gecko-dev/mfbt/Span.h
2020-11-23 16:12:02 +00:00

952 lines
33 KiB
C++

///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
// Adapted from
// https://github.com/Microsoft/GSL/blob/3819df6e378ffccf0e29465afe99c3b324c2aa70/include/gsl/span
// and
// https://github.com/Microsoft/GSL/blob/3819df6e378ffccf0e29465afe99c3b324c2aa70/include/gsl/gsl_util
#ifndef mozilla_Span_h
#define mozilla_Span_h
#include <array>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <string>
#include <type_traits>
#include <utility>
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/UniquePtr.h"
namespace mozilla {
template <typename T, size_t Length>
class Array;
// Stuff from gsl_util
// narrow_cast(): a searchable way to do narrowing casts of values
template <class T, class U>
inline constexpr T narrow_cast(U&& u) {
return static_cast<T>(std::forward<U>(u));
}
// end gsl_util
// [views.constants], constants
// This was -1 in gsl::span, but using size_t for sizes instead of ptrdiff_t
// and reserving a magic value that realistically doesn't occur in
// compile-time-constant Span sizes makes things a lot less messy in terms of
// comparison between signed and unsigned.
constexpr const size_t dynamic_extent = std::numeric_limits<size_t>::max();
template <class ElementType, size_t Extent = dynamic_extent>
class Span;
// implementation details
namespace span_details {
template <class T>
struct is_span_oracle : std::false_type {};
template <class ElementType, size_t Extent>
struct is_span_oracle<mozilla::Span<ElementType, Extent>> : std::true_type {};
template <class T>
struct is_span : public is_span_oracle<std::remove_cv_t<T>> {};
template <class T>
struct is_std_array_oracle : std::false_type {};
template <class ElementType, size_t Extent>
struct is_std_array_oracle<std::array<ElementType, Extent>> : std::true_type {};
template <class T>
struct is_std_array : public is_std_array_oracle<std::remove_cv_t<T>> {};
template <size_t From, size_t To>
struct is_allowed_extent_conversion
: public std::integral_constant<bool, From == To ||
From == mozilla::dynamic_extent ||
To == mozilla::dynamic_extent> {};
template <class From, class To>
struct is_allowed_element_type_conversion
: public std::integral_constant<
bool, std::is_convertible_v<From (*)[], To (*)[]>> {};
struct SpanKnownBounds {};
template <class SpanT, bool IsConst>
class span_iterator {
using element_type_ = typename SpanT::element_type;
template <class ElementType, size_t Extent>
friend class ::mozilla::Span;
public:
using iterator_category = std::random_access_iterator_tag;
using value_type = std::remove_const_t<element_type_>;
using difference_type = typename SpanT::index_type;
using reference =
std::conditional_t<IsConst, const element_type_, element_type_>&;
using pointer = std::add_pointer_t<reference>;
constexpr span_iterator() : span_iterator(nullptr, 0, SpanKnownBounds{}) {}
constexpr span_iterator(const SpanT* span, typename SpanT::index_type index)
: span_(span), index_(index) {
MOZ_RELEASE_ASSERT(span == nullptr ||
(index_ >= 0 && index <= span_->Length()));
}
private:
// For whatever reason, the compiler doesn't like optimizing away the above
// MOZ_RELEASE_ASSERT when `span_iterator` is constructed for
// obviously-correct cases like `span.begin()` or `span.end()`. We provide
// this private constructor for such cases.
constexpr span_iterator(const SpanT* span, typename SpanT::index_type index,
SpanKnownBounds)
: span_(span), index_(index) {}
public:
// `other` is already correct by construction; we do not need to go through
// the release assert above. Put differently, this constructor is effectively
// a copy constructor and therefore needs no assertions.
friend class span_iterator<SpanT, true>;
constexpr MOZ_IMPLICIT span_iterator(const span_iterator<SpanT, false>& other)
: span_(other.span_), index_(other.index_) {}
constexpr span_iterator<SpanT, IsConst>& operator=(
const span_iterator<SpanT, IsConst>&) = default;
constexpr reference operator*() const {
MOZ_RELEASE_ASSERT(span_);
return (*span_)[index_];
}
constexpr pointer operator->() const {
MOZ_RELEASE_ASSERT(span_);
return &((*span_)[index_]);
}
constexpr span_iterator& operator++() {
++index_;
return *this;
}
constexpr span_iterator operator++(int) {
auto ret = *this;
++(*this);
return ret;
}
constexpr span_iterator& operator--() {
--index_;
return *this;
}
constexpr span_iterator operator--(int) {
auto ret = *this;
--(*this);
return ret;
}
constexpr span_iterator operator+(difference_type n) const {
auto ret = *this;
return ret += n;
}
constexpr span_iterator& operator+=(difference_type n) {
MOZ_RELEASE_ASSERT(span_ && (index_ + n) >= 0 &&
(index_ + n) <= span_->Length());
index_ += n;
return *this;
}
constexpr span_iterator operator-(difference_type n) const {
auto ret = *this;
return ret -= n;
}
constexpr span_iterator& operator-=(difference_type n) { return *this += -n; }
constexpr difference_type operator-(const span_iterator& rhs) const {
MOZ_RELEASE_ASSERT(span_ == rhs.span_);
return index_ - rhs.index_;
}
constexpr reference operator[](difference_type n) const {
return *(*this + n);
}
constexpr friend bool operator==(const span_iterator& lhs,
const span_iterator& rhs) {
// Iterators from different spans are uncomparable. A diagnostic assertion
// should be enough to check this, though. To ensure that no iterators from
// different spans are ever considered equal, still compare them in release
// builds.
MOZ_DIAGNOSTIC_ASSERT(lhs.span_ == rhs.span_);
return lhs.index_ == rhs.index_ && lhs.span_ == rhs.span_;
}
constexpr friend bool operator!=(const span_iterator& lhs,
const span_iterator& rhs) {
return !(lhs == rhs);
}
constexpr friend bool operator<(const span_iterator& lhs,
const span_iterator& rhs) {
MOZ_DIAGNOSTIC_ASSERT(lhs.span_ == rhs.span_);
return lhs.index_ < rhs.index_;
}
constexpr friend bool operator<=(const span_iterator& lhs,
const span_iterator& rhs) {
return !(rhs < lhs);
}
constexpr friend bool operator>(const span_iterator& lhs,
const span_iterator& rhs) {
return rhs < lhs;
}
constexpr friend bool operator>=(const span_iterator& lhs,
const span_iterator& rhs) {
return !(rhs > lhs);
}
void swap(span_iterator& rhs) {
std::swap(index_, rhs.index_);
std::swap(span_, rhs.span_);
}
protected:
const SpanT* span_;
size_t index_;
};
template <class Span, bool IsConst>
inline constexpr span_iterator<Span, IsConst> operator+(
typename span_iterator<Span, IsConst>::difference_type n,
const span_iterator<Span, IsConst>& rhs) {
return rhs + n;
}
template <size_t Ext>
class extent_type {
public:
using index_type = size_t;
static_assert(Ext >= 0, "A fixed-size Span must be >= 0 in size.");
constexpr extent_type() = default;
template <index_type Other>
constexpr MOZ_IMPLICIT extent_type(extent_type<Other> ext) {
static_assert(
Other == Ext || Other == dynamic_extent,
"Mismatch between fixed-size extent and size of initializing data.");
MOZ_RELEASE_ASSERT(ext.size() == Ext);
}
constexpr MOZ_IMPLICIT extent_type(index_type length) {
MOZ_RELEASE_ASSERT(length == Ext);
}
constexpr index_type size() const { return Ext; }
};
template <>
class extent_type<dynamic_extent> {
public:
using index_type = size_t;
template <index_type Other>
explicit constexpr extent_type(extent_type<Other> ext) : size_(ext.size()) {}
explicit constexpr extent_type(index_type length) : size_(length) {}
constexpr index_type size() const { return size_; }
private:
index_type size_;
};
} // namespace span_details
/**
* Span - slices for C++
*
* Span implements Rust's slice concept for C++. It's called "Span" instead of
* "Slice" to follow the naming used in C++ Core Guidelines.
*
* A Span wraps a pointer and a length that identify a non-owning view to a
* contiguous block of memory of objects of the same type. Various types,
* including (pre-decay) C arrays, XPCOM strings, nsTArray, mozilla::Array,
* mozilla::Range and contiguous standard-library containers, auto-convert
* into Spans when attempting to pass them as arguments to methods that take
* Spans. (Span itself autoconverts into mozilla::Range.)
*
* Like Rust's slices, Span provides safety against out-of-bounds access by
* performing run-time bound checks. However, unlike Rust's slices, Span
* cannot provide safety against use-after-free.
*
* (Note: Span is like Rust's slice only conceptually. Due to the lack of
* ABI guarantees, you should still decompose spans/slices to raw pointer
* and length parts when crossing the FFI. The Elements() and data() methods
* are guaranteed to return a non-null pointer even for zero-length spans,
* so the pointer can be used as a raw part of a Rust slice without further
* checks.)
*
* In addition to having constructors (with the support of deduction guides)
* that take various well-known types, a Span for an arbitrary type can be
* constructed from a pointer and a length or a pointer and another pointer
* pointing just past the last element.
*
* A Span<const char> or Span<const char16_t> can be obtained for const char*
* or const char16_t pointing to a zero-terminated string using the
* MakeStringSpan() function (which treats a nullptr argument equivalently
* to the empty string). Corresponding implicit constructor does not exist
* in order to avoid accidental construction in cases where const char* or
* const char16_t* do not point to a zero-terminated string.
*
* Span has methods that follow the Mozilla naming style and methods that
* don't. The methods that follow the Mozilla naming style are meant to be
* used directly from Mozilla code. The methods that don't are meant for
* integration with C++11 range-based loops and with meta-programming that
* expects the same methods that are found on the standard-library
* containers. For example, to decompose a Span into its parts in Mozilla
* code, use Elements() and Length() (as with nsTArray) instead of data()
* and size() (as with std::vector).
*
* The pointer and length wrapped by a Span cannot be changed after a Span has
* been created. When new values are required, simply create a new Span. Span
* has a method called Subspan() that works analogously to the Substring()
* method of XPCOM strings taking a start index and an optional length. As a
* Mozilla extension (relative to Microsoft's gsl::span that mozilla::Span is
* based on), Span has methods From(start), To(end) and FromTo(start, end)
* that correspond to Rust's &slice[start..], &slice[..end] and
* &slice[start..end], respectively. (That is, the end index is the index of
* the first element not to be included in the new subspan.)
*
* When indicating a Span that's only read from, const goes inside the type
* parameter. Don't put const in front of Span. That is:
* size_t ReadsFromOneSpanAndWritesToAnother(Span<const uint8_t> aReadFrom,
* Span<uint8_t> aWrittenTo);
*
* Any Span<const T> can be viewed as Span<const uint8_t> using the function
* AsBytes(). Any Span<T> can be viewed as Span<uint8_t> using the function
* AsWritableBytes().
*
* Note that iterators from different Span instances are uncomparable, even if
* they refer to the same memory. This also applies to any spans derived via
* Subspan etc.
*/
template <class ElementType, size_t Extent /* = dynamic_extent */>
class Span {
public:
// constants and types
using element_type = ElementType;
using index_type = size_t;
using pointer = element_type*;
using reference = element_type&;
using iterator =
span_details::span_iterator<Span<ElementType, Extent>, false>;
using const_iterator =
span_details::span_iterator<Span<ElementType, Extent>, true>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
constexpr static const index_type extent = Extent;
// [Span.cons], Span constructors, copy, assignment, and destructor
// "Dependent" is needed to make "std::enable_if_t<(Dependent ||
// Extent == 0 || Extent == dynamic_extent)>" SFINAE,
// since
// "std::enable_if_t<(Extent == 0 || Extent == dynamic_extent)>" is
// ill-formed when Extent is neither of the extreme values.
/**
* Constructor with no args.
*/
template <bool Dependent = false,
class = std::enable_if_t<(Dependent || Extent == 0 ||
Extent == dynamic_extent)>>
constexpr Span() : storage_(nullptr, span_details::extent_type<0>()) {}
/**
* Constructor for nullptr.
*/
constexpr MOZ_IMPLICIT Span(std::nullptr_t) : Span() {}
/**
* Constructor for pointer and length.
*/
constexpr Span(pointer aPtr, index_type aLength) : storage_(aPtr, aLength) {}
/**
* Constructor for start pointer and pointer past end.
*/
constexpr Span(pointer aStartPtr, pointer aEndPtr)
: storage_(aStartPtr, std::distance(aStartPtr, aEndPtr)) {}
/**
* Constructor for pair of Span iterators.
*/
template <typename OtherElementType, size_t OtherExtent, bool IsConst>
constexpr Span(
span_details::span_iterator<Span<OtherElementType, OtherExtent>, IsConst>
aBegin,
span_details::span_iterator<Span<OtherElementType, OtherExtent>, IsConst>
aEnd)
: storage_(aBegin == aEnd ? nullptr : &*aBegin, aEnd - aBegin) {}
/**
* Constructor for C array.
*/
template <size_t N>
constexpr MOZ_IMPLICIT Span(element_type (&aArr)[N])
: storage_(&aArr[0], span_details::extent_type<N>()) {}
// Implicit constructors for char* and char16_t* pointers are deleted in order
// to avoid accidental construction in cases where a pointer does not point to
// a zero-terminated string. A Span<const char> or Span<const char16_t> can be
// obtained for const char* or const char16_t pointing to a zero-terminated
// string using the MakeStringSpan() function.
// (This must be a template because otherwise it will prevent the previous
// array constructor to match because an array decays to a pointer. This only
// exists to point to the above explanation, since there's no other
// constructor that would match.)
template <
typename T,
typename = std::enable_if_t<
std::is_pointer_v<T> &&
(std::is_same_v<std::remove_const_t<std::decay_t<T>>, char> ||
std::is_same_v<std::remove_const_t<std::decay_t<T>>, char16_t>)>>
Span(T& aStr) = delete;
/**
* Constructor for std::array.
*/
template <size_t N,
class ArrayElementType = std::remove_const_t<element_type>>
constexpr MOZ_IMPLICIT Span(std::array<ArrayElementType, N>& aArr)
: storage_(&aArr[0], span_details::extent_type<N>()) {}
/**
* Constructor for const std::array.
*/
template <size_t N>
constexpr MOZ_IMPLICIT Span(
const std::array<std::remove_const_t<element_type>, N>& aArr)
: storage_(&aArr[0], span_details::extent_type<N>()) {}
/**
* Constructor for mozilla::Array.
*/
template <size_t N,
class ArrayElementType = std::remove_const_t<element_type>>
constexpr MOZ_IMPLICIT Span(mozilla::Array<ArrayElementType, N>& aArr)
: storage_(&aArr[0], span_details::extent_type<N>()) {}
/**
* Constructor for const mozilla::Array.
*/
template <size_t N>
constexpr MOZ_IMPLICIT Span(
const mozilla::Array<std::remove_const_t<element_type>, N>& aArr)
: storage_(&aArr[0], span_details::extent_type<N>()) {}
/**
* Constructor for mozilla::UniquePtr holding an array and length.
*/
template <class ArrayElementType = std::add_pointer<element_type>>
constexpr Span(const mozilla::UniquePtr<ArrayElementType>& aPtr,
index_type aLength)
: storage_(aPtr.get(), aLength) {}
// NB: the SFINAE here uses .data() as a incomplete/imperfect proxy for the
// requirement on Container to be a contiguous sequence container.
/**
* Constructor for standard-library containers.
*/
template <
class Container,
class Dummy = std::enable_if_t<
!std::is_const_v<Container> &&
!span_details::is_span<Container>::value &&
!span_details::is_std_array<Container>::value &&
std::is_convertible_v<typename Container::pointer, pointer> &&
std::is_convertible_v<typename Container::pointer,
decltype(std::declval<Container>().data())>,
Container>>
constexpr MOZ_IMPLICIT Span(Container& cont, Dummy* = nullptr)
: Span(cont.data(), ReleaseAssertedCast<index_type>(cont.size())) {}
/**
* Constructor for standard-library containers (const version).
*/
template <
class Container,
class = std::enable_if_t<
std::is_const_v<element_type> &&
!span_details::is_span<Container>::value &&
std::is_convertible_v<typename Container::pointer, pointer> &&
std::is_convertible_v<typename Container::pointer,
decltype(std::declval<Container>().data())>>>
constexpr MOZ_IMPLICIT Span(const Container& cont)
: Span(cont.data(), ReleaseAssertedCast<index_type>(cont.size())) {}
// NB: the SFINAE here uses .Elements() as a incomplete/imperfect proxy for
// the requirement on Container to be a contiguous sequence container.
/**
* Constructor for contiguous Mozilla containers.
*/
template <
class Container,
class = std::enable_if_t<
!std::is_const_v<Container> &&
!span_details::is_span<Container>::value &&
!span_details::is_std_array<Container>::value &&
std::is_convertible_v<typename Container::elem_type*, pointer> &&
std::is_convertible_v<
typename Container::elem_type*,
decltype(std::declval<Container>().Elements())>>>
constexpr MOZ_IMPLICIT Span(Container& cont, void* = nullptr)
: Span(cont.Elements(), ReleaseAssertedCast<index_type>(cont.Length())) {}
/**
* Constructor for contiguous Mozilla containers (const version).
*/
template <
class Container,
class = std::enable_if_t<
std::is_const_v<element_type> &&
!span_details::is_span<Container>::value &&
std::is_convertible_v<typename Container::elem_type*, pointer> &&
std::is_convertible_v<
typename Container::elem_type*,
decltype(std::declval<Container>().Elements())>>>
constexpr MOZ_IMPLICIT Span(const Container& cont, void* = nullptr)
: Span(cont.Elements(), ReleaseAssertedCast<index_type>(cont.Length())) {}
/**
* Constructor from other Span.
*/
constexpr Span(const Span& other) = default;
/**
* Constructor from other Span.
*/
constexpr Span(Span&& other) = default;
/**
* Constructor from other Span with conversion of element type.
*/
template <
class OtherElementType, size_t OtherExtent,
class = std::enable_if_t<span_details::is_allowed_extent_conversion<
OtherExtent, Extent>::value &&
span_details::is_allowed_element_type_conversion<
OtherElementType, element_type>::value>>
constexpr MOZ_IMPLICIT Span(const Span<OtherElementType, OtherExtent>& other)
: storage_(other.data(),
span_details::extent_type<OtherExtent>(other.size())) {}
/**
* Constructor from other Span with conversion of element type.
*/
template <
class OtherElementType, size_t OtherExtent,
class = std::enable_if_t<span_details::is_allowed_extent_conversion<
OtherExtent, Extent>::value &&
span_details::is_allowed_element_type_conversion<
OtherElementType, element_type>::value>>
constexpr MOZ_IMPLICIT Span(Span<OtherElementType, OtherExtent>&& other)
: storage_(other.data(),
span_details::extent_type<OtherExtent>(other.size())) {}
~Span() = default;
constexpr Span& operator=(const Span& other) = default;
constexpr Span& operator=(Span&& other) = default;
// [Span.sub], Span subviews
/**
* Subspan with first N elements with compile-time N.
*/
template <size_t Count>
constexpr Span<element_type, Count> First() const {
MOZ_RELEASE_ASSERT(Count <= size());
return {data(), Count};
}
/**
* Subspan with last N elements with compile-time N.
*/
template <size_t Count>
constexpr Span<element_type, Count> Last() const {
const size_t len = size();
MOZ_RELEASE_ASSERT(Count <= len);
return {data() + (len - Count), Count};
}
/**
* Subspan with compile-time start index and length.
*/
template <size_t Offset, size_t Count = dynamic_extent>
constexpr Span<element_type, Count> Subspan() const {
const size_t len = size();
MOZ_RELEASE_ASSERT(Offset <= len &&
(Count == dynamic_extent || (Offset + Count <= len)));
return {data() + Offset, Count == dynamic_extent ? len - Offset : Count};
}
/**
* Subspan with first N elements with run-time N.
*/
constexpr Span<element_type, dynamic_extent> First(index_type aCount) const {
MOZ_RELEASE_ASSERT(aCount <= size());
return {data(), aCount};
}
/**
* Subspan with last N elements with run-time N.
*/
constexpr Span<element_type, dynamic_extent> Last(index_type aCount) const {
const size_t len = size();
MOZ_RELEASE_ASSERT(aCount <= len);
return {data() + (len - aCount), aCount};
}
/**
* Subspan with run-time start index and length.
*/
constexpr Span<element_type, dynamic_extent> Subspan(
index_type aStart, index_type aLength = dynamic_extent) const {
const size_t len = size();
MOZ_RELEASE_ASSERT(aStart <= len && (aLength == dynamic_extent ||
(aStart + aLength <= len)));
return {data() + aStart,
aLength == dynamic_extent ? len - aStart : aLength};
}
/**
* Subspan with run-time start index. (Rust's &foo[start..])
*/
constexpr Span<element_type, dynamic_extent> From(index_type aStart) const {
return Subspan(aStart);
}
/**
* Subspan with run-time exclusive end index. (Rust's &foo[..end])
*/
constexpr Span<element_type, dynamic_extent> To(index_type aEnd) const {
return Subspan(0, aEnd);
}
/**
* Subspan with run-time start index and exclusive end index.
* (Rust's &foo[start..end])
*/
constexpr Span<element_type, dynamic_extent> FromTo(index_type aStart,
index_type aEnd) const {
MOZ_RELEASE_ASSERT(aStart <= aEnd);
return Subspan(aStart, aEnd - aStart);
}
// [Span.obs], Span observers
/**
* Number of elements in the span.
*/
constexpr index_type Length() const { return size(); }
/**
* Number of elements in the span (standard-libray duck typing version).
*/
constexpr index_type size() const { return storage_.size(); }
/**
* Size of the span in bytes.
*/
constexpr index_type LengthBytes() const { return size_bytes(); }
/**
* Size of the span in bytes (standard-library naming style version).
*/
constexpr index_type size_bytes() const {
return size() * narrow_cast<index_type>(sizeof(element_type));
}
/**
* Checks if the the length of the span is zero.
*/
constexpr bool IsEmpty() const { return empty(); }
/**
* Checks if the the length of the span is zero (standard-libray duck
* typing version).
*/
constexpr bool empty() const { return size() == 0; }
// [Span.elem], Span element access
constexpr reference operator[](index_type idx) const {
MOZ_RELEASE_ASSERT(idx < storage_.size());
return data()[idx];
}
/**
* Access element of span by index (standard-library duck typing version).
*/
constexpr reference at(index_type idx) const { return this->operator[](idx); }
constexpr reference operator()(index_type idx) const {
return this->operator[](idx);
}
/**
* Pointer to the first element of the span. The return value is never
* nullptr, not ever for zero-length spans, so it can be passed as-is
* to std::slice::from_raw_parts() in Rust.
*/
constexpr pointer Elements() const { return data(); }
/**
* Pointer to the first element of the span (standard-libray duck typing
* version). The return value is never nullptr, not ever for zero-length
* spans, so it can be passed as-is to std::slice::from_raw_parts() in Rust.
*/
constexpr pointer data() const { return storage_.data(); }
// [Span.iter], Span iterator support
iterator begin() const { return {this, 0, span_details::SpanKnownBounds{}}; }
iterator end() const {
return {this, Length(), span_details::SpanKnownBounds{}};
}
const_iterator cbegin() const {
return {this, 0, span_details::SpanKnownBounds{}};
}
const_iterator cend() const {
return {this, Length(), span_details::SpanKnownBounds{}};
}
reverse_iterator rbegin() const { return reverse_iterator{end()}; }
reverse_iterator rend() const { return reverse_iterator{begin()}; }
const_reverse_iterator crbegin() const {
return const_reverse_iterator{cend()};
}
const_reverse_iterator crend() const {
return const_reverse_iterator{cbegin()};
}
template <size_t SplitPoint>
constexpr std::pair<Span<ElementType, SplitPoint>,
Span<ElementType, Extent - SplitPoint>>
SplitAt() const {
static_assert(Extent != dynamic_extent);
static_assert(SplitPoint <= Extent);
return {First<SplitPoint>(), Last<Extent - SplitPoint>()};
}
constexpr std::pair<Span<ElementType, dynamic_extent>,
Span<ElementType, dynamic_extent>>
SplitAt(const index_type aSplitPoint) const {
MOZ_RELEASE_ASSERT(aSplitPoint <= Length());
return {First(aSplitPoint), Last(Length() - aSplitPoint)};
}
constexpr Span<std::add_const_t<ElementType>, Extent> AsConst() const {
return {Elements(), Length()};
}
private:
// this implementation detail class lets us take advantage of the
// empty base class optimization to pay for only storage of a single
// pointer in the case of fixed-size Spans
template <class ExtentType>
class storage_type : public ExtentType {
public:
template <class OtherExtentType>
constexpr storage_type(pointer elements, OtherExtentType ext)
: ExtentType(ext)
// Replace nullptr with aligned bogus pointer for Rust slice
// compatibility. See
// https://doc.rust-lang.org/std/slice/fn.from_raw_parts.html
,
data_(elements ? elements
: reinterpret_cast<pointer>(alignof(element_type))) {
const size_t extentSize = ExtentType::size();
MOZ_RELEASE_ASSERT((!elements && extentSize == 0) ||
(elements && extentSize != dynamic_extent));
}
constexpr pointer data() const { return data_; }
private:
pointer data_;
};
storage_type<span_details::extent_type<Extent>> storage_;
};
template <typename T, size_t OtherExtent, bool IsConst>
Span(span_details::span_iterator<Span<T, OtherExtent>, IsConst> aBegin,
span_details::span_iterator<Span<T, OtherExtent>, IsConst> aEnd)
-> Span<std::conditional_t<IsConst, std::add_const_t<T>, T>>;
template <typename T, size_t Extent>
Span(T (&)[Extent]) -> Span<T, Extent>;
template <class Container>
Span(Container&) -> Span<typename Container::value_type>;
template <class Container>
Span(const Container&) -> Span<const typename Container::value_type>;
template <typename T, size_t Extent>
Span(mozilla::Array<T, Extent>&) -> Span<T, Extent>;
template <typename T, size_t Extent>
Span(const mozilla::Array<T, Extent>&) -> Span<const T, Extent>;
// [Span.comparison], Span comparison operators
template <class ElementType, size_t FirstExtent, size_t SecondExtent>
inline constexpr bool operator==(const Span<ElementType, FirstExtent>& l,
const Span<ElementType, SecondExtent>& r) {
return (l.size() == r.size()) &&
std::equal(l.data(), l.data() + l.size(), r.data());
}
template <class ElementType, size_t Extent>
inline constexpr bool operator!=(const Span<ElementType, Extent>& l,
const Span<ElementType, Extent>& r) {
return !(l == r);
}
template <class ElementType, size_t Extent>
inline constexpr bool operator<(const Span<ElementType, Extent>& l,
const Span<ElementType, Extent>& r) {
return std::lexicographical_compare(l.data(), l.data() + l.size(), r.data(),
r.data() + r.size());
}
template <class ElementType, size_t Extent>
inline constexpr bool operator<=(const Span<ElementType, Extent>& l,
const Span<ElementType, Extent>& r) {
return !(l > r);
}
template <class ElementType, size_t Extent>
inline constexpr bool operator>(const Span<ElementType, Extent>& l,
const Span<ElementType, Extent>& r) {
return r < l;
}
template <class ElementType, size_t Extent>
inline constexpr bool operator>=(const Span<ElementType, Extent>& l,
const Span<ElementType, Extent>& r) {
return !(l < r);
}
namespace span_details {
// if we only supported compilers with good constexpr support then
// this pair of classes could collapse down to a constexpr function
// we should use a narrow_cast<> to go to size_t, but older compilers may not
// see it as constexpr and so will fail compilation of the template
template <class ElementType, size_t Extent>
struct calculate_byte_size
: std::integral_constant<size_t,
static_cast<size_t>(sizeof(ElementType) *
static_cast<size_t>(Extent))> {
};
template <class ElementType>
struct calculate_byte_size<ElementType, dynamic_extent>
: std::integral_constant<size_t, dynamic_extent> {};
} // namespace span_details
// [Span.objectrep], views of object representation
/**
* View span as Span<const uint8_t>.
*/
template <class ElementType, size_t Extent>
Span<const uint8_t,
span_details::calculate_byte_size<ElementType, Extent>::value>
AsBytes(Span<ElementType, Extent> s) {
return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()};
}
/**
* View span as Span<uint8_t>.
*/
template <class ElementType, size_t Extent,
class = std::enable_if_t<!std::is_const_v<ElementType>>>
Span<uint8_t, span_details::calculate_byte_size<ElementType, Extent>::value>
AsWritableBytes(Span<ElementType, Extent> s) {
return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()};
}
/**
* View a span of uint8_t as a span of char.
*/
inline Span<const char> AsChars(Span<const uint8_t> s) {
return {reinterpret_cast<const char*>(s.data()), s.size()};
}
/**
* View a writable span of uint8_t as a span of char.
*/
inline Span<char> AsWritableChars(Span<uint8_t> s) {
return {reinterpret_cast<char*>(s.data()), s.size()};
}
/**
* Create span from a zero-terminated C string. nullptr is
* treated as the empty string.
*/
constexpr Span<const char> MakeStringSpan(const char* aZeroTerminated) {
if (!aZeroTerminated) {
return Span<const char>();
}
return Span<const char>(aZeroTerminated,
std::char_traits<char>::length(aZeroTerminated));
}
/**
* Create span from a zero-terminated UTF-16 C string. nullptr is
* treated as the empty string.
*/
constexpr Span<const char16_t> MakeStringSpan(const char16_t* aZeroTerminated) {
if (!aZeroTerminated) {
return Span<const char16_t>();
}
return Span<const char16_t>(
aZeroTerminated, std::char_traits<char16_t>::length(aZeroTerminated));
}
} // namespace mozilla
#endif // mozilla_Span_h