gecko-dev/view/nsView.h
Emilio Cobos Álvarez 9a77da4bfc Bug 1922956 - Further clean-up widget creation code-paths. r=win-reviewers,mac-reviewers,geckoview-reviewers,mstange,rkraesig,m_kato
This is all super-hacky (see a lot of the XXXcjones comments).

Simplify it... We never create widgets with a bare native parent but no
nsIWidget parent. Pass nsIWidgets and deal with things correctly.

There were also things that were dealing with stuff that can't happen,
like top level popups, children of PuppetWidgets, or such.

Instead of overriding Create(), let's just teach nsBaseWidget about
non-native (headless/puppet) widgets.

Remove lots of old APIs for the native window stuff that are unused
and/or unimplemented.

Differential Revision: https://phabricator.services.mozilla.com/D224613
2024-10-07 16:43:53 +00:00

534 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsView_h__
#define nsView_h__
#include "nsCoord.h"
#include "nsRect.h"
#include "nsPoint.h"
#include "nsRegion.h"
#include "nsCRT.h"
#include "nsCOMPtr.h"
#include "nsIWidgetListener.h"
#include "Units.h"
#include "mozilla/Attributes.h"
#include "mozilla/CallState.h"
#include "mozilla/EventForwards.h"
#include "mozilla/UniquePtr.h"
class nsViewManager;
class nsIWidget;
class nsIFrame;
namespace mozilla {
class PresShell;
namespace dom {
class BrowserParent;
} // namespace dom
namespace widget {
struct InitData;
enum class TransparencyMode : uint8_t;
enum class WindowType : uint8_t;
} // namespace widget
} // namespace mozilla
/**
* nsView's serve two main purposes: 1) a bridge between nsIFrame's and
* nsIWidget's, 2) linking the frame tree of a(n) (in-process) subdocument with
* its parent document frame tree. Historically views were used for more things,
* but their role has been reduced, and could be reduced to nothing in the
* future (bug 337801 tracks removing views). Views are generally associated
* with a frame. A view that does not have a frame is called an anonymous view.
* Some frames also have associated widgets (think os level windows). If a frame
* has a widget it must also have a view, but not all frames with views will
* have widgets.
*
* Only four types of frames can have a view: root frames (ViewportFrame),
* subdocument frames (nsSubDocumentFrame),
* menu popup frames (nsMenuPopupFrame), and list control frames
* (nsListControlFrame). Root frames and subdocument frames have views to link
* the two documents together (the frame trees do not link up otherwise).
* Menu popup frames, and list control frames have views because
* they (sometimes) need to create widgets.
* Menu popup frames handles xul popups, which is anything
* where we need content to go over top the main window at an os level. List
* control frames handle select popups/dropdowns in non-e10s mode.
*
* The term "root view" refers to the root view of a document. Just like root
* frames, root views can have parent views. Only the root view of the root
* document in the process will not have a parent.
*
* All views are created by their frames except root views. Root views are
* special. Root views are created in nsDocumentViewer::MakeWindow before the
* root frame is created, so the root view will not have a frame very early in
* document creation.
*
* Subdocument frames have an anonymous (no frame associated
* with it) inner view that is a child of their "outer" view.
*
* On a subdocument frame the inner view serves as the parent of the
* root view of the subdocument. The outer and inner view of the subdocument
* frame belong to the subdocument frame and hence to the parent document. The
* root view of the subdocument belongs to the subdocument.
* nsLayoutUtils::GetCrossDocParentFrame and nsPresContext::GetParentPresContext
* depend on this view structure and are the main way that we traverse across
* the document boundary in layout.
*
* When the load of a new document is started in the subdocument, the creation
* of the new subdocument and destruction of the old subdocument are not
* linked. (This creation and destruction is handled in nsDocumentViewer.cpp.)
* This means that the old and new document will both exist at the same time
* during the loading of the new document. During this period the inner view of
* the subdocument parent will be the parent of two root views. This means that
* during this period there is a choice for which subdocument we draw,
* nsSubDocumentFrame::GetSubdocumentPresShellForPainting is what makes that
* choice. Note that this might not be a totally free choice, ie there might be
* hidden dependencies and bugs if the way we choose is changed.
*
* One thing that is special about the root view of a chrome window is that
* instead of creating a widget for the view, they can "attach" to the
* existing widget that was created by appshell code or something else. (see
* nsDocumentViewer::ShouldAttachToTopLevel)
*/
// Enumerated type to indicate the visibility of a layer.
// hide - the layer is not shown.
// show - the layer is shown irrespective of the visibility of
// the layer's parent.
enum class ViewVisibility : uint8_t { Hide = 0, Show = 1 };
// Public view flags
// Indicates that the view is a floating view.
#define NS_VIEW_FLAG_FLOATING 0x0008
//----------------------------------------------------------------------
/**
* View interface
*
* Views are NOT reference counted. Use the Destroy() member function to
* destroy a view.
*
* The lifetime of the view hierarchy is bounded by the lifetime of the
* view manager that owns the views.
*
* Most of the methods here are read-only. To set the corresponding properties
* of a view, go through nsViewManager.
*/
class nsView final : public nsIWidgetListener {
public:
friend class nsViewManager;
typedef mozilla::LayoutDeviceIntRect LayoutDeviceIntRect;
typedef mozilla::LayoutDeviceIntRegion LayoutDeviceIntRegion;
void operator delete(void* ptr) { ::operator delete(ptr); }
/**
* Get the view manager which "owns" the view.
* This method might require some expensive traversal work in the future. If
* you can get the view manager from somewhere else, do that instead.
* @result the view manager
*/
nsViewManager* GetViewManager() const { return mViewManager; }
/**
* Find the view for the given widget, if there is one.
* @return the view the widget belongs to, or null if the widget doesn't
* belong to any view.
*/
static nsView* GetViewFor(const nsIWidget* aWidget);
/**
* Destroy the view.
*
* The view destroys its child views, and destroys and releases its
* widget (if it has one).
*
* Also informs the view manager that the view is destroyed by calling
* SetRootView(NULL) if the view is the root view and calling RemoveChild()
* otherwise.
*/
void Destroy();
/**
* Called to get the position of a view.
* The specified coordinates are relative to the parent view's origin, but
* are in appunits of this.
* This is the (0, 0) origin of the coordinate space established by this view.
* @param x out parameter for x position
* @param y out parameter for y position
*/
nsPoint GetPosition() const {
NS_ASSERTION(!IsRoot() || (mPosX == 0 && mPosY == 0),
"root views should always have explicit position of (0,0)");
return nsPoint(mPosX, mPosY);
}
/**
* Called to get the dimensions and position of the view's bounds.
* The view's bounds (x,y) are relative to the origin of the parent view, but
* are in appunits of this.
* The view's bounds (x,y) might not be the same as the view's position,
* if the view has content above or to the left of its origin.
* @param aBounds out parameter for bounds
*/
nsRect GetBounds() const { return mDimBounds; }
/**
* The bounds of this view relative to this view. So this is the same as
* GetBounds except this is relative to this view instead of the parent view.
*/
nsRect GetDimensions() const {
nsRect r = mDimBounds;
r.MoveBy(-mPosX, -mPosY);
return r;
}
/**
* Get the offset between the coordinate systems of |this| and aOther.
* Adding the return value to a point in the coordinate system of |this|
* will transform the point to the coordinate system of aOther.
*
* The offset is expressed in appunits of |this|. So if you are getting the
* offset between views in different documents that might have different
* appunits per devpixel ratios you need to be careful how you use the
* result.
*
* If aOther is null, this will return the offset of |this| from the
* root of the viewmanager tree.
*
* This function is fastest when aOther is an ancestor of |this|.
*
* NOTE: this actually returns the offset from aOther to |this|, but
* that offset is added to transform _coordinates_ from |this| to aOther.
*/
nsPoint GetOffsetTo(const nsView* aOther) const;
/**
* Get the offset between the origin of |this| and the origin of aWidget.
* Adding the return value to a point in the coordinate system of |this|
* will transform the point to the coordinate system of aWidget.
*
* The offset is expressed in appunits of |this|.
*/
nsPoint GetOffsetToWidget(nsIWidget* aWidget) const;
/**
* Called to query the visibility state of a view.
* @result current visibility state
*/
ViewVisibility GetVisibility() const { return mVis; }
/**
* Get whether the view "floats" above all other views,
* which tells the compositor not to consider higher views in
* the view hierarchy that would geometrically intersect with
* this view. This is a hack, but it fixes some problems with
* views that need to be drawn in front of all other views.
* @result true if the view floats, false otherwise.
*/
bool GetFloating() const { return (mVFlags & NS_VIEW_FLAG_FLOATING) != 0; }
/**
* Called to query the parent of the view.
* @result view's parent
*/
nsView* GetParent() const { return mParent; }
/**
* The view's first child is the child which is earliest in document order.
* @result first child
*/
nsView* GetFirstChild() const { return mFirstChild; }
/**
* Called to query the next sibling of the view.
* @result view's next sibling
*/
nsView* GetNextSibling() const { return mNextSibling; }
/**
* Set the view's frame.
*/
void SetFrame(nsIFrame* aRootFrame) { mFrame = aRootFrame; }
/**
* Retrieve the view's frame.
*/
nsIFrame* GetFrame() const { return mFrame; }
/**
* Get the nearest widget in this view or a parent of this view and
* the offset from the widget's origin to this view's origin
* @param aOffset - if non-null the offset from this view's origin to the
* widget's origin (usually positive) expressed in appunits of this will be
* returned in aOffset.
* @return the widget closest to this view; can be null because some view
* trees don't have widgets at all (e.g., printing), but if any view in the
* view tree has a widget, then it's safe to assume this will not return null
*/
nsIWidget* GetNearestWidget(nsPoint* aOffset) const;
/**
* Create a widget to associate with this view. This variant of
* CreateWidget*() will look around in the view hierarchy for an
* appropriate parent widget for the view.
*
* @return error status
*/
nsresult CreateWidget(nsIWidget* aParent, bool aEnableDragDrop = true,
bool aResetVisibility = true);
/**
* Create a popup widget for this view. Pass |aParentWidget| to
* explicitly set the popup's parent. If it's not passed, the view
* hierarchy will be searched for an appropriate parent widget. The
* other params are the same as for |CreateWidget()|, except that
* |aWidgetInitData| must be nonnull.
*/
nsresult CreateWidgetForPopup(mozilla::widget::InitData*, nsIWidget* aParent);
/**
* Destroys the associated widget for this view. If this method is
* not called explicitly, the widget when be destroyed when its
* view gets destroyed.
*/
void DestroyWidget();
/**
* Attach/detach a top level widget from this view. When attached, the view
* updates the widget's device context and allows the view to begin receiving
* gecko events. The underlying base window associated with the widget will
* continues to receive events it expects.
*
* An attached widget will not be destroyed when the view is destroyed,
* allowing the recycling of a single top level widget over multiple views.
*
* @param aWidget The widget to attach to / detach from.
*/
nsresult AttachToTopLevelWidget(nsIWidget* aWidget);
nsresult DetachFromTopLevelWidget();
/**
* Returns a flag indicating whether the view owns it's widget
* or is attached to an existing top level widget.
*/
bool IsAttachedToTopLevel() const { return mWidgetIsTopLevel; }
/**
* In 4.0, the "cutout" nature of a view is queryable.
* If we believe that all cutout view have a native widget, this
* could be a replacement.
* @param aWidget out parameter for widget that this view contains,
* or nullptr if there is none.
*/
nsIWidget* GetWidget() const { return mWindow; }
/**
* The widget which we have attached a listener to can also have a "previous"
* listener set on it. This is to keep track of the last nsView when
* navigating to a new one so that we can continue to paint that if the new
* one isn't ready yet.
*/
void SetPreviousWidget(nsIWidget* aWidget) { mPreviousWindow = aWidget; }
/**
* Returns true if the view has a widget associated with it.
*/
bool HasWidget() const { return mWindow != nullptr; }
void SetForcedRepaint(bool aForceRepaint) { mForcedRepaint = aForceRepaint; }
void SetNeedsWindowPropertiesSync();
/**
* Make aWidget direct its events to this view.
* The caller must call DetachWidgetEventHandler before this view
* is destroyed.
*/
void AttachWidgetEventHandler(nsIWidget* aWidget);
/**
* Stop aWidget directing its events to this view.
*/
void DetachWidgetEventHandler(nsIWidget* aWidget);
#ifdef DEBUG
/**
* Output debug info to FILE
* @param out output file handle
* @param aIndent indentation depth
* NOTE: virtual so that debugging tools not linked into gklayout can access
* it
*/
virtual void List(FILE* out, int32_t aIndent = 0) const;
#endif // DEBUG
/**
* @result true iff this is the root view for its view manager
*/
bool IsRoot() const;
LayoutDeviceIntRect CalcWidgetBounds(mozilla::widget::WindowType,
mozilla::widget::TransparencyMode);
LayoutDeviceIntRect RecalcWidgetBounds();
// This is an app unit offset to add when converting view coordinates to
// widget coordinates. It is the offset in view coordinates from widget
// origin (unlike views, widgets can't extend above or to the left of their
// origin) to view origin expressed in appunits of this.
nsPoint ViewToWidgetOffset() const { return mViewToWidgetOffset; }
/**
* Called to indicate that the position of the view has been changed.
* The specified coordinates are in the parent view's coordinate space.
* @param x new x position
* @param y new y position
*/
void SetPosition(nscoord aX, nscoord aY);
void SetParent(nsView* aParent) { mParent = aParent; }
void SetNextSibling(nsView* aSibling) {
NS_ASSERTION(aSibling != this, "Can't be our own sibling!");
mNextSibling = aSibling;
}
nsRegion& GetDirtyRegion() {
if (!mDirtyRegion) {
NS_ASSERTION(!mParent || GetFloating(),
"Only display roots should have dirty regions");
mDirtyRegion = mozilla::MakeUnique<nsRegion>();
}
return *mDirtyRegion;
}
// nsIWidgetListener
virtual mozilla::PresShell* GetPresShell() override;
virtual nsView* GetView() override { return this; }
virtual bool WindowMoved(nsIWidget* aWidget, int32_t x, int32_t y,
ByMoveToRect) override;
virtual bool WindowResized(nsIWidget* aWidget, int32_t aWidth,
int32_t aHeight) override;
#if defined(MOZ_WIDGET_ANDROID)
virtual void DynamicToolbarMaxHeightChanged(
mozilla::ScreenIntCoord aHeight) override;
virtual void DynamicToolbarOffsetChanged(
mozilla::ScreenIntCoord aOffset) override;
virtual void KeyboardHeightChanged(mozilla::ScreenIntCoord aHeight) override;
#endif
virtual bool RequestWindowClose(nsIWidget* aWidget) override;
MOZ_CAN_RUN_SCRIPT_BOUNDARY
virtual void WillPaintWindow(nsIWidget* aWidget) override;
MOZ_CAN_RUN_SCRIPT_BOUNDARY
virtual bool PaintWindow(nsIWidget* aWidget,
LayoutDeviceIntRegion aRegion) override;
MOZ_CAN_RUN_SCRIPT_BOUNDARY
virtual void DidPaintWindow() override;
virtual void DidCompositeWindow(
mozilla::layers::TransactionId aTransactionId,
const mozilla::TimeStamp& aCompositeStart,
const mozilla::TimeStamp& aCompositeEnd) override;
virtual void RequestRepaint() override;
virtual bool ShouldNotBeVisible() override;
MOZ_CAN_RUN_SCRIPT_BOUNDARY
virtual nsEventStatus HandleEvent(mozilla::WidgetGUIEvent* aEvent,
bool aUseAttachedEvents) override;
virtual void SafeAreaInsetsChanged(const mozilla::ScreenIntMargin&) override;
virtual ~nsView();
nsPoint GetOffsetTo(const nsView* aOther, const int32_t aAPD) const;
nsIWidget* GetNearestWidget(nsPoint* aOffset, const int32_t aAPD) const;
bool IsPrimaryFramePaintSuppressed();
private:
explicit nsView(nsViewManager* = nullptr,
ViewVisibility = ViewVisibility::Show);
bool ForcedRepaint() { return mForcedRepaint; }
// Do the actual work of ResetWidgetBounds, unconditionally. Don't
// call this method if we have no widget.
void DoResetWidgetBounds(bool aMoveOnly, bool aInvalidateChangedSize);
void InitializeWindow(bool aEnableDragDrop, bool aResetVisibility);
bool IsEffectivelyVisible();
/**
* Called to indicate that the dimensions of the view have been changed.
* The x and y coordinates may be < 0, indicating that the view extends above
* or to the left of its origin position. The term 'dimensions' indicates it
* is relative to this view.
*/
void SetDimensions(const nsRect& aRect, bool aPaint = true,
bool aResizeWidget = true);
/**
* Called to indicate that the visibility of a view has been
* changed.
* @param visibility new visibility state
*/
void SetVisibility(ViewVisibility visibility);
/**
* Set/Get whether the view "floats" above all other views,
* which tells the compositor not to consider higher views in
* the view hierarchy that would geometrically intersect with
* this view. This is a hack, but it fixes some problems with
* views that need to be drawn in front of all other views.
* @result true if the view floats, false otherwise.
*/
void SetFloating(bool aFloatingView);
// Helper function to get mouse grabbing off this view (by moving it to the
// parent, if we can)
void DropMouseGrabbing();
bool HasNonEmptyDirtyRegion() {
return mDirtyRegion && !mDirtyRegion->IsEmpty();
}
void InsertChild(nsView* aChild, nsView* aSibling);
void RemoveChild(nsView* aChild);
void ResetWidgetBounds(bool aRecurse, bool aForceSync);
void AssertNoWindow();
void NotifyEffectiveVisibilityChanged(bool aEffectivelyVisible);
// Update the cached RootViewManager for all view manager descendents.
void InvalidateHierarchy();
void CallOnAllRemoteChildren(
const std::function<mozilla::CallState(mozilla::dom::BrowserParent*)>&
aCallback);
nsViewManager* mViewManager;
nsView* mParent;
nsCOMPtr<nsIWidget> mWindow;
nsCOMPtr<nsIWidget> mPreviousWindow;
nsView* mNextSibling;
nsView* mFirstChild;
nsIFrame* mFrame;
mozilla::UniquePtr<nsRegion> mDirtyRegion;
ViewVisibility mVis;
// position relative our parent view origin but in our appunits
nscoord mPosX, mPosY;
// relative to parent, but in our appunits
nsRect mDimBounds;
// in our appunits
nsPoint mViewToWidgetOffset;
uint32_t mVFlags;
bool mWidgetIsTopLevel;
bool mForcedRepaint;
bool mNeedsWindowPropertiesSync;
};
#endif