gecko-dev/gfx/layers/composite/AsyncCompositionManager.cpp
Randall Barker 0c9253b86d Bug 1365161 - Ensure dynamic toolbar static snapshot visibility stays in sync with the real toolbar chrome r=botond,jchen
There were two issues that prevented the static snapshot toolbar and
real chrome toolbar from staying in sync.

1) When a page would resize such as when going fullscreen, if the
root content document was not scrollable, the animator would not receive
root composition page size updates. The page resize is used by the
animator to hide the static snapshot, so it would remain visible while
the real chrome toolbar would be hidden.

2) Certain places in UI java code would toggle the chrome state directly
instead of going through the animator to change the state.

MozReview-Commit-ID: DCQgRFS0UAO
2017-05-19 10:50:02 -07:00

1480 lines
61 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=2 et tw=80 : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/AsyncCompositionManager.h"
#include <stdint.h> // for uint32_t
#include "apz/src/AsyncPanZoomController.h"
#include "FrameMetrics.h" // for FrameMetrics
#include "LayerManagerComposite.h" // for LayerManagerComposite, etc
#include "Layers.h" // for Layer, ContainerLayer, etc
#include "gfxPoint.h" // for gfxPoint, gfxSize
#include "gfxPrefs.h" // for gfxPrefs
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
#include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation
#include "mozilla/gfx/BaseRect.h" // for BaseRect
#include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped
#include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped
#include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor
#include "mozilla/layers/AnimationHelper.h"
#include "mozilla/layers/APZUtils.h" // for CompleteAsyncTransform
#include "mozilla/layers/Compositor.h" // for Compositor
#include "mozilla/layers/CompositorBridgeParent.h" // for CompositorBridgeParent, etc
#include "mozilla/layers/CompositorThread.h"
#include "mozilla/layers/LayerAnimationUtils.h" // for TimingFunctionToComputedTimingFunction
#include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper
#include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc
#include "nsDebug.h" // for NS_ASSERTION, etc
#include "nsDeviceContext.h" // for nsDeviceContext
#include "nsDisplayList.h" // for nsDisplayTransform, etc
#include "nsMathUtils.h" // for NS_round
#include "nsPoint.h" // for nsPoint
#include "nsRect.h" // for mozilla::gfx::IntRect
#include "nsRegion.h" // for nsIntRegion
#include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
#include "UnitTransforms.h" // for TransformTo
#include "gfxPrefs.h"
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "mozilla/layers/UiCompositorControllerParent.h"
# include "mozilla/widget/AndroidCompositorWidget.h"
#endif
#include "GeckoProfiler.h"
#include "FrameUniformityData.h"
#include "TreeTraversal.h" // for ForEachNode, BreadthFirstSearch
#include "VsyncSource.h"
struct nsCSSValueSharedList;
namespace mozilla {
namespace layers {
using namespace mozilla::gfx;
static bool
IsSameDimension(dom::ScreenOrientationInternal o1, dom::ScreenOrientationInternal o2)
{
bool isO1portrait = (o1 == dom::eScreenOrientation_PortraitPrimary || o1 == dom::eScreenOrientation_PortraitSecondary);
bool isO2portrait = (o2 == dom::eScreenOrientation_PortraitPrimary || o2 == dom::eScreenOrientation_PortraitSecondary);
return !(isO1portrait ^ isO2portrait);
}
static bool
ContentMightReflowOnOrientationChange(const IntRect& rect)
{
return rect.width != rect.height;
}
AsyncCompositionManager::AsyncCompositionManager(CompositorBridgeParent* aParent,
HostLayerManager* aManager)
: mLayerManager(aManager)
, mIsFirstPaint(true)
, mLayersUpdated(false)
, mReadyForCompose(true)
, mCompositorBridge(aParent)
{
}
AsyncCompositionManager::~AsyncCompositionManager()
{
}
void
AsyncCompositionManager::ResolveRefLayers(CompositorBridgeParent* aCompositor,
bool* aHasRemoteContent,
bool* aResolvePlugins)
{
if (aHasRemoteContent) {
*aHasRemoteContent = false;
}
#if defined(XP_WIN) || defined(MOZ_WIDGET_GTK)
// If valid *aResolvePlugins indicates if we need to update plugin geometry
// when we walk the tree.
bool resolvePlugins = (aCompositor && aResolvePlugins && *aResolvePlugins);
#endif
if (!mLayerManager->GetRoot()) {
// Updated the return value since this result controls completing composition.
if (aResolvePlugins) {
*aResolvePlugins = false;
}
return;
}
mReadyForCompose = true;
bool hasRemoteContent = false;
bool didResolvePlugins = false;
ForEachNode<ForwardIterator>(
mLayerManager->GetRoot(),
[&](Layer* layer)
{
RefLayer* refLayer = layer->AsRefLayer();
if (!refLayer) {
return;
}
hasRemoteContent = true;
const CompositorBridgeParent::LayerTreeState* state =
CompositorBridgeParent::GetIndirectShadowTree(refLayer->GetReferentId());
if (!state) {
return;
}
Layer* referent = state->mRoot;
if (!referent) {
return;
}
if (!refLayer->GetLocalVisibleRegion().IsEmpty()) {
dom::ScreenOrientationInternal chromeOrientation =
mTargetConfig.orientation();
dom::ScreenOrientationInternal contentOrientation =
state->mTargetConfig.orientation();
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
ContentMightReflowOnOrientationChange(mTargetConfig.naturalBounds())) {
mReadyForCompose = false;
}
}
refLayer->ConnectReferentLayer(referent);
#if defined(XP_WIN) || defined(MOZ_WIDGET_GTK)
if (resolvePlugins) {
didResolvePlugins |=
aCompositor->UpdatePluginWindowState(refLayer->GetReferentId());
}
#endif
});
if (aHasRemoteContent) {
*aHasRemoteContent = hasRemoteContent;
}
if (aResolvePlugins) {
*aResolvePlugins = didResolvePlugins;
}
}
void
AsyncCompositionManager::DetachRefLayers()
{
if (!mLayerManager->GetRoot()) {
return;
}
mReadyForCompose = false;
ForEachNodePostOrder<ForwardIterator>(mLayerManager->GetRoot(),
[&](Layer* layer)
{
RefLayer* refLayer = layer->AsRefLayer();
if (!refLayer) {
return;
}
const CompositorBridgeParent::LayerTreeState* state =
CompositorBridgeParent::GetIndirectShadowTree(refLayer->GetReferentId());
if (!state) {
return;
}
Layer* referent = state->mRoot;
if (referent) {
refLayer->DetachReferentLayer(referent);
}
});
}
void
AsyncCompositionManager::ComputeRotation()
{
if (!mTargetConfig.naturalBounds().IsEmpty()) {
mWorldTransform =
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
mTargetConfig.rotation());
}
}
#ifdef DEBUG
static void
GetBaseTransform(Layer* aLayer, Matrix4x4* aTransform)
{
// Start with the animated transform if there is one
*aTransform =
(aLayer->AsHostLayer()->GetShadowTransformSetByAnimation()
? aLayer->GetLocalTransform()
: aLayer->GetTransform());
}
#endif
static void
TransformClipRect(Layer* aLayer,
const ParentLayerToParentLayerMatrix4x4& aTransform)
{
MOZ_ASSERT(aTransform.Is2D());
const Maybe<ParentLayerIntRect>& clipRect = aLayer->AsHostLayer()->GetShadowClipRect();
if (clipRect) {
ParentLayerIntRect transformed = TransformBy(aTransform, *clipRect);
aLayer->AsHostLayer()->SetShadowClipRect(Some(transformed));
}
}
// Similar to TransformFixedClip(), but only transforms the fixed part of the
// clip.
static void
TransformFixedClip(Layer* aLayer,
const ParentLayerToParentLayerMatrix4x4& aTransform,
AsyncCompositionManager::ClipParts& aClipParts)
{
MOZ_ASSERT(aTransform.Is2D());
if (aClipParts.mFixedClip) {
*aClipParts.mFixedClip = TransformBy(aTransform, *aClipParts.mFixedClip);
aLayer->AsHostLayer()->SetShadowClipRect(aClipParts.Intersect());
}
}
/**
* Set the given transform as the shadow transform on the layer, assuming
* that the given transform already has the pre- and post-scales applied.
* That is, this function cancels out the pre- and post-scales from aTransform
* before setting it as the shadow transform on the layer, so that when
* the layer's effective transform is computed, the pre- and post-scales will
* only be applied once.
*/
static void
SetShadowTransform(Layer* aLayer, LayerToParentLayerMatrix4x4 aTransform)
{
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
aTransform.PreScale(1.0f / c->GetPreXScale(),
1.0f / c->GetPreYScale(),
1);
}
aTransform.PostScale(1.0f / aLayer->GetPostXScale(),
1.0f / aLayer->GetPostYScale(),
1);
aLayer->AsHostLayer()->SetShadowBaseTransform(aTransform.ToUnknownMatrix());
}
static void
TranslateShadowLayer(Layer* aLayer,
const ParentLayerPoint& aTranslation,
bool aAdjustClipRect,
AsyncCompositionManager::ClipPartsCache* aClipPartsCache)
{
// This layer might also be a scrollable layer and have an async transform.
// To make sure we don't clobber that, we start with the shadow transform.
// (i.e. GetLocalTransform() instead of GetTransform()).
// Note that the shadow transform is reset on every frame of composition so
// we don't have to worry about the adjustments compounding over successive
// frames.
LayerToParentLayerMatrix4x4 layerTransform = aLayer->GetLocalTransformTyped();
// Apply the translation to the layer transform.
layerTransform.PostTranslate(aTranslation);
SetShadowTransform(aLayer, layerTransform);
aLayer->AsHostLayer()->SetShadowTransformSetByAnimation(false);
if (aAdjustClipRect) {
auto transform = ParentLayerToParentLayerMatrix4x4::Translation(aTranslation);
// If we're passed a clip parts cache, only transform the fixed part of
// the clip.
if (aClipPartsCache) {
auto iter = aClipPartsCache->find(aLayer);
MOZ_ASSERT(iter != aClipPartsCache->end());
TransformFixedClip(aLayer, transform, iter->second);
} else {
TransformClipRect(aLayer, transform);
}
// If a fixed- or sticky-position layer has a mask layer, that mask should
// move along with the layer, so apply the translation to the mask layer too.
if (Layer* maskLayer = aLayer->GetMaskLayer()) {
TranslateShadowLayer(maskLayer, aTranslation, false, aClipPartsCache);
}
}
}
#ifdef DEBUG
static void
AccumulateLayerTransforms(Layer* aLayer,
Layer* aAncestor,
Matrix4x4& aMatrix)
{
// Accumulate the transforms between this layer and the subtree root layer.
for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) {
Matrix4x4 transform;
GetBaseTransform(l, &transform);
aMatrix *= transform;
}
}
#endif
static LayerPoint
GetLayerFixedMarginsOffset(Layer* aLayer,
const ScreenMargin& aFixedLayerMargins)
{
// Work out the necessary translation, in root scrollable layer space.
// Because fixed layer margins are stored relative to the root scrollable
// layer, we can just take the difference between these values.
LayerPoint translation;
int32_t sides = aLayer->GetFixedPositionSides();
if ((sides & eSideBitsLeftRight) == eSideBitsLeftRight) {
translation.x += (aFixedLayerMargins.left - aFixedLayerMargins.right) / 2;
} else if (sides & eSideBitsRight) {
translation.x -= aFixedLayerMargins.right;
} else if (sides & eSideBitsLeft) {
translation.x += aFixedLayerMargins.left;
}
if ((sides & eSideBitsTopBottom) == eSideBitsTopBottom) {
translation.y += (aFixedLayerMargins.top - aFixedLayerMargins.bottom) / 2;
} else if (sides & eSideBitsBottom) {
translation.y -= aFixedLayerMargins.bottom;
} else if (sides & eSideBitsTop) {
translation.y += aFixedLayerMargins.top;
}
return translation;
}
static gfxFloat
IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax)
{
// Determine the amount of overlap between the 1D vector |aTranslation|
// and the interval [aMin, aMax].
if (aTranslation > 0) {
return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0));
} else {
return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0));
}
}
/**
* Finds the metrics on |aLayer| with scroll id |aScrollId|, and returns a
* LayerMetricsWrapper representing the (layer, metrics) pair, or the null
* LayerMetricsWrapper if no matching metrics could be found.
*/
static LayerMetricsWrapper
FindMetricsWithScrollId(Layer* aLayer, FrameMetrics::ViewID aScrollId)
{
for (uint64_t i = 0; i < aLayer->GetScrollMetadataCount(); ++i) {
if (aLayer->GetFrameMetrics(i).GetScrollId() == aScrollId) {
return LayerMetricsWrapper(aLayer, i);
}
}
return LayerMetricsWrapper();
}
/**
* Checks whether the (layer, metrics) pair (aTransformedLayer, aTransformedMetrics)
* is on the path from |aFixedLayer| to the metrics with scroll id
* |aFixedWithRespectTo|, inclusive.
*/
static bool
AsyncTransformShouldBeUnapplied(Layer* aFixedLayer,
FrameMetrics::ViewID aFixedWithRespectTo,
Layer* aTransformedLayer,
FrameMetrics::ViewID aTransformedMetrics)
{
LayerMetricsWrapper transformed = FindMetricsWithScrollId(aTransformedLayer, aTransformedMetrics);
if (!transformed.IsValid()) {
return false;
}
// It's important to start at the bottom, because the fixed layer itself
// could have the transformed metrics, and they can be at the bottom.
LayerMetricsWrapper current(aFixedLayer, LayerMetricsWrapper::StartAt::BOTTOM);
bool encounteredTransformedLayer = false;
// The transformed layer is on the path from |aFixedLayer| to the fixed-to
// layer if as we walk up the (layer, metrics) tree starting from
// |aFixedLayer|, we *first* encounter the transformed layer, and *then* (or
// at the same time) the fixed-to layer.
while (current) {
if (!encounteredTransformedLayer && current == transformed) {
encounteredTransformedLayer = true;
}
if (current.Metrics().GetScrollId() == aFixedWithRespectTo) {
return encounteredTransformedLayer;
}
current = current.GetParent();
// It's possible that we reach a layers id boundary before we reach an
// ancestor with the scroll id |aFixedWithRespectTo| (this could happen
// e.g. if the scroll frame with that scroll id uses containerless
// scrolling). In such a case, stop the walk, as a new layers id could
// have a different layer with scroll id |aFixedWithRespectTo| which we
// don't intend to match.
if (current && current.AsRefLayer() != nullptr) {
break;
}
}
return false;
}
// If |aLayer| is fixed or sticky, returns the scroll id of the scroll frame
// that it's fixed or sticky to. Otherwise, returns Nothing().
static Maybe<FrameMetrics::ViewID>
IsFixedOrSticky(Layer* aLayer)
{
bool isRootOfFixedSubtree = aLayer->GetIsFixedPosition() &&
!aLayer->GetParent()->GetIsFixedPosition();
if (isRootOfFixedSubtree) {
return Some(aLayer->GetFixedPositionScrollContainerId());
}
if (aLayer->GetIsStickyPosition()) {
return Some(aLayer->GetStickyScrollContainerId());
}
return Nothing();
}
void
AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aTransformedSubtreeRoot,
Layer* aStartTraversalAt,
FrameMetrics::ViewID aTransformScrollId,
const LayerToParentLayerMatrix4x4& aPreviousTransformForRoot,
const LayerToParentLayerMatrix4x4& aCurrentTransformForRoot,
const ScreenMargin& aFixedLayerMargins,
ClipPartsCache* aClipPartsCache)
{
// We're going to be inverting |aCurrentTransformForRoot|.
// If it's singular, there's nothing we can do.
if (aCurrentTransformForRoot.IsSingular()) {
return;
}
Layer* layer = aStartTraversalAt;
bool needsAsyncTransformUnapplied = false;
if (Maybe<FrameMetrics::ViewID> fixedTo = IsFixedOrSticky(layer)) {
needsAsyncTransformUnapplied = AsyncTransformShouldBeUnapplied(layer,
*fixedTo, aTransformedSubtreeRoot, aTransformScrollId);
}
// We want to process all the fixed and sticky descendants of
// aTransformedSubtreeRoot. Once we do encounter such a descendant, we don't
// need to recurse any deeper because the adjustment to the fixed or sticky
// layer will apply to its subtree.
if (!needsAsyncTransformUnapplied) {
for (Layer* child = layer->GetFirstChild(); child; child = child->GetNextSibling()) {
AlignFixedAndStickyLayers(aTransformedSubtreeRoot, child,
aTransformScrollId, aPreviousTransformForRoot,
aCurrentTransformForRoot, aFixedLayerMargins, aClipPartsCache);
}
return;
}
// Insert a translation so that the position of the anchor point is the same
// before and after the change to the transform of aTransformedSubtreeRoot.
// A transform creates a containing block for fixed-position descendants,
// so there shouldn't be a transform in between the fixed layer and
// the subtree root layer.
#ifdef DEBUG
Matrix4x4 ancestorTransform;
if (layer != aTransformedSubtreeRoot) {
AccumulateLayerTransforms(layer->GetParent(), aTransformedSubtreeRoot,
ancestorTransform);
}
ancestorTransform.NudgeToIntegersFixedEpsilon();
MOZ_ASSERT(ancestorTransform.IsIdentity());
#endif
// Since we create container layers for fixed layers, there shouldn't
// a local CSS or OMTA transform on the fixed layer, either (any local
// transform would go onto a descendant layer inside the container
// layer).
#ifdef DEBUG
Matrix4x4 localTransform;
GetBaseTransform(layer, &localTransform);
localTransform.NudgeToIntegersFixedEpsilon();
MOZ_ASSERT(localTransform.IsIdentity());
#endif
// Now work out the translation necessary to make sure the layer doesn't
// move given the new sub-tree root transform.
// Get the layer's fixed anchor point, in the layer's local coordinate space
// (before any transform is applied).
LayerPoint anchor = layer->GetFixedPositionAnchor();
// Offset the layer's anchor point to make sure fixed position content
// respects content document fixed position margins.
LayerPoint offsetAnchor = anchor + GetLayerFixedMarginsOffset(layer, aFixedLayerMargins);
// Additionally transform the anchor to compensate for the change
// from the old transform to the new transform. We do
// this by using the old transform to take the offset anchor back into
// subtree root space, and then the inverse of the new transform
// to bring it back to layer space.
ParentLayerPoint offsetAnchorInSubtreeRootSpace =
aPreviousTransformForRoot.TransformPoint(offsetAnchor);
LayerPoint transformedAnchor = aCurrentTransformForRoot.Inverse()
.TransformPoint(offsetAnchorInSubtreeRootSpace);
// We want to translate the layer by the difference between
// |transformedAnchor| and |anchor|.
LayerPoint translation = transformedAnchor - anchor;
// A fixed layer will "consume" (be unadjusted by) the entire translation
// calculated above. A sticky layer may consume all, part, or none of it,
// depending on where we are relative to its sticky scroll range.
// The remainder of the translation (the unconsumed portion) needs to
// be propagated to descendant fixed/sticky layers.
LayerPoint unconsumedTranslation;
if (layer->GetIsStickyPosition()) {
// For sticky positioned layers, the difference between the two rectangles
// defines a pair of translation intervals in each dimension through which
// the layer should not move relative to the scroll container. To
// accomplish this, we limit each dimension of the |translation| to that
// part of it which overlaps those intervals.
const LayerRect& stickyOuter = layer->GetStickyScrollRangeOuter();
const LayerRect& stickyInner = layer->GetStickyScrollRangeInner();
LayerPoint originalTranslation = translation;
translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) -
IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost());
translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) -
IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost());
unconsumedTranslation = translation - originalTranslation;
}
// Finally, apply the translation to the layer transform. Note that in cases
// where the async transform on |aTransformedSubtreeRoot| affects this layer's
// clip rect, we need to apply the same translation to said clip rect, so
// that the effective transform on the clip rect takes it back to where it was
// originally, had there been no async scroll.
TranslateShadowLayer(layer, ViewAs<ParentLayerPixel>(translation,
PixelCastJustification::NoTransformOnLayer), true, aClipPartsCache);
// Propragate the unconsumed portion of the translation to descendant
// fixed/sticky layers.
if (unconsumedTranslation != LayerPoint()) {
// Take the computations we performed to derive |translation| from
// |aCurrentTransformForRoot|, and perform them in reverse, keeping other
// quantities fixed, to come up with a new transform |newTransform| that
// would produce |unconsumedTranslation|.
LayerPoint newTransformedAnchor = unconsumedTranslation + anchor;
ParentLayerPoint newTransformedAnchorInSubtreeRootSpace =
aPreviousTransformForRoot.TransformPoint(newTransformedAnchor);
LayerToParentLayerMatrix4x4 newTransform = aPreviousTransformForRoot;
newTransform.PostTranslate(newTransformedAnchorInSubtreeRootSpace -
offsetAnchorInSubtreeRootSpace);
// Propagate this new transform to our descendants as the new value of
// |aCurrentTransformForRoot|. This allows them to consume the unconsumed
// translation.
for (Layer* child = layer->GetFirstChild(); child; child = child->GetNextSibling()) {
AlignFixedAndStickyLayers(aTransformedSubtreeRoot, child, aTransformScrollId,
aPreviousTransformForRoot, newTransform, aFixedLayerMargins, aClipPartsCache);
}
}
return;
}
static void
ApplyAnimatedValue(Layer* aLayer,
CompositorAnimationStorage* aStorage,
nsCSSPropertyID aProperty,
const AnimationData& aAnimationData,
const StyleAnimationValue& aValue)
{
if (aValue.IsNull()) {
// Return gracefully if we have no valid StyleAnimationValue.
return;
}
HostLayer* layerCompositor = aLayer->AsHostLayer();
switch (aProperty) {
case eCSSProperty_opacity: {
MOZ_ASSERT(aValue.GetUnit() == StyleAnimationValue::eUnit_Float,
"Interpolated value for opacity should be float");
layerCompositor->SetShadowOpacity(aValue.GetFloatValue());
layerCompositor->SetShadowOpacitySetByAnimation(true);
aStorage->SetAnimatedValue(aLayer->GetCompositorAnimationsId(),
aValue.GetFloatValue());
break;
}
case eCSSProperty_transform: {
MOZ_ASSERT(aValue.GetUnit() == StyleAnimationValue::eUnit_Transform,
"The unit of interpolated value for transform should be "
"transform");
nsCSSValueSharedList* list = aValue.GetCSSValueSharedListValue();
const TransformData& transformData = aAnimationData.get_TransformData();
nsPoint origin = transformData.origin();
// we expect all our transform data to arrive in device pixels
Point3D transformOrigin = transformData.transformOrigin();
nsDisplayTransform::FrameTransformProperties props(list,
transformOrigin);
Matrix4x4 transform =
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
transformData.appUnitsPerDevPixel(),
0, &transformData.bounds());
Matrix4x4 frameTransform = transform;
// If our parent layer is a perspective layer, then the offset into reference
// frame coordinates is already on that layer. If not, then we need to ask
// for it to be added here.
if (!aLayer->GetParent() ||
!aLayer->GetParent()->GetTransformIsPerspective()) {
nsLayoutUtils::PostTranslate(transform, origin,
transformData.appUnitsPerDevPixel(),
true);
}
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
transform.PostScale(c->GetInheritedXScale(), c->GetInheritedYScale(), 1);
}
layerCompositor->SetShadowBaseTransform(transform);
layerCompositor->SetShadowTransformSetByAnimation(true);
aStorage->SetAnimatedValue(aLayer->GetCompositorAnimationsId(),
Move(transform), Move(frameTransform),
transformData);
break;
}
default:
MOZ_ASSERT_UNREACHABLE("Unhandled animated property");
}
}
static AnimationProcessTypes
SampleAnimations(Layer* aLayer,
CompositorAnimationStorage* aStorage,
TimeStamp aTime,
uint64_t* aLayerAreaAnimated)
{
// This tracks the first-encountered RefLayer in the layer tree. Since we are
// doing a depth-first traversal, it is set to a non-null value if and only if
// the currently-being-traversed node has a RefLayer ancestor. In the case of
// nested RefLayers it points to the rootmost RefLayer.
RefLayer* ancestorRefLayer = nullptr;
// This bitfield-enum tracks which processes have active animations. Anything
// "above" the |ancestorRefLayer| in the layer tree is assumed to be the
// chrome process, and anything "below" is assumed to be the content process.
AnimationProcessTypes animProcess = AnimationProcessTypes::eNone;
ForEachNode<ForwardIterator>(
aLayer,
[&] (Layer* layer)
{
if (!ancestorRefLayer) {
ancestorRefLayer = layer->AsRefLayer();
}
bool hasInEffectAnimations = false;
StyleAnimationValue animationValue = layer->GetBaseAnimationStyle();
if (AnimationHelper::SampleAnimationForEachNode(aTime,
layer->GetAnimations(),
layer->GetAnimationData(),
animationValue,
hasInEffectAnimations)) {
animProcess |= (ancestorRefLayer ? AnimationProcessTypes::eContent
: AnimationProcessTypes::eChrome);
}
if (hasInEffectAnimations) {
Animation& animation = layer->GetAnimations().LastElement();
ApplyAnimatedValue(layer,
aStorage,
animation.property(),
animation.data(),
animationValue);
if (aLayerAreaAnimated) {
*aLayerAreaAnimated += (layer->GetVisibleRegion().Area());
}
}
},
[&ancestorRefLayer] (Layer* aLayer)
{
// If we're unwinding up past the rootmost RefLayer, clear our pointer
if (ancestorRefLayer && aLayer->AsRefLayer() == ancestorRefLayer) {
ancestorRefLayer = nullptr;
}
});
return animProcess;
}
static bool
SampleAPZAnimations(const LayerMetricsWrapper& aLayer, TimeStamp aSampleTime)
{
bool activeAnimations = false;
ForEachNodePostOrder<ForwardIterator>(aLayer,
[&activeAnimations, &aSampleTime](LayerMetricsWrapper aLayerMetrics)
{
if (AsyncPanZoomController* apzc = aLayerMetrics.GetApzc()) {
apzc->ReportCheckerboard(aSampleTime);
activeAnimations |= apzc->AdvanceAnimations(aSampleTime);
}
}
);
return activeAnimations;
}
void
AsyncCompositionManager::RecordShadowTransforms(Layer* aLayer)
{
MOZ_ASSERT(gfxPrefs::CollectScrollTransforms());
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
ForEachNodePostOrder<ForwardIterator>(
aLayer,
[this] (Layer* layer)
{
for (uint32_t i = 0; i < layer->GetScrollMetadataCount(); i++) {
AsyncPanZoomController* apzc = layer->GetAsyncPanZoomController(i);
if (!apzc) {
continue;
}
gfx::Matrix4x4 shadowTransform = layer->AsHostLayer()->GetShadowBaseTransform();
if (!shadowTransform.Is2D()) {
continue;
}
Matrix transform = shadowTransform.As2D();
if (transform.IsTranslation() && !shadowTransform.IsIdentity()) {
Point translation = transform.GetTranslation();
mLayerTransformRecorder.RecordTransform(layer, translation);
return;
}
}
});
}
static AsyncTransformComponentMatrix
AdjustForClip(const AsyncTransformComponentMatrix& asyncTransform, Layer* aLayer)
{
AsyncTransformComponentMatrix result = asyncTransform;
// Container layers start at the origin, but they are clipped to where they
// actually have content on the screen. The tree transform is meant to apply
// to the clipped area. If the tree transform includes a scale component,
// then applying it to container as-is will produce incorrect results. To
// avoid this, translate the layer so that the clip rect starts at the origin,
// apply the tree transform, and translate back.
if (const Maybe<ParentLayerIntRect>& shadowClipRect = aLayer->AsHostLayer()->GetShadowClipRect()) {
if (shadowClipRect->TopLeft() != ParentLayerIntPoint()) { // avoid a gratuitous change of basis
result.ChangeBasis(shadowClipRect->x, shadowClipRect->y, 0);
}
}
return result;
}
static void
ExpandRootClipRect(Layer* aLayer, const ScreenMargin& aFixedLayerMargins)
{
// For Fennec we want to expand the root scrollable layer clip rect based on
// the fixed position margins. In particular, we want this while the dynamic
// toolbar is in the process of sliding offscreen and the area of the
// LayerView visible to the user is larger than the viewport size that Gecko
// knows about (and therefore larger than the clip rect). We could also just
// clear the clip rect on aLayer entirely but this seems more precise.
Maybe<ParentLayerIntRect> rootClipRect = aLayer->AsHostLayer()->GetShadowClipRect();
if (rootClipRect && aFixedLayerMargins != ScreenMargin()) {
#ifndef MOZ_WIDGET_ANDROID
// We should never enter here on anything other than Fennec, since
// aFixedLayerMargins should be empty everywhere else.
MOZ_ASSERT(false);
#endif
ParentLayerRect rect(rootClipRect.value());
rect.Deflate(ViewAs<ParentLayerPixel>(aFixedLayerMargins,
PixelCastJustification::ScreenIsParentLayerForRoot));
aLayer->AsHostLayer()->SetShadowClipRect(Some(RoundedOut(rect)));
}
}
#ifdef MOZ_WIDGET_ANDROID
static void
MoveScrollbarForLayerMargin(Layer* aRoot, FrameMetrics::ViewID aRootScrollId,
const ScreenMargin& aFixedLayerMargins)
{
// See bug 1223928 comment 9 - once we can detect the RCD with just the
// isRootContent flag on the metrics, we can probably move this code into
// ApplyAsyncTransformToScrollbar rather than having it as a separate
// adjustment on the layer tree.
Layer* scrollbar = BreadthFirstSearch<ReverseIterator>(aRoot,
[aRootScrollId](Layer* aNode) {
return (aNode->GetScrollThumbData().mDirection == ScrollDirection::HORIZONTAL &&
aNode->GetScrollbarTargetContainerId() == aRootScrollId);
});
if (scrollbar) {
// Shift the horizontal scrollbar down into the new space exposed by the
// dynamic toolbar hiding. Technically we should also scale the vertical
// scrollbar a bit to expand into the new space but it's not as noticeable
// and it would add a lot more complexity, so we're going with the "it's not
// worth it" justification.
TranslateShadowLayer(scrollbar, ParentLayerPoint(0, -aFixedLayerMargins.bottom), true, nullptr);
if (scrollbar->GetParent()) {
// The layer that has the HORIZONTAL direction sits inside another
// ContainerLayer. This ContainerLayer also has a clip rect that causes
// the scrollbar to get clipped. We need to expand that clip rect to
// prevent that from happening. This is kind of ugly in that we're
// assuming a particular layer tree structure but short of adding more
// flags to the layer there doesn't appear to be a good way to do this.
ExpandRootClipRect(scrollbar->GetParent(), aFixedLayerMargins);
}
}
}
#endif
bool
AsyncCompositionManager::ApplyAsyncContentTransformToTree(Layer *aLayer,
bool* aOutFoundRoot)
{
bool appliedTransform = false;
std::stack<Maybe<ParentLayerIntRect>> stackDeferredClips;
// Maps layers to their ClipParts. The parts are not stored individually
// on the layer, but during AlignFixedAndStickyLayers we need access to
// the individual parts for descendant layers.
ClipPartsCache clipPartsCache;
ForEachNode<ForwardIterator>(
aLayer,
[&stackDeferredClips] (Layer* layer)
{
stackDeferredClips.push(Maybe<ParentLayerIntRect>());
},
[this, &aOutFoundRoot, &stackDeferredClips, &appliedTransform, &clipPartsCache] (Layer* layer)
{
Maybe<ParentLayerIntRect> clipDeferredFromChildren = stackDeferredClips.top();
stackDeferredClips.pop();
LayerToParentLayerMatrix4x4 oldTransform = layer->GetTransformTyped() *
AsyncTransformMatrix();
AsyncTransformComponentMatrix combinedAsyncTransform;
bool hasAsyncTransform = false;
// Only set on the root layer for Android.
ScreenMargin fixedLayerMargins;
// Each layer has multiple clips:
// - Its local clip, which is fixed to the layer contents, i.e. it moves
// with those async transforms which the layer contents move with.
// - Its scrolled clip, which moves with all async transforms.
// - For each ScrollMetadata on the layer, a scroll clip. This includes
// the composition bounds and any other clips induced by layout. This
// moves with async transforms from ScrollMetadatas above it.
// In this function, these clips are combined into two shadow clip parts:
// - The fixed clip, which consists of the local clip only, initially
// transformed by all async transforms.
// - The scrolled clip, which consists of the other clips, transformed by
// the appropriate transforms.
// These two parts are kept separate for now, because for fixed layers, we
// need to adjust the fixed clip (to cancel out some async transforms).
// The parts are kept in a cache which is cleared at the beginning of every
// composite.
// The final shadow clip for the layer is the intersection of the (possibly
// adjusted) fixed clip and the scrolled clip.
ClipParts& clipParts = clipPartsCache[layer];
clipParts.mFixedClip = layer->GetClipRect();
clipParts.mScrolledClip = layer->GetScrolledClipRect();
// If we are a perspective transform ContainerLayer, apply the clip deferred
// from our child (if there is any) before we iterate over our frame metrics,
// because this clip is subject to all async transforms of this layer.
// Since this clip came from the a scroll clip on the child, it becomes part
// of our scrolled clip.
clipParts.mScrolledClip = IntersectMaybeRects(
clipDeferredFromChildren, clipParts.mScrolledClip);
// The transform of a mask layer is relative to the masked layer's parent
// layer. So whenever we apply an async transform to a layer, we need to
// apply that same transform to the layer's own mask layer.
// A layer can also have "ancestor" mask layers for any rounded clips from
// its ancestor scroll frames. A scroll frame mask layer only needs to be
// async transformed for async scrolls of this scroll frame's ancestor
// scroll frames, not for async scrolls of this scroll frame itself.
// In the loop below, we iterate over scroll frames from inside to outside.
// At each iteration, this array contains the layer's ancestor mask layers
// of all scroll frames inside the current one.
nsTArray<Layer*> ancestorMaskLayers;
// The layer's scrolled clip can have an ancestor mask layer as well,
// which is moved by all async scrolls on this layer.
if (const Maybe<LayerClip>& scrolledClip = layer->GetScrolledClip()) {
if (scrolledClip->GetMaskLayerIndex()) {
ancestorMaskLayers.AppendElement(
layer->GetAncestorMaskLayerAt(*scrolledClip->GetMaskLayerIndex()));
}
}
for (uint32_t i = 0; i < layer->GetScrollMetadataCount(); i++) {
AsyncPanZoomController* controller = layer->GetAsyncPanZoomController(i);
if (!controller) {
continue;
}
hasAsyncTransform = true;
AsyncTransform asyncTransformWithoutOverscroll =
controller->GetCurrentAsyncTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
AsyncTransformComponentMatrix overscrollTransform =
controller->GetOverscrollTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
AsyncTransformComponentMatrix asyncTransform =
AsyncTransformComponentMatrix(asyncTransformWithoutOverscroll)
* overscrollTransform;
if (!layer->IsScrollInfoLayer()) {
controller->MarkAsyncTransformAppliedToContent();
}
const ScrollMetadata& scrollMetadata = layer->GetScrollMetadata(i);
const FrameMetrics& metrics = scrollMetadata.GetMetrics();
#if defined(MOZ_WIDGET_ANDROID)
// If we find a metrics which is the root content doc, use that. If not, use
// the root layer. Since this function recurses on children first we should
// only end up using the root layer if the entire tree was devoid of a
// root content metrics. This is a temporary solution; in the long term we
// should not need the root content metrics at all. See bug 1201529 comment
// 6 for details.
if (!(*aOutFoundRoot)) {
*aOutFoundRoot = metrics.IsRootContent() || /* RCD */
(layer->GetParent() == nullptr && /* rootmost metrics */
i + 1 >= layer->GetScrollMetadataCount());
if (*aOutFoundRoot) {
mRootScrollableId = metrics.GetScrollId();
Compositor* compositor = mLayerManager->GetCompositor();
if (CompositorBridgeParent* bridge = compositor->GetCompositorBridgeParent()) {
AndroidDynamicToolbarAnimator* animator = bridge->GetAPZCTreeManager()->GetAndroidDynamicToolbarAnimator();
MOZ_ASSERT(animator);
if (mIsFirstPaint) {
animator->UpdateRootFrameMetrics(metrics);
animator->FirstPaint();
mIsFirstPaint = false;
}
if (mLayersUpdated) {
animator->NotifyLayersUpdated();
mLayersUpdated = false;
}
// If this is not actually the root content then the animator is not getting updated in AsyncPanZoomController::NotifyLayersUpdated
// because the root content document is not scrollable. So update it here so it knows if the root composition size has changed.
if (!metrics.IsRootContent()) {
animator->MaybeUpdateCompositionSizeAndRootFrameMetrics(metrics);
}
}
fixedLayerMargins = mFixedLayerMargins;
}
}
#else
*aOutFoundRoot = false;
// Non-Android platforms still care about this flag being cleared after
// the first call to TransformShadowTree().
mIsFirstPaint = false;
#endif
// Transform the current local clips by this APZC's async transform. If we're
// using containerful scrolling, then the clip is not part of the scrolled
// frame and should not be transformed.
if (!scrollMetadata.UsesContainerScrolling()) {
MOZ_ASSERT(asyncTransform.Is2D());
if (clipParts.mFixedClip) {
*clipParts.mFixedClip = TransformBy(asyncTransform, *clipParts.mFixedClip);
}
if (clipParts.mScrolledClip) {
*clipParts.mScrolledClip = TransformBy(asyncTransform, *clipParts.mScrolledClip);
}
}
// Note: we don't set the layer's shadow clip rect property yet;
// AlignFixedAndStickyLayers will use the clip parts from the clip parts
// cache.
combinedAsyncTransform *= asyncTransform;
// For the purpose of aligning fixed and sticky layers, we disregard
// the overscroll transform as well as any OMTA transform when computing the
// 'aCurrentTransformForRoot' parameter. This ensures that the overscroll
// and OMTA transforms are not unapplied, and therefore that the visual
// effects apply to fixed and sticky layers. We do this by using
// GetTransform() as the base transform rather than GetLocalTransform(),
// which would include those factors.
LayerToParentLayerMatrix4x4 transformWithoutOverscrollOrOmta =
layer->GetTransformTyped()
* CompleteAsyncTransform(
AdjustForClip(asyncTransformWithoutOverscroll, layer));
AlignFixedAndStickyLayers(layer, layer, metrics.GetScrollId(), oldTransform,
transformWithoutOverscrollOrOmta, fixedLayerMargins,
&clipPartsCache);
// Combine the local clip with the ancestor scrollframe clip. This is not
// included in the async transform above, since the ancestor clip should not
// move with this APZC.
if (scrollMetadata.HasScrollClip()) {
ParentLayerIntRect clip = scrollMetadata.ScrollClip().GetClipRect();
if (layer->GetParent() && layer->GetParent()->GetTransformIsPerspective()) {
// If our parent layer has a perspective transform, we want to apply
// our scroll clip to it instead of to this layer (see bug 1168263).
// A layer with a perspective transform shouldn't have multiple
// children with FrameMetrics, nor a child with multiple FrameMetrics.
// (A child with multiple FrameMetrics would mean that there's *another*
// scrollable element between the one with the CSS perspective and the
// transformed element. But you'd have to use preserve-3d on the inner
// scrollable element in order to have the perspective apply to the
// transformed child, and preserve-3d is not supported on scrollable
// elements, so this case can't occur.)
MOZ_ASSERT(!stackDeferredClips.top());
stackDeferredClips.top().emplace(clip);
} else {
clipParts.mScrolledClip = IntersectMaybeRects(Some(clip),
clipParts.mScrolledClip);
}
}
// Do the same for the ancestor mask layers: ancestorMaskLayers contains
// the ancestor mask layers for scroll frames *inside* the current scroll
// frame, so these are the ones we need to shift by our async transform.
for (Layer* ancestorMaskLayer : ancestorMaskLayers) {
SetShadowTransform(ancestorMaskLayer,
ancestorMaskLayer->GetLocalTransformTyped() * asyncTransform);
}
// Append the ancestor mask layer for this scroll frame to ancestorMaskLayers.
if (scrollMetadata.HasScrollClip()) {
const LayerClip& scrollClip = scrollMetadata.ScrollClip();
if (scrollClip.GetMaskLayerIndex()) {
size_t maskLayerIndex = scrollClip.GetMaskLayerIndex().value();
Layer* ancestorMaskLayer = layer->GetAncestorMaskLayerAt(maskLayerIndex);
ancestorMaskLayers.AppendElement(ancestorMaskLayer);
}
}
}
bool clipChanged = (hasAsyncTransform || clipDeferredFromChildren ||
layer->GetScrolledClipRect());
if (clipChanged) {
// Intersect the two clip parts and apply them to the layer.
// During ApplyAsyncContentTransformTree on an ancestor layer,
// AlignFixedAndStickyLayers may overwrite this with a new clip it
// computes from the clip parts, but if that doesn't happen, this
// is the layer's final clip rect.
layer->AsHostLayer()->SetShadowClipRect(clipParts.Intersect());
}
if (hasAsyncTransform) {
// Apply the APZ transform on top of GetLocalTransform() here (rather than
// GetTransform()) in case the OMTA code in SampleAnimations already set a
// shadow transform; in that case we want to apply ours on top of that one
// rather than clobber it.
SetShadowTransform(layer,
layer->GetLocalTransformTyped()
* AdjustForClip(combinedAsyncTransform, layer));
// Do the same for the layer's own mask layer, if it has one.
if (Layer* maskLayer = layer->GetMaskLayer()) {
SetShadowTransform(maskLayer,
maskLayer->GetLocalTransformTyped() * combinedAsyncTransform);
}
appliedTransform = true;
}
ExpandRootClipRect(layer, fixedLayerMargins);
if (layer->GetScrollThumbData().mDirection != ScrollDirection::NONE) {
ApplyAsyncTransformToScrollbar(layer);
}
});
return appliedTransform;
}
static bool
LayerIsScrollbarTarget(const LayerMetricsWrapper& aTarget, Layer* aScrollbar)
{
AsyncPanZoomController* apzc = aTarget.GetApzc();
if (!apzc) {
return false;
}
const FrameMetrics& metrics = aTarget.Metrics();
if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) {
return false;
}
return !aTarget.IsScrollInfoLayer();
}
static void
ApplyAsyncTransformToScrollbarForContent(Layer* aScrollbar,
const LayerMetricsWrapper& aContent,
bool aScrollbarIsDescendant)
{
AsyncTransformComponentMatrix clipTransform;
LayerToParentLayerMatrix4x4 transform =
AsyncCompositionManager::ComputeTransformForScrollThumb(
aScrollbar->GetLocalTransformTyped(),
aContent.GetTransform(),
aContent.GetApzc(),
aContent.Metrics(),
aScrollbar->GetScrollThumbData(),
aScrollbarIsDescendant,
&clipTransform);
if (aScrollbarIsDescendant) {
// We also need to make a corresponding change on the clip rect of all the
// layers on the ancestor chain from the scrollbar layer up to but not
// including the layer with the async transform. Otherwise the scrollbar
// shifts but gets clipped and so appears to flicker.
for (Layer* ancestor = aScrollbar; ancestor != aContent.GetLayer(); ancestor = ancestor->GetParent()) {
TransformClipRect(ancestor, clipTransform);
}
}
SetShadowTransform(aScrollbar, transform);
}
/* static */ LayerToParentLayerMatrix4x4
AsyncCompositionManager::ComputeTransformForScrollThumb(
const LayerToParentLayerMatrix4x4& aCurrentTransform,
const Matrix4x4& aScrollableContentTransform,
AsyncPanZoomController* aApzc,
const FrameMetrics& aMetrics,
const ScrollThumbData& aThumbData,
bool aScrollbarIsDescendant,
AsyncTransformComponentMatrix* aOutClipTransform)
{
// We only apply the transform if the scroll-target layer has non-container
// children (i.e. when it has some possibly-visible content). This is to
// avoid moving scroll-bars in the situation that only a scroll information
// layer has been built for a scroll frame, as this would result in a
// disparity between scrollbars and visible content.
if (aMetrics.IsScrollInfoLayer()) {
return LayerToParentLayerMatrix4x4{};
}
MOZ_RELEASE_ASSERT(aApzc);
AsyncTransformComponentMatrix asyncTransform =
aApzc->GetCurrentAsyncTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
// |asyncTransform| represents the amount by which we have scrolled and
// zoomed since the last paint. Because the scrollbar was sized and positioned based
// on the painted content, we need to adjust it based on asyncTransform so that
// it reflects what the user is actually seeing now.
AsyncTransformComponentMatrix scrollbarTransform;
if (aThumbData.mDirection == ScrollDirection::VERTICAL) {
const ParentLayerCoord asyncScrollY = asyncTransform._42;
const float asyncZoomY = asyncTransform._22;
// The scroll thumb needs to be scaled in the direction of scrolling by the
// inverse of the async zoom. This is because zooming in decreases the
// fraction of the whole srollable rect that is in view.
const float yScale = 1.f / asyncZoomY;
// Note: |metrics.GetZoom()| doesn't yet include the async zoom.
const CSSToParentLayerScale effectiveZoom(aMetrics.GetZoom().yScale * asyncZoomY);
// Here we convert the scrollbar thumb ratio into a true unitless ratio by
// dividing out the conversion factor from the scrollframe's parent's space
// to the scrollframe's space.
const float ratio = aThumbData.mThumbRatio /
(aMetrics.GetPresShellResolution() * asyncZoomY);
// The scroll thumb needs to be translated in opposite direction of the
// async scroll. This is because scrolling down, which translates the layer
// content up, should result in moving the scroll thumb down.
ParentLayerCoord yTranslation = -asyncScrollY * ratio;
// The scroll thumb additionally needs to be translated to compensate for
// the scale applied above. The origin with respect to which the scale is
// applied is the origin of the entire scrollbar, rather than the origin of
// the scroll thumb (meaning, for a vertical scrollbar it's at the top of
// the composition bounds). This means that empty space above the thumb
// is scaled too, effectively translating the thumb. We undo that
// translation here.
// (One can think of the adjustment being done to the translation here as
// a change of basis. We have a method to help with that,
// Matrix4x4::ChangeBasis(), but it wouldn't necessarily make the code
// cleaner in this case).
const CSSCoord thumbOrigin = (aMetrics.GetScrollOffset().y * ratio);
const CSSCoord thumbOriginScaled = thumbOrigin * yScale;
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
yTranslation -= thumbOriginDeltaPL;
if (aMetrics.IsRootContent()) {
// Scrollbar for the root are painted at the same resolution as the
// content. Since the coordinate space we apply this transform in includes
// the resolution, we need to adjust for it as well here. Note that in
// another metrics.IsRootContent() hunk below we apply a
// resolution-cancelling transform which ensures the scroll thumb isn't
// actually rendered at a larger scale.
yTranslation *= aMetrics.GetPresShellResolution();
}
scrollbarTransform.PostScale(1.f, yScale, 1.f);
scrollbarTransform.PostTranslate(0, yTranslation, 0);
}
if (aThumbData.mDirection == ScrollDirection::HORIZONTAL) {
// See detailed comments under the VERTICAL case.
const ParentLayerCoord asyncScrollX = asyncTransform._41;
const float asyncZoomX = asyncTransform._11;
const float xScale = 1.f / asyncZoomX;
const CSSToParentLayerScale effectiveZoom(aMetrics.GetZoom().xScale * asyncZoomX);
const float ratio = aThumbData.mThumbRatio /
(aMetrics.GetPresShellResolution() * asyncZoomX);
ParentLayerCoord xTranslation = -asyncScrollX * ratio;
const CSSCoord thumbOrigin = (aMetrics.GetScrollOffset().x * ratio);
const CSSCoord thumbOriginScaled = thumbOrigin * xScale;
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
xTranslation -= thumbOriginDeltaPL;
if (aMetrics.IsRootContent()) {
xTranslation *= aMetrics.GetPresShellResolution();
}
scrollbarTransform.PostScale(xScale, 1.f, 1.f);
scrollbarTransform.PostTranslate(xTranslation, 0, 0);
}
LayerToParentLayerMatrix4x4 transform =
aCurrentTransform * scrollbarTransform;
AsyncTransformComponentMatrix compensation;
// If the scrollbar layer is for the root then the content's resolution
// applies to the scrollbar as well. Since we don't actually want the scroll
// thumb's size to vary with the zoom (other than its length reflecting the
// fraction of the scrollable length that's in view, which is taken care of
// above), we apply a transform to cancel out this resolution.
if (aMetrics.IsRootContent()) {
compensation =
AsyncTransformComponentMatrix::Scaling(
aMetrics.GetPresShellResolution(),
aMetrics.GetPresShellResolution(),
1.0f).Inverse();
}
// If the scrollbar layer is a child of the content it is a scrollbar for,
// then we need to adjust for any async transform (including an overscroll
// transform) on the content. This needs to be cancelled out because layout
// positions and sizes the scrollbar on the assumption that there is no async
// transform, and without this adjustment the scrollbar will end up in the
// wrong place.
//
// Note that since the async transform is applied on top of the content's
// regular transform, we need to make sure to unapply the async transform in
// the same coordinate space. This requires applying the content transform
// and then unapplying it after unapplying the async transform.
if (aScrollbarIsDescendant) {
AsyncTransformComponentMatrix overscroll =
aApzc->GetOverscrollTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
Matrix4x4 asyncUntransform = (asyncTransform * overscroll).Inverse().ToUnknownMatrix();
Matrix4x4 contentTransform = aScrollableContentTransform;
Matrix4x4 contentUntransform = contentTransform.Inverse();
AsyncTransformComponentMatrix asyncCompensation =
ViewAs<AsyncTransformComponentMatrix>(
contentTransform
* asyncUntransform
* contentUntransform);
compensation = compensation * asyncCompensation;
// Pass the async compensation out to the caller so that it can use it
// to transform clip transforms as needed.
if (aOutClipTransform) {
*aOutClipTransform = asyncCompensation;
}
}
transform = transform * compensation;
return transform;
}
static LayerMetricsWrapper
FindScrolledLayerForScrollbar(Layer* aScrollbar, bool* aOutIsAncestor)
{
// First check if the scrolled layer is an ancestor of the scrollbar layer.
LayerMetricsWrapper root(aScrollbar->Manager()->GetRoot());
LayerMetricsWrapper prevAncestor(aScrollbar);
LayerMetricsWrapper scrolledLayer;
for (LayerMetricsWrapper ancestor(aScrollbar); ancestor; ancestor = ancestor.GetParent()) {
// Don't walk into remote layer trees; the scrollbar will always be in
// the same layer space.
if (ancestor.AsRefLayer()) {
root = prevAncestor;
break;
}
prevAncestor = ancestor;
if (LayerIsScrollbarTarget(ancestor, aScrollbar)) {
*aOutIsAncestor = true;
return ancestor;
}
}
// Search the entire layer space of the scrollbar.
ForEachNode<ForwardIterator>(
root,
[&root, &scrolledLayer, &aScrollbar](LayerMetricsWrapper aLayerMetrics)
{
// Do not recurse into RefLayers, since our initial aSubtreeRoot is the
// root (or RefLayer root) of a single layer space to search.
if (root != aLayerMetrics && aLayerMetrics.AsRefLayer()) {
return TraversalFlag::Skip;
}
if (LayerIsScrollbarTarget(aLayerMetrics, aScrollbar)) {
scrolledLayer = aLayerMetrics;
return TraversalFlag::Abort;
}
return TraversalFlag::Continue;
}
);
return scrolledLayer;
}
void
AsyncCompositionManager::ApplyAsyncTransformToScrollbar(Layer* aLayer)
{
// If this layer corresponds to a scrollbar, then there should be a layer that
// is a previous sibling or a parent that has a matching ViewID on its FrameMetrics.
// That is the content that this scrollbar is for. We pick up the transient
// async transform from that layer and use it to update the scrollbar position.
// Note that it is possible that the content layer is no longer there; in
// this case we don't need to do anything because there can't be an async
// transform on the content.
bool isAncestor = false;
const LayerMetricsWrapper& scrollTarget = FindScrolledLayerForScrollbar(aLayer, &isAncestor);
if (scrollTarget) {
ApplyAsyncTransformToScrollbarForContent(aLayer, scrollTarget, isAncestor);
}
}
void
AsyncCompositionManager::GetFrameUniformity(FrameUniformityData* aOutData)
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
mLayerTransformRecorder.EndTest(aOutData);
}
bool
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame,
TimeDuration aVsyncRate,
TransformsToSkip aSkip)
{
PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree",
js::ProfileEntry::Category::GRAPHICS);
Layer* root = mLayerManager->GetRoot();
if (!root) {
return false;
}
// GetAnimationStorage in CompositorBridgeParent expects id as 0
CompositorAnimationStorage* storage =
mCompositorBridge->GetAnimationStorage(0);
// First, compute and set the shadow transforms from OMT animations.
// NB: we must sample animations *before* sampling pan/zoom
// transforms.
// Use a previous vsync time to make main thread animations and compositor
// more in sync with each other.
// On the initial frame we use aVsyncTimestamp here so the timestamp on the
// second frame are the same as the initial frame, but it does not matter.
uint64_t layerAreaAnimated = 0;
AnimationProcessTypes animationProcess =
SampleAnimations(root,
storage,
!mPreviousFrameTimeStamp.IsNull() ?
mPreviousFrameTimeStamp : aCurrentFrame,
&layerAreaAnimated);
bool wantNextFrame = (animationProcess != AnimationProcessTypes::eNone);
mAnimationMetricsTracker.UpdateAnimationInProgress(
animationProcess, layerAreaAnimated, aVsyncRate);
if (!wantNextFrame) {
// Clean up the CompositorAnimationStorage because
// there are no active animations running
storage->Clear();
}
// Advance animations to the next expected vsync timestamp, if we can
// get it.
TimeStamp nextFrame = aCurrentFrame;
MOZ_ASSERT(aVsyncRate != TimeDuration::Forever());
if (aVsyncRate != TimeDuration::Forever()) {
nextFrame += aVsyncRate;
}
#if defined(MOZ_WIDGET_ANDROID)
Compositor* compositor = mLayerManager->GetCompositor();
if (CompositorBridgeParent* bridge = compositor->GetCompositorBridgeParent()) {
AndroidDynamicToolbarAnimator* animator = bridge->GetAPZCTreeManager()->GetAndroidDynamicToolbarAnimator();
MOZ_ASSERT(animator);
wantNextFrame |= animator->UpdateAnimation(nextFrame);
}
#endif // defined(MOZ_WIDGET_ANDROID)
// Reset the previous time stamp if we don't already have any running
// animations to avoid using the time which is far behind for newly
// started animations.
mPreviousFrameTimeStamp = wantNextFrame ? aCurrentFrame : TimeStamp();
if (!(aSkip & TransformsToSkip::APZ)) {
// FIXME/bug 775437: unify this interface with the ~native-fennec
// derived code
//
// Attempt to apply an async content transform to any layer that has
// an async pan zoom controller (which means that it is rendered
// async using Gecko). If this fails, fall back to transforming the
// primary scrollable layer. "Failing" here means that we don't
// find a frame that is async scrollable. Note that the fallback
// code also includes Fennec which is rendered async. Fennec uses
// its own platform-specific async rendering that is done partially
// in Gecko and partially in Java.
bool foundRoot = false;
if (ApplyAsyncContentTransformToTree(root, &foundRoot)) {
#if defined(MOZ_WIDGET_ANDROID)
MOZ_ASSERT(foundRoot);
if (foundRoot && mFixedLayerMargins != ScreenMargin()) {
MoveScrollbarForLayerMargin(root, mRootScrollableId, mFixedLayerMargins);
}
#endif
}
bool apzAnimating = SampleAPZAnimations(LayerMetricsWrapper(root), nextFrame);
mAnimationMetricsTracker.UpdateApzAnimationInProgress(apzAnimating, aVsyncRate);
wantNextFrame |= apzAnimating;
}
HostLayer* rootComposite = root->AsHostLayer();
gfx::Matrix4x4 trans = rootComposite->GetShadowBaseTransform();
trans *= gfx::Matrix4x4::From2D(mWorldTransform);
rootComposite->SetShadowBaseTransform(trans);
if (gfxPrefs::CollectScrollTransforms()) {
RecordShadowTransforms(root);
}
return wantNextFrame;
}
#if defined(MOZ_WIDGET_ANDROID)
void
AsyncCompositionManager::SetFixedLayerMargins(ScreenIntCoord aTop, ScreenIntCoord aBottom)
{
mFixedLayerMargins.top = aTop;
mFixedLayerMargins.bottom = aBottom;
}
#endif // defined(MOZ_WIDGET_ANDROID)
} // namespace layers
} // namespace mozilla