
|
|
* 4
|
|
* _/ \_
|
|
* 4 3
|
|
* / \ / \
|
|
* 1 4 3 2
|
|
*
|
|
* In practice, the bottom-most levels of the tree are both the largest to store (because they
|
|
* have more nodes), and the least useful performance-wise (because each node in the bottom
|
|
* levels concerns only few entries in the elements array buffer, it is cheap to compute).
|
|
*
|
|
* For this reason, we stop the tree a few levels above, so that each tree leaf actually corresponds
|
|
* to more than one element array entry.
|
|
*
|
|
* The number of levels that we "drop" is |sSkippedBottomTreeLevels| and the number of element array entries
|
|
* that each leaf corresponds to, is |sElementsPerLeaf|. This being a binary tree, we have
|
|
*
|
|
* sElementsPerLeaf = 2 ^ sSkippedBottomTreeLevels.
|
|
*
|
|
* *** Storage layout of the binary tree ***
|
|
*
|
|
* We take advantage of the specifics of the situation to avoid generalist tree storage and instead
|
|
* store the tree entries in a vector, mTreeData.
|
|
*
|
|
* TreeData is always a vector of length
|
|
*
|
|
* 2 * (number of leaves).
|
|
*
|
|
* Its data layout is as follows: mTreeData[0] is unused, mTreeData[1] is the root node,
|
|
* then at offsets 2..3 is the tree level immediately below the root node, then at offsets 4..7
|
|
* is the tree level below that, etc.
|
|
*
|
|
* The figure below illustrates this by writing at each tree node the offset into mTreeData at
|
|
* which it is stored:
|
|
*
|
|
* 1
|
|
* _/ \_
|
|
* 2 3
|
|
* / \ / \
|
|
* 4 5 6 7
|
|
* ...
|
|
*
|
|
* Thus, under the convention that the root level is level 0, we see that level N is stored at offsets
|
|
*
|
|
* [ 2^n .. 2^(n+1) - 1 ]
|
|
*
|
|
* in mTreeData. Likewise, all the usual tree operations have simple mathematical expressions in
|
|
* terms of mTreeData offsets, see all the methods such as ParentNode, LeftChildNode, etc.
|
|
*
|
|
* *** Design constraint: element types aren't known at buffer-update time ***
|
|
*
|
|
* Note that a key constraint that we're operating under, is that we don't know the types of the elements
|
|
* by the time WebGL bufferData/bufferSubData methods are called. The type of elements is only
|
|
* specified in the drawElements call. This means that we may potentially have to store caches for
|
|
* multiple element types, for the same element array buffer. Since we don't know yet how many
|
|
* element types we'll eventually support (extensions add more), the concern about memory usage is serious.
|
|
* This is addressed by sSkippedBottomTreeLevels as explained above. Of course, in the typical
|
|
* case where each element array buffer is only ever used with one type, this is also addressed
|
|
* by having WebGLElementArrayCache lazily create trees for each type only upon first use.
|
|
*
|
|
* Another consequence of this constraint is that when updating the trees, we have to update
|
|
* all existing trees. So if trees for types uint8_t, uint16_t and uint32_t have ever been constructed for this buffer,
|
|
* every subsequent update will have to update all trees even if one of the types is never
|
|
* used again. That's inefficient, but content should not put indices of different types in the
|
|
* same element array buffer anyways. Different index types can only be consumed in separate
|
|
* drawElements calls, so nothing particular is to be achieved by lumping them in the same
|
|
* buffer object.
|
|
*/
|
|
template<typename T>
|
|
struct WebGLElementArrayCacheTree
|
|
{
|
|
// A too-high sSkippedBottomTreeLevels would harm the performance of small drawElements calls
|
|
// A too-low sSkippedBottomTreeLevels would cause undue memory usage.
|
|
// The current value has been validated by some benchmarking. See bug 732660.
|
|
static const size_t sSkippedBottomTreeLevels = 3;
|
|
static const size_t sElementsPerLeaf = 1 << sSkippedBottomTreeLevels;
|
|
static const size_t sElementsPerLeafMask = sElementsPerLeaf - 1; // sElementsPerLeaf is POT
|
|
|
|
private:
|
|
|
|
// The WebGLElementArrayCache that owns this tree
|
|
WebGLElementArrayCache& mParent;
|
|
|
|
// The tree's internal data storage. Its length is 2 * (number of leaves)
|
|
// because of its data layout explained in the above class comment.
|
|
FallibleTArray<T> mTreeData;
|
|
|
|
public:
|
|
// Constructor. Takes a reference to the WebGLElementArrayCache that is to be
|
|
// the parent. Does not initialize the tree. Should be followed by a call
|
|
// to Update() to attempt initializing the tree.
|
|
explicit WebGLElementArrayCacheTree(WebGLElementArrayCache& aValue)
|
|
: mParent(aValue)
|
|
{
|
|
}
|
|
|
|
T GlobalMaximum() const {
|
|
return mTreeData[1];
|
|
}
|
|
|
|
// returns the index of the parent node; if treeIndex=1 (the root node),
|
|
// the return value is 0.
|
|
static size_t ParentNode(size_t treeIndex) {
|
|
MOZ_ASSERT(treeIndex > 1);
|
|
return treeIndex >> 1;
|
|
}
|
|
|
|
static bool IsRightNode(size_t treeIndex) {
|
|
MOZ_ASSERT(treeIndex > 1);
|
|
return treeIndex & 1;
|
|
}
|
|
|
|
static bool IsLeftNode(size_t treeIndex) {
|
|
MOZ_ASSERT(treeIndex > 1);
|
|
return !IsRightNode(treeIndex);
|
|
}
|
|
|
|
static size_t SiblingNode(size_t treeIndex) {
|
|
MOZ_ASSERT(treeIndex > 1);
|
|
return treeIndex ^ 1;
|
|
}
|
|
|
|
static size_t LeftChildNode(size_t treeIndex) {
|
|
MOZ_ASSERT(treeIndex);
|
|
return treeIndex << 1;
|
|
}
|
|
|
|
static size_t RightChildNode(size_t treeIndex) {
|
|
MOZ_ASSERT(treeIndex);
|
|
return SiblingNode(LeftChildNode(treeIndex));
|
|
}
|
|
|
|
static size_t LeftNeighborNode(size_t treeIndex, size_t distance = 1) {
|
|
MOZ_ASSERT(treeIndex > 1);
|
|
return treeIndex - distance;
|
|
}
|
|
|
|
static size_t RightNeighborNode(size_t treeIndex, size_t distance = 1) {
|
|
MOZ_ASSERT(treeIndex > 1);
|
|
return treeIndex + distance;
|
|
}
|
|
|
|
size_t NumLeaves() const {
|
|
// see class comment for why we the tree storage size is 2 * numLeaves
|
|
return mTreeData.Length() >> 1;
|
|
}
|
|
|
|
size_t LeafForElement(size_t element) const {
|
|
size_t leaf = element / sElementsPerLeaf;
|
|
MOZ_ASSERT(leaf < NumLeaves());
|
|
return leaf;
|
|
}
|
|
|
|
size_t LeafForByte(size_t byte) const {
|
|
return LeafForElement(byte / sizeof(T));
|
|
}
|
|
|
|
// Returns the index, into the tree storage, where a given leaf is stored
|
|
size_t TreeIndexForLeaf(size_t leaf) const {
|
|
// See above class comment. The tree storage is an array of length 2 * numLeaves.
|
|
// The leaves are stored in its second half.
|
|
return leaf + NumLeaves();
|
|
}
|
|
|
|
static size_t LastElementUnderSameLeaf(size_t element) {
|
|
return element | sElementsPerLeafMask;
|
|
}
|
|
|
|
static size_t FirstElementUnderSameLeaf(size_t element) {
|
|
return element & ~sElementsPerLeafMask;
|
|
}
|
|
|
|
static size_t NextMultipleOfElementsPerLeaf(size_t numElements) {
|
|
MOZ_ASSERT(numElements >= 1);
|
|
return ((numElements - 1) | sElementsPerLeafMask) + 1;
|
|
}
|
|
|
|
bool Validate(T maxAllowed, size_t firstLeaf, size_t lastLeaf,
|
|
uint32_t* out_upperBound)
|
|
{
|
|
size_t firstTreeIndex = TreeIndexForLeaf(firstLeaf);
|
|
size_t lastTreeIndex = TreeIndexForLeaf(lastLeaf);
|
|
|
|
while (true) {
|
|
// given that we tweak these values in nontrivial ways, it doesn't hurt to do
|
|
// this sanity check
|
|
MOZ_ASSERT(firstTreeIndex <= lastTreeIndex);
|
|
|
|
// final case where there is only 1 node to validate at the current tree level
|
|
if (lastTreeIndex == firstTreeIndex) {
|
|
const T& curData = mTreeData[firstTreeIndex];
|
|
UpdateUpperBound(out_upperBound, curData);
|
|
return curData <= maxAllowed;
|
|
}
|
|
|
|
// if the first node at current tree level is a right node, handle it individually
|
|
// and replace it with its right neighbor, which is a left node
|
|
if (IsRightNode(firstTreeIndex)) {
|
|
const T& curData = mTreeData[firstTreeIndex];
|
|
UpdateUpperBound(out_upperBound, curData);
|
|
if (curData > maxAllowed)
|
|
return false;
|
|
firstTreeIndex = RightNeighborNode(firstTreeIndex);
|
|
}
|
|
|
|
// if the last node at current tree level is a left node, handle it individually
|
|
// and replace it with its left neighbor, which is a right node
|
|
if (IsLeftNode(lastTreeIndex)) {
|
|
const T& curData = mTreeData[lastTreeIndex];
|
|
UpdateUpperBound(out_upperBound, curData);
|
|
if (curData > maxAllowed)
|
|
return false;
|
|
lastTreeIndex = LeftNeighborNode(lastTreeIndex);
|
|
}
|
|
|
|
// at this point it can happen that firstTreeIndex and lastTreeIndex "crossed" each
|
|
// other. That happens if firstTreeIndex was a right node and lastTreeIndex was its
|
|
// right neighor: in that case, both above tweaks happened and as a result, they ended
|
|
// up being swapped: lastTreeIndex is now the _left_ neighbor of firstTreeIndex.
|
|
// When that happens, there is nothing left to validate.
|
|
if (lastTreeIndex == LeftNeighborNode(firstTreeIndex)) {
|
|
return true;
|
|
}
|
|
|
|
// walk up 1 level
|
|
firstTreeIndex = ParentNode(firstTreeIndex);
|
|
lastTreeIndex = ParentNode(lastTreeIndex);
|
|
}
|
|
}
|
|
|
|
// Updates the tree from the parent's buffer contents. Fallible, as it
|
|
// may have to resize the tree storage.
|
|
bool Update(size_t firstByte, size_t lastByte);
|
|
|
|
size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
return aMallocSizeOf(this) + mTreeData.SizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
};
|
|
|
|
// TreeForType: just a template helper to select the right tree object for a given
|
|
// element type.
|
|
template<typename T>
|
|
struct TreeForType {};
|
|
|
|
template<>
|
|
struct TreeForType<uint8_t>
|
|
{
|
|
static ScopedDeletePtr<WebGLElementArrayCacheTree<uint8_t>>&
|
|
Value(WebGLElementArrayCache *b) {
|
|
return b->mUint8Tree;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct TreeForType<uint16_t>
|
|
{
|
|
static ScopedDeletePtr<WebGLElementArrayCacheTree<uint16_t>>&
|
|
Value(WebGLElementArrayCache *b) {
|
|
return b->mUint16Tree;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct TreeForType<uint32_t>
|
|
{
|
|
static ScopedDeletePtr<WebGLElementArrayCacheTree<uint32_t>>&
|
|
Value(WebGLElementArrayCache *b) {
|
|
return b->mUint32Tree;
|
|
}
|
|
};
|
|
|
|
// Calling this method will 1) update the leaves in this interval
|
|
// from the raw buffer data, and 2) propagate this update up the tree
|
|
template<typename T>
|
|
bool WebGLElementArrayCacheTree<T>::Update(size_t firstByte, size_t lastByte)
|
|
{
|
|
MOZ_ASSERT(firstByte <= lastByte);
|
|
MOZ_ASSERT(lastByte < mParent.mBytes.Length());
|
|
|
|
size_t numberOfElements = mParent.mBytes.Length() / sizeof(T);
|
|
size_t requiredNumLeaves = 0;
|
|
if (numberOfElements > 0) {
|
|
// If we didn't require the number of leaves to be a power of two, then
|
|
// it would just be equal to
|
|
//
|
|
// ceil(numberOfElements / sElementsPerLeaf)
|
|
//
|
|
// The way we implement this (division+ceil) operation in integer arithmetic
|
|
// is as follows:
|
|
size_t numLeavesNonPOT = (numberOfElements + sElementsPerLeaf - 1) / sElementsPerLeaf;
|
|
// It only remains to round that up to the next power of two:
|
|
requiredNumLeaves = RoundUpPow2(numLeavesNonPOT);
|
|
}
|
|
|
|
// Step #0: if needed, resize our tree data storage.
|
|
if (requiredNumLeaves != NumLeaves()) {
|
|
// see class comment for why we the tree storage size is 2 * numLeaves
|
|
if (!mTreeData.SetLength(2 * requiredNumLeaves)) {
|
|
mTreeData.SetLength(0);
|
|
return false;
|
|
}
|
|
MOZ_ASSERT(NumLeaves() == requiredNumLeaves);
|
|
|
|
if (NumLeaves()) {
|
|
// when resizing, update the whole tree, not just the subset corresponding
|
|
// to the part of the buffer being updated.
|
|
memset(mTreeData.Elements(), 0, mTreeData.Length() * sizeof(T));
|
|
firstByte = 0;
|
|
lastByte = mParent.mBytes.Length() - 1;
|
|
}
|
|
}
|
|
|
|
if (NumLeaves() == 0) {
|
|
return true;
|
|
}
|
|
|
|
lastByte = std::min(lastByte, NumLeaves() * sElementsPerLeaf * sizeof(T) - 1);
|
|
if (firstByte > lastByte) {
|
|
return true;
|
|
}
|
|
|
|
size_t firstLeaf = LeafForByte(firstByte);
|
|
size_t lastLeaf = LeafForByte(lastByte);
|
|
|
|
MOZ_ASSERT(firstLeaf <= lastLeaf && lastLeaf < NumLeaves());
|
|
|
|
size_t firstTreeIndex = TreeIndexForLeaf(firstLeaf);
|
|
size_t lastTreeIndex = TreeIndexForLeaf(lastLeaf);
|
|
|
|
// Step #1: initialize the tree leaves from plain buffer data.
|
|
// That is, each tree leaf must be set to the max of the |sElementsPerLeaf| corresponding
|
|
// buffer entries.
|
|
// condition-less scope to prevent leaking this scope's variables into the code below
|
|
{
|
|
// treeIndex is the index of the tree leaf we're writing, i.e. the destination index
|
|
size_t treeIndex = firstTreeIndex;
|
|
// srcIndex is the index in the source buffer
|
|
size_t srcIndex = firstLeaf * sElementsPerLeaf;
|
|
while (treeIndex <= lastTreeIndex) {
|
|
T m = 0;
|
|
size_t a = srcIndex;
|
|
size_t srcIndexNextLeaf = std::min(a + sElementsPerLeaf, numberOfElements);
|
|
for (; srcIndex < srcIndexNextLeaf; srcIndex++) {
|
|
m = std::max(m, mParent.Element<T>(srcIndex));
|
|
}
|
|
mTreeData[treeIndex] = m;
|
|
treeIndex++;
|
|
}
|
|
}
|
|
|
|
// Step #2: propagate the values up the tree. This is simply a matter of walking up
|
|
// the tree and setting each node to the max of its two children.
|
|
while (firstTreeIndex > 1) {
|
|
// move up 1 level
|
|
firstTreeIndex = ParentNode(firstTreeIndex);
|
|
lastTreeIndex = ParentNode(lastTreeIndex);
|
|
|
|
// fast-exit case where only one node is updated at the current level
|
|
if (firstTreeIndex == lastTreeIndex) {
|
|
mTreeData[firstTreeIndex] = std::max(mTreeData[LeftChildNode(firstTreeIndex)], mTreeData[RightChildNode(firstTreeIndex)]);
|
|
continue;
|
|
}
|
|
|
|
size_t child = LeftChildNode(firstTreeIndex);
|
|
size_t parent = firstTreeIndex;
|
|
while (parent <= lastTreeIndex)
|
|
{
|
|
T a = mTreeData[child];
|
|
child = RightNeighborNode(child);
|
|
T b = mTreeData[child];
|
|
child = RightNeighborNode(child);
|
|
mTreeData[parent] = std::max(a, b);
|
|
parent = RightNeighborNode(parent);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
WebGLElementArrayCache::WebGLElementArrayCache() {
|
|
}
|
|
|
|
WebGLElementArrayCache::~WebGLElementArrayCache() {
|
|
}
|
|
|
|
bool WebGLElementArrayCache::BufferData(const void* ptr, size_t byteLength) {
|
|
if (mBytes.Length() != byteLength) {
|
|
if (!mBytes.SetLength(byteLength)) {
|
|
mBytes.SetLength(0);
|
|
return false;
|
|
}
|
|
}
|
|
MOZ_ASSERT(mBytes.Length() == byteLength);
|
|
return BufferSubData(0, ptr, byteLength);
|
|
}
|
|
|
|
bool WebGLElementArrayCache::BufferSubData(size_t pos, const void* ptr, size_t updateByteLength) {
|
|
MOZ_ASSERT(pos + updateByteLength <= mBytes.Length());
|
|
if (!updateByteLength)
|
|
return true;
|
|
if (ptr)
|
|
memcpy(mBytes.Elements() + pos, ptr, updateByteLength);
|
|
else
|
|
memset(mBytes.Elements() + pos, 0, updateByteLength);
|
|
return UpdateTrees(pos, pos + updateByteLength - 1);
|
|
}
|
|
|
|
bool WebGLElementArrayCache::UpdateTrees(size_t firstByte, size_t lastByte)
|
|
{
|
|
bool result = true;
|
|
if (mUint8Tree)
|
|
result &= mUint8Tree->Update(firstByte, lastByte);
|
|
if (mUint16Tree)
|
|
result &= mUint16Tree->Update(firstByte, lastByte);
|
|
if (mUint32Tree)
|
|
result &= mUint32Tree->Update(firstByte, lastByte);
|
|
return result;
|
|
}
|
|
|
|
template<typename T>
|
|
bool
|
|
WebGLElementArrayCache::Validate(uint32_t maxAllowed, size_t firstElement,
|
|
size_t countElements, uint32_t* out_upperBound)
|
|
{
|
|
*out_upperBound = 0;
|
|
|
|
// if maxAllowed is >= the max T value, then there is no way that a T index could be invalid
|
|
uint32_t maxTSize = std::numeric_limits<T>::max();
|
|
if (maxAllowed >= maxTSize) {
|
|
UpdateUpperBound(out_upperBound, maxTSize);
|
|
return true;
|
|
}
|
|
|
|
T maxAllowedT(maxAllowed);
|
|
|
|
// integer overflow must have been handled earlier, so we assert that maxAllowedT
|
|
// is exactly the max allowed value.
|
|
MOZ_ASSERT(uint32_t(maxAllowedT) == maxAllowed);
|
|
|
|
if (!mBytes.Length() || !countElements)
|
|
return true;
|
|
|
|
ScopedDeletePtr<WebGLElementArrayCacheTree<T>>& tree = TreeForType<T>::Value(this);
|
|
if (!tree) {
|
|
tree = new WebGLElementArrayCacheTree<T>(*this);
|
|
if (mBytes.Length()) {
|
|
bool valid = tree->Update(0, mBytes.Length() - 1);
|
|
if (!valid) {
|
|
// Do not assert here. This case would happen if an allocation failed.
|
|
// We've already settled on fallible allocations around here.
|
|
tree = nullptr;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t lastElement = firstElement + countElements - 1;
|
|
|
|
// fast exit path when the global maximum for the whole element array buffer
|
|
// falls in the allowed range
|
|
T globalMax = tree->GlobalMaximum();
|
|
if (globalMax <= maxAllowedT)
|
|
{
|
|
UpdateUpperBound(out_upperBound, globalMax);
|
|
return true;
|
|
}
|
|
|
|
const T* elements = Elements<T>();
|
|
|
|
// before calling tree->Validate, we have to validate ourselves the boundaries of the elements span,
|
|
// to round them to the nearest multiple of sElementsPerLeaf.
|
|
size_t firstElementAdjustmentEnd = std::min(lastElement,
|
|
tree->LastElementUnderSameLeaf(firstElement));
|
|
while (firstElement <= firstElementAdjustmentEnd) {
|
|
const T& curData = elements[firstElement];
|
|
UpdateUpperBound(out_upperBound, curData);
|
|
if (curData > maxAllowedT)
|
|
return false;
|
|
firstElement++;
|
|
}
|
|
size_t lastElementAdjustmentEnd = std::max(firstElement,
|
|
tree->FirstElementUnderSameLeaf(lastElement));
|
|
while (lastElement >= lastElementAdjustmentEnd) {
|
|
const T& curData = elements[lastElement];
|
|
UpdateUpperBound(out_upperBound, curData);
|
|
if (curData > maxAllowedT)
|
|
return false;
|
|
lastElement--;
|
|
}
|
|
|
|
// at this point, for many tiny validations, we're already done.
|
|
if (firstElement > lastElement)
|
|
return true;
|
|
|
|
// general case
|
|
return tree->Validate(maxAllowedT,
|
|
tree->LeafForElement(firstElement),
|
|
tree->LeafForElement(lastElement),
|
|
out_upperBound);
|
|
}
|
|
|
|
bool
|
|
WebGLElementArrayCache::Validate(GLenum type, uint32_t maxAllowed,
|
|
size_t firstElement, size_t countElements,
|
|
uint32_t* out_upperBound)
|
|
{
|
|
if (type == LOCAL_GL_UNSIGNED_BYTE)
|
|
return Validate<uint8_t>(maxAllowed, firstElement, countElements, out_upperBound);
|
|
if (type == LOCAL_GL_UNSIGNED_SHORT)
|
|
return Validate<uint16_t>(maxAllowed, firstElement, countElements, out_upperBound);
|
|
if (type == LOCAL_GL_UNSIGNED_INT)
|
|
return Validate<uint32_t>(maxAllowed, firstElement, countElements, out_upperBound);
|
|
|
|
MOZ_ASSERT(false, "Invalid type.");
|
|
return false;
|
|
}
|
|
|
|
size_t
|
|
WebGLElementArrayCache::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
size_t uint8TreeSize = mUint8Tree ? mUint8Tree->SizeOfIncludingThis(aMallocSizeOf) : 0;
|
|
size_t uint16TreeSize = mUint16Tree ? mUint16Tree->SizeOfIncludingThis(aMallocSizeOf) : 0;
|
|
size_t uint32TreeSize = mUint32Tree ? mUint32Tree->SizeOfIncludingThis(aMallocSizeOf) : 0;
|
|
return aMallocSizeOf(this) +
|
|
mBytes.SizeOfExcludingThis(aMallocSizeOf) +
|
|
uint8TreeSize +
|
|
uint16TreeSize +
|
|
uint32TreeSize;
|
|
}
|
|
|
|
bool
|
|
WebGLElementArrayCache::BeenUsedWithMultipleTypes() const
|
|
{
|
|
// C++ Standard ($4.7)
|
|
// "If the source type is bool, the value false is converted to zero and
|
|
// the value true is converted to one."
|
|
const int num_types_used = (mUint8Tree != nullptr) +
|
|
(mUint16Tree != nullptr) +
|
|
(mUint32Tree != nullptr);
|
|
return num_types_used > 1;
|
|
}
|
|
|
|
} // end namespace mozilla
|