gecko-dev/image/SurfaceCache.cpp

1145 lines
36 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* SurfaceCache is a service for caching temporary surfaces in imagelib.
*/
#include "SurfaceCache.h"
#include <algorithm>
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Likely.h"
#include "mozilla/Move.h"
#include "mozilla/Mutex.h"
#include "mozilla/Pair.h"
#include "mozilla/RefPtr.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/Tuple.h"
#include "nsIMemoryReporter.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "gfxPrefs.h"
#include "imgFrame.h"
#include "Image.h"
#include "ISurfaceProvider.h"
#include "LookupResult.h"
#include "nsExpirationTracker.h"
#include "nsHashKeys.h"
#include "nsRefPtrHashtable.h"
#include "nsSize.h"
#include "nsTArray.h"
#include "prsystem.h"
#include "ShutdownTracker.h"
using std::max;
using std::min;
namespace mozilla {
using namespace gfx;
namespace image {
class CachedSurface;
class SurfaceCacheImpl;
///////////////////////////////////////////////////////////////////////////////
// Static Data
///////////////////////////////////////////////////////////////////////////////
// The single surface cache instance.
static StaticRefPtr<SurfaceCacheImpl> sInstance;
///////////////////////////////////////////////////////////////////////////////
// SurfaceCache Implementation
///////////////////////////////////////////////////////////////////////////////
/**
* Cost models the cost of storing a surface in the cache. Right now, this is
* simply an estimate of the size of the surface in bytes, but in the future it
* may be worth taking into account the cost of rematerializing the surface as
* well.
*/
typedef size_t Cost;
static Cost
ComputeCost(const IntSize& aSize, uint32_t aBytesPerPixel)
{
MOZ_ASSERT(aBytesPerPixel == 1 || aBytesPerPixel == 4);
return aSize.width * aSize.height * aBytesPerPixel;
}
/**
* Since we want to be able to make eviction decisions based on cost, we need to
* be able to look up the CachedSurface which has a certain cost as well as the
* cost associated with a certain CachedSurface. To make this possible, in data
* structures we actually store a CostEntry, which contains a weak pointer to
* its associated surface.
*
* To make usage of the weak pointer safe, SurfaceCacheImpl always calls
* StartTracking after a surface is stored in the cache and StopTracking before
* it is removed.
*/
class CostEntry
{
public:
CostEntry(NotNull<CachedSurface*> aSurface, Cost aCost)
: mSurface(aSurface)
, mCost(aCost)
{ }
NotNull<CachedSurface*> Surface() const { return mSurface; }
Cost GetCost() const { return mCost; }
bool operator==(const CostEntry& aOther) const
{
return mSurface == aOther.mSurface &&
mCost == aOther.mCost;
}
bool operator<(const CostEntry& aOther) const
{
return mCost < aOther.mCost ||
(mCost == aOther.mCost && mSurface < aOther.mSurface);
}
private:
NotNull<CachedSurface*> mSurface;
Cost mCost;
};
/**
* A CachedSurface associates a surface with a key that uniquely identifies that
* surface.
*/
class CachedSurface
{
~CachedSurface() { }
public:
MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface)
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface)
explicit CachedSurface(NotNull<ISurfaceProvider*> aProvider)
: mProvider(aProvider)
, mIsLocked(false)
{ }
DrawableSurface GetDrawableSurface() const
{
if (MOZ_UNLIKELY(IsPlaceholder())) {
MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
return DrawableSurface();
}
return mProvider->Surface();
}
void SetLocked(bool aLocked)
{
if (IsPlaceholder()) {
return; // Can't lock a placeholder.
}
// Update both our state and our provider's state. Some surface providers
// are permanently locked; maintaining our own locking state enables us to
// respect SetLocked() even when it's meaningless from the provider's
// perspective.
mIsLocked = aLocked;
mProvider->SetLocked(aLocked);
}
bool IsLocked() const
{
return !IsPlaceholder() && mIsLocked && mProvider->IsLocked();
}
bool IsPlaceholder() const { return mProvider->Availability().IsPlaceholder(); }
bool IsDecoded() const { return !IsPlaceholder() && mProvider->IsFinished(); }
ImageKey GetImageKey() const { return mProvider->GetImageKey(); }
SurfaceKey GetSurfaceKey() const { return mProvider->GetSurfaceKey(); }
nsExpirationState* GetExpirationState() { return &mExpirationState; }
CostEntry GetCostEntry()
{
return image::CostEntry(WrapNotNull(this), mProvider->LogicalSizeInBytes());
}
// A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
struct MOZ_STACK_CLASS SurfaceMemoryReport
{
SurfaceMemoryReport(nsTArray<SurfaceMemoryCounter>& aCounters,
MallocSizeOf aMallocSizeOf)
: mCounters(aCounters)
, mMallocSizeOf(aMallocSizeOf)
{ }
void Add(NotNull<CachedSurface*> aCachedSurface)
{
SurfaceMemoryCounter counter(aCachedSurface->GetSurfaceKey(),
aCachedSurface->IsLocked());
if (aCachedSurface->IsPlaceholder()) {
return;
}
// Record the memory used by the ISurfaceProvider. This may not have a
// straightforward relationship to the size of the surface that
// DrawableRef() returns if the surface is generated dynamically. (i.e.,
// for surfaces with PlaybackType::eAnimated.)
size_t heap = 0;
size_t nonHeap = 0;
aCachedSurface->mProvider
->AddSizeOfExcludingThis(mMallocSizeOf, heap, nonHeap);
counter.Values().SetDecodedHeap(heap);
counter.Values().SetDecodedNonHeap(nonHeap);
mCounters.AppendElement(counter);
}
private:
nsTArray<SurfaceMemoryCounter>& mCounters;
MallocSizeOf mMallocSizeOf;
};
private:
nsExpirationState mExpirationState;
NotNull<RefPtr<ISurfaceProvider>> mProvider;
bool mIsLocked;
};
static int64_t
AreaOfIntSize(const IntSize& aSize) {
return static_cast<int64_t>(aSize.width) * static_cast<int64_t>(aSize.height);
}
/**
* An ImageSurfaceCache is a per-image surface cache. For correctness we must be
* able to remove all surfaces associated with an image when the image is
* destroyed or invalidated. Since this will happen frequently, it makes sense
* to make it cheap by storing the surfaces for each image separately.
*
* ImageSurfaceCache also keeps track of whether its associated image is locked
* or unlocked.
*/
class ImageSurfaceCache
{
~ImageSurfaceCache() { }
public:
ImageSurfaceCache() : mLocked(false) { }
MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache)
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache)
typedef
nsRefPtrHashtable<nsGenericHashKey<SurfaceKey>, CachedSurface> SurfaceTable;
bool IsEmpty() const { return mSurfaces.Count() == 0; }
void Insert(NotNull<CachedSurface*> aSurface)
{
MOZ_ASSERT(!mLocked || aSurface->IsPlaceholder() || aSurface->IsLocked(),
"Inserting an unlocked surface for a locked image");
mSurfaces.Put(aSurface->GetSurfaceKey(), aSurface);
}
void Remove(NotNull<CachedSurface*> aSurface)
{
MOZ_ASSERT(mSurfaces.GetWeak(aSurface->GetSurfaceKey()),
"Should not be removing a surface we don't have");
mSurfaces.Remove(aSurface->GetSurfaceKey());
}
already_AddRefed<CachedSurface> Lookup(const SurfaceKey& aSurfaceKey)
{
RefPtr<CachedSurface> surface;
mSurfaces.Get(aSurfaceKey, getter_AddRefs(surface));
return surface.forget();
}
Pair<already_AddRefed<CachedSurface>, MatchType>
LookupBestMatch(const SurfaceKey& aIdealKey)
{
// Try for an exact match first.
RefPtr<CachedSurface> exactMatch;
mSurfaces.Get(aIdealKey, getter_AddRefs(exactMatch));
if (exactMatch && exactMatch->IsDecoded()) {
return MakePair(exactMatch.forget(), MatchType::EXACT);
}
// There's no perfect match, so find the best match we can.
RefPtr<CachedSurface> bestMatch;
for (auto iter = ConstIter(); !iter.Done(); iter.Next()) {
NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());
const SurfaceKey& currentKey = current->GetSurfaceKey();
// We never match a placeholder.
if (current->IsPlaceholder()) {
continue;
}
// Matching the playback type and SVG context is required.
if (currentKey.Playback() != aIdealKey.Playback() ||
currentKey.SVGContext() != aIdealKey.SVGContext()) {
continue;
}
// Matching the flags is required.
if (currentKey.Flags() != aIdealKey.Flags()) {
continue;
}
// Anything is better than nothing! (Within the constraints we just
// checked, of course.)
if (!bestMatch) {
bestMatch = current;
continue;
}
MOZ_ASSERT(bestMatch, "Should have a current best match");
// Always prefer completely decoded surfaces.
bool bestMatchIsDecoded = bestMatch->IsDecoded();
if (bestMatchIsDecoded && !current->IsDecoded()) {
continue;
}
if (!bestMatchIsDecoded && current->IsDecoded()) {
bestMatch = current;
continue;
}
SurfaceKey bestMatchKey = bestMatch->GetSurfaceKey();
// Compare sizes. We use an area-based heuristic here instead of computing a
// truly optimal answer, since it seems very unlikely to make a difference
// for realistic sizes.
int64_t idealArea = AreaOfIntSize(aIdealKey.Size());
int64_t currentArea = AreaOfIntSize(currentKey.Size());
int64_t bestMatchArea = AreaOfIntSize(bestMatchKey.Size());
// If the best match is smaller than the ideal size, prefer bigger sizes.
if (bestMatchArea < idealArea) {
if (currentArea > bestMatchArea) {
bestMatch = current;
}
continue;
}
// Other, prefer sizes closer to the ideal size, but still not smaller.
if (idealArea <= currentArea && currentArea < bestMatchArea) {
bestMatch = current;
continue;
}
// This surface isn't an improvement over the current best match.
}
MatchType matchType;
if (bestMatch) {
if (!exactMatch) {
// No exact match, but we found a substitute.
matchType = MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND;
} else if (exactMatch != bestMatch) {
// The exact match is still decoding, but we found a substitute.
matchType = MatchType::SUBSTITUTE_BECAUSE_PENDING;
} else {
// The exact match is still decoding, but it's the best we've got.
matchType = MatchType::EXACT;
}
} else {
if (exactMatch) {
// We found an "exact match"; it must have been a placeholder.
MOZ_ASSERT(exactMatch->IsPlaceholder());
matchType = MatchType::PENDING;
} else {
// We couldn't find an exact match *or* a substitute.
matchType = MatchType::NOT_FOUND;
}
}
return MakePair(bestMatch.forget(), matchType);
}
SurfaceTable::Iterator ConstIter() const
{
return mSurfaces.ConstIter();
}
void SetLocked(bool aLocked) { mLocked = aLocked; }
bool IsLocked() const { return mLocked; }
private:
SurfaceTable mSurfaces;
bool mLocked;
};
/**
* SurfaceCacheImpl is responsible for determining which surfaces will be cached
* and managing the surface cache data structures. Rather than interact with
* SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
* maintains high-level invariants and encapsulates the details of the surface
* cache's implementation.
*/
class SurfaceCacheImpl final : public nsIMemoryReporter
{
public:
NS_DECL_ISUPPORTS
SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS,
uint32_t aSurfaceCacheDiscardFactor,
uint32_t aSurfaceCacheSize)
: mExpirationTracker(aSurfaceCacheExpirationTimeMS)
, mMemoryPressureObserver(new MemoryPressureObserver)
, mMutex("SurfaceCache")
, mDiscardFactor(aSurfaceCacheDiscardFactor)
, mMaxCost(aSurfaceCacheSize)
, mAvailableCost(aSurfaceCacheSize)
, mLockedCost(0)
, mOverflowCount(0)
{
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (os) {
os->AddObserver(mMemoryPressureObserver, "memory-pressure", false);
}
}
private:
virtual ~SurfaceCacheImpl()
{
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (os) {
os->RemoveObserver(mMemoryPressureObserver, "memory-pressure");
}
UnregisterWeakMemoryReporter(this);
}
public:
void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }
Mutex& GetMutex() { return mMutex; }
InsertOutcome Insert(NotNull<ISurfaceProvider*> aProvider,
bool aSetAvailable)
{
// If this is a duplicate surface, refuse to replace the original.
// XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
// twice. We'll make this more efficient in bug 1185137.
LookupResult result = Lookup(aProvider->GetImageKey(),
aProvider->GetSurfaceKey(),
/* aMarkUsed = */ false);
if (MOZ_UNLIKELY(result)) {
return InsertOutcome::FAILURE_ALREADY_PRESENT;
}
if (result.Type() == MatchType::PENDING) {
RemoveEntry(aProvider->GetImageKey(), aProvider->GetSurfaceKey());
}
MOZ_ASSERT(result.Type() == MatchType::NOT_FOUND ||
result.Type() == MatchType::PENDING,
"A LookupResult with no surface should be NOT_FOUND or PENDING");
// If this is bigger than we can hold after discarding everything we can,
// refuse to cache it.
Cost cost = aProvider->LogicalSizeInBytes();
if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost))) {
mOverflowCount++;
return InsertOutcome::FAILURE;
}
// Remove elements in order of cost until we can fit this in the cache. Note
// that locked surfaces aren't in mCosts, so we never remove them here.
while (cost > mAvailableCost) {
MOZ_ASSERT(!mCosts.IsEmpty(),
"Removed everything and it still won't fit");
Remove(mCosts.LastElement().Surface());
}
// Locate the appropriate per-image cache. If there's not an existing cache
// for this image, create it.
RefPtr<ImageSurfaceCache> cache = GetImageCache(aProvider->GetImageKey());
if (!cache) {
cache = new ImageSurfaceCache;
mImageCaches.Put(aProvider->GetImageKey(), cache);
}
// If we were asked to mark the cache entry available, do so.
if (aSetAvailable) {
aProvider->Availability().SetAvailable();
}
NotNull<RefPtr<CachedSurface>> surface =
WrapNotNull(new CachedSurface(aProvider));
// We require that locking succeed if the image is locked and we're not
// inserting a placeholder; the caller may need to know this to handle
// errors correctly.
if (cache->IsLocked() && !surface->IsPlaceholder()) {
surface->SetLocked(true);
if (!surface->IsLocked()) {
return InsertOutcome::FAILURE;
}
}
// Insert.
MOZ_ASSERT(cost <= mAvailableCost, "Inserting despite too large a cost");
cache->Insert(surface);
StartTracking(surface);
return InsertOutcome::SUCCESS;
}
void Remove(NotNull<CachedSurface*> aSurface)
{
ImageKey imageKey = aSurface->GetImageKey();
RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
MOZ_ASSERT(cache, "Shouldn't try to remove a surface with no image cache");
// If the surface was not a placeholder, tell its image that we discarded it.
if (!aSurface->IsPlaceholder()) {
static_cast<Image*>(imageKey)->OnSurfaceDiscarded();
}
StopTracking(aSurface);
cache->Remove(aSurface);
// Remove the per-image cache if it's unneeded now. (Keep it if the image is
// locked, since the per-image cache is where we store that state.)
if (cache->IsEmpty() && !cache->IsLocked()) {
mImageCaches.Remove(imageKey);
}
}
void StartTracking(NotNull<CachedSurface*> aSurface)
{
CostEntry costEntry = aSurface->GetCostEntry();
MOZ_ASSERT(costEntry.GetCost() <= mAvailableCost,
"Cost too large and the caller didn't catch it");
mAvailableCost -= costEntry.GetCost();
if (aSurface->IsLocked()) {
mLockedCost += costEntry.GetCost();
MOZ_ASSERT(mLockedCost <= mMaxCost, "Locked more than we can hold?");
} else {
mCosts.InsertElementSorted(costEntry);
// This may fail during XPCOM shutdown, so we need to ensure the object is
// tracked before calling RemoveObject in StopTracking.
mExpirationTracker.AddObject(aSurface);
}
}
void StopTracking(NotNull<CachedSurface*> aSurface)
{
CostEntry costEntry = aSurface->GetCostEntry();
if (aSurface->IsLocked()) {
MOZ_ASSERT(mLockedCost >= costEntry.GetCost(), "Costs don't balance");
mLockedCost -= costEntry.GetCost();
// XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
MOZ_ASSERT(!mCosts.Contains(costEntry),
"Shouldn't have a cost entry for a locked surface");
} else {
if (MOZ_LIKELY(aSurface->GetExpirationState()->IsTracked())) {
mExpirationTracker.RemoveObject(aSurface);
} else {
// Our call to AddObject must have failed in StartTracking; most likely
// we're in XPCOM shutdown right now.
NS_ASSERTION(ShutdownTracker::ShutdownHasStarted(),
"Not expiration-tracking an unlocked surface!");
}
DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
}
mAvailableCost += costEntry.GetCost();
MOZ_ASSERT(mAvailableCost <= mMaxCost,
"More available cost than we started with");
}
LookupResult Lookup(const ImageKey aImageKey,
const SurfaceKey& aSurfaceKey,
bool aMarkUsed = true)
{
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache) {
// No cached surfaces for this image.
return LookupResult(MatchType::NOT_FOUND);
}
RefPtr<CachedSurface> surface = cache->Lookup(aSurfaceKey);
if (!surface) {
// Lookup in the per-image cache missed.
return LookupResult(MatchType::NOT_FOUND);
}
if (surface->IsPlaceholder()) {
return LookupResult(MatchType::PENDING);
}
DrawableSurface drawableSurface = surface->GetDrawableSurface();
if (!drawableSurface) {
// The surface was released by the operating system. Remove the cache
// entry as well.
Remove(WrapNotNull(surface));
return LookupResult(MatchType::NOT_FOUND);
}
if (aMarkUsed) {
MarkUsed(WrapNotNull(surface), WrapNotNull(cache));
}
MOZ_ASSERT(surface->GetSurfaceKey() == aSurfaceKey,
"Lookup() not returning an exact match?");
return LookupResult(Move(drawableSurface), MatchType::EXACT);
}
LookupResult LookupBestMatch(const ImageKey aImageKey,
const SurfaceKey& aSurfaceKey)
{
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache) {
// No cached surfaces for this image.
return LookupResult(MatchType::NOT_FOUND);
}
// Repeatedly look up the best match, trying again if the resulting surface
// has been freed by the operating system, until we can either lock a
// surface for drawing or there are no matching surfaces left.
// XXX(seth): This is O(N^2), but N is expected to be very small. If we
// encounter a performance problem here we can revisit this.
RefPtr<CachedSurface> surface;
DrawableSurface drawableSurface;
MatchType matchType = MatchType::NOT_FOUND;
while (true) {
Tie(surface, matchType) = cache->LookupBestMatch(aSurfaceKey);
if (!surface) {
return LookupResult(matchType); // Lookup in the per-image cache missed.
}
drawableSurface = surface->GetDrawableSurface();
if (drawableSurface) {
break;
}
// The surface was released by the operating system. Remove the cache
// entry as well.
Remove(WrapNotNull(surface));
}
MOZ_ASSERT_IF(matchType == MatchType::EXACT,
surface->GetSurfaceKey() == aSurfaceKey);
MOZ_ASSERT_IF(matchType == MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND ||
matchType == MatchType::SUBSTITUTE_BECAUSE_PENDING,
surface->GetSurfaceKey().SVGContext() == aSurfaceKey.SVGContext() &&
surface->GetSurfaceKey().Playback() == aSurfaceKey.Playback() &&
surface->GetSurfaceKey().Flags() == aSurfaceKey.Flags());
if (matchType == MatchType::EXACT) {
MarkUsed(WrapNotNull(surface), WrapNotNull(cache));
}
return LookupResult(Move(drawableSurface), matchType);
}
bool CanHold(const Cost aCost) const
{
return aCost <= mMaxCost;
}
size_t MaximumCapacity() const
{
return size_t(mMaxCost);
}
void SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider)
{
if (!aProvider->Availability().IsPlaceholder()) {
MOZ_ASSERT_UNREACHABLE("Calling SurfaceAvailable on non-placeholder");
return;
}
// Reinsert the provider, requesting that Insert() mark it available. This
// may or may not succeed, depending on whether some other decoder has
// beaten us to the punch and inserted a non-placeholder version of this
// surface first, but it's fine either way.
// XXX(seth): This could be implemented more efficiently; we should be able
// to just update our data structures without reinserting.
Insert(aProvider, /* aSetAvailable = */ true);
}
void LockImage(const ImageKey aImageKey)
{
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache) {
cache = new ImageSurfaceCache;
mImageCaches.Put(aImageKey, cache);
}
cache->SetLocked(true);
// We don't relock this image's existing surfaces right away; instead, the
// image should arrange for Lookup() to touch them if they are still useful.
}
void UnlockImage(const ImageKey aImageKey)
{
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache || !cache->IsLocked()) {
return; // Already unlocked.
}
cache->SetLocked(false);
DoUnlockSurfaces(WrapNotNull(cache));
}
void UnlockEntries(const ImageKey aImageKey)
{
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache || !cache->IsLocked()) {
return; // Already unlocked.
}
// (Note that we *don't* unlock the per-image cache here; that's the
// difference between this and UnlockImage.)
DoUnlockSurfaces(WrapNotNull(cache));
}
void RemoveImage(const ImageKey aImageKey)
{
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache) {
return; // No cached surfaces for this image, so nothing to do.
}
// Discard all of the cached surfaces for this image.
// XXX(seth): This is O(n^2) since for each item in the cache we are
// removing an element from the costs array. Since n is expected to be
// small, performance should be good, but if usage patterns change we should
// change the data structure used for mCosts.
for (auto iter = cache->ConstIter(); !iter.Done(); iter.Next()) {
StopTracking(WrapNotNull(iter.UserData()));
}
// The per-image cache isn't needed anymore, so remove it as well.
// This implicitly unlocks the image if it was locked.
mImageCaches.Remove(aImageKey);
}
void DiscardAll()
{
// Remove in order of cost because mCosts is an array and the other data
// structures are all hash tables. Note that locked surfaces are not
// removed, since they aren't present in mCosts.
while (!mCosts.IsEmpty()) {
Remove(mCosts.LastElement().Surface());
}
}
void DiscardForMemoryPressure()
{
// Compute our discardable cost. Since locked surfaces aren't discardable,
// we exclude them.
const Cost discardableCost = (mMaxCost - mAvailableCost) - mLockedCost;
MOZ_ASSERT(discardableCost <= mMaxCost, "Discardable cost doesn't add up");
// Our target is to raise our available cost by (1 / mDiscardFactor) of our
// discardable cost - in other words, we want to end up with about
// (discardableCost / mDiscardFactor) fewer bytes stored in the surface
// cache after we're done.
const Cost targetCost = mAvailableCost + (discardableCost / mDiscardFactor);
if (targetCost > mMaxCost - mLockedCost) {
MOZ_ASSERT_UNREACHABLE("Target cost is more than we can discard");
DiscardAll();
return;
}
// Discard surfaces until we've reduced our cost to our target cost.
while (mAvailableCost < targetCost) {
MOZ_ASSERT(!mCosts.IsEmpty(), "Removed everything and still not done");
Remove(mCosts.LastElement().Surface());
}
}
void LockSurface(NotNull<CachedSurface*> aSurface)
{
if (aSurface->IsPlaceholder() || aSurface->IsLocked()) {
return;
}
StopTracking(aSurface);
// Lock the surface. This can fail.
aSurface->SetLocked(true);
StartTracking(aSurface);
}
NS_IMETHOD
CollectReports(nsIHandleReportCallback* aHandleReport,
nsISupports* aData,
bool aAnonymize) override
{
MutexAutoLock lock(mMutex);
// We have explicit memory reporting for the surface cache which is more
// accurate than the cost metrics we report here, but these metrics are
// still useful to report, since they control the cache's behavior.
MOZ_COLLECT_REPORT(
"imagelib-surface-cache-estimated-total",
KIND_OTHER, UNITS_BYTES, (mMaxCost - mAvailableCost),
"Estimated total memory used by the imagelib surface cache.");
MOZ_COLLECT_REPORT(
"imagelib-surface-cache-estimated-locked",
KIND_OTHER, UNITS_BYTES, mLockedCost,
"Estimated memory used by locked surfaces in the imagelib surface cache.");
MOZ_COLLECT_REPORT(
"imagelib-surface-cache-overflow-count",
KIND_OTHER, UNITS_COUNT, mOverflowCount,
"Count of how many times the surface cache has hit its capacity and been "
"unable to insert a new surface.");
return NS_OK;
}
void CollectSizeOfSurfaces(const ImageKey aImageKey,
nsTArray<SurfaceMemoryCounter>& aCounters,
MallocSizeOf aMallocSizeOf)
{
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache) {
return; // No surfaces for this image.
}
// Report all surfaces in the per-image cache.
CachedSurface::SurfaceMemoryReport report(aCounters, aMallocSizeOf);
for (auto iter = cache->ConstIter(); !iter.Done(); iter.Next()) {
report.Add(WrapNotNull(iter.UserData()));
}
}
private:
already_AddRefed<ImageSurfaceCache> GetImageCache(const ImageKey aImageKey)
{
RefPtr<ImageSurfaceCache> imageCache;
mImageCaches.Get(aImageKey, getter_AddRefs(imageCache));
return imageCache.forget();
}
// This is similar to CanHold() except that it takes into account the costs of
// locked surfaces. It's used internally in Insert(), but it's not exposed
// publicly because we permit multithreaded access to the surface cache, which
// means that the result would be meaningless: another thread could insert a
// surface or lock an image at any time.
bool CanHoldAfterDiscarding(const Cost aCost) const
{
return aCost <= mMaxCost - mLockedCost;
}
void MarkUsed(NotNull<CachedSurface*> aSurface,
NotNull<ImageSurfaceCache*> aCache)
{
if (aCache->IsLocked()) {
LockSurface(aSurface);
} else {
mExpirationTracker.MarkUsed(aSurface);
}
}
void DoUnlockSurfaces(NotNull<ImageSurfaceCache*> aCache)
{
// Unlock all the surfaces the per-image cache is holding.
for (auto iter = aCache->ConstIter(); !iter.Done(); iter.Next()) {
NotNull<CachedSurface*> surface = WrapNotNull(iter.UserData());
if (surface->IsPlaceholder() || !surface->IsLocked()) {
continue;
}
StopTracking(surface);
surface->SetLocked(false);
StartTracking(surface);
}
}
void RemoveEntry(const ImageKey aImageKey,
const SurfaceKey& aSurfaceKey)
{
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache) {
return; // No cached surfaces for this image.
}
RefPtr<CachedSurface> surface = cache->Lookup(aSurfaceKey);
if (!surface) {
return; // Lookup in the per-image cache missed.
}
Remove(WrapNotNull(surface));
}
struct SurfaceTracker : public nsExpirationTracker<CachedSurface, 2>
{
explicit SurfaceTracker(uint32_t aSurfaceCacheExpirationTimeMS)
: nsExpirationTracker<CachedSurface, 2>(aSurfaceCacheExpirationTimeMS,
"SurfaceTracker")
{ }
protected:
virtual void NotifyExpired(CachedSurface* aSurface) override
{
if (sInstance) {
MutexAutoLock lock(sInstance->GetMutex());
sInstance->Remove(WrapNotNull(aSurface));
}
}
};
struct MemoryPressureObserver : public nsIObserver
{
NS_DECL_ISUPPORTS
NS_IMETHOD Observe(nsISupports*,
const char* aTopic,
const char16_t*) override
{
if (sInstance && strcmp(aTopic, "memory-pressure") == 0) {
MutexAutoLock lock(sInstance->GetMutex());
sInstance->DiscardForMemoryPressure();
}
return NS_OK;
}
private:
virtual ~MemoryPressureObserver() { }
};
nsTArray<CostEntry> mCosts;
nsRefPtrHashtable<nsPtrHashKey<Image>,
ImageSurfaceCache> mImageCaches;
SurfaceTracker mExpirationTracker;
RefPtr<MemoryPressureObserver> mMemoryPressureObserver;
Mutex mMutex;
const uint32_t mDiscardFactor;
const Cost mMaxCost;
Cost mAvailableCost;
Cost mLockedCost;
size_t mOverflowCount;
};
NS_IMPL_ISUPPORTS(SurfaceCacheImpl, nsIMemoryReporter)
NS_IMPL_ISUPPORTS(SurfaceCacheImpl::MemoryPressureObserver, nsIObserver)
///////////////////////////////////////////////////////////////////////////////
// Public API
///////////////////////////////////////////////////////////////////////////////
/* static */ void
SurfaceCache::Initialize()
{
// Initialize preferences.
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(!sInstance, "Shouldn't initialize more than once");
// See gfxPrefs for the default values of these preferences.
// Length of time before an unused surface is removed from the cache, in
// milliseconds.
uint32_t surfaceCacheExpirationTimeMS =
gfxPrefs::ImageMemSurfaceCacheMinExpirationMS();
// What fraction of the memory used by the surface cache we should discard
// when we get a memory pressure notification. This value is interpreted as
// 1/N, so 1 means to discard everything, 2 means to discard about half of the
// memory we're using, and so forth. We clamp it to avoid division by zero.
uint32_t surfaceCacheDiscardFactor =
max(gfxPrefs::ImageMemSurfaceCacheDiscardFactor(), 1u);
// Maximum size of the surface cache, in kilobytes.
uint64_t surfaceCacheMaxSizeKB = gfxPrefs::ImageMemSurfaceCacheMaxSizeKB();
// A knob determining the actual size of the surface cache. Currently the
// cache is (size of main memory) / (surface cache size factor) KB
// or (surface cache max size) KB, whichever is smaller. The formula
// may change in the future, though.
// For example, a value of 4 would yield a 256MB cache on a 1GB machine.
// The smallest machines we are likely to run this code on have 256MB
// of memory, which would yield a 64MB cache on this setting.
// We clamp this value to avoid division by zero.
uint32_t surfaceCacheSizeFactor =
max(gfxPrefs::ImageMemSurfaceCacheSizeFactor(), 1u);
// Compute the size of the surface cache.
uint64_t memorySize = PR_GetPhysicalMemorySize();
if (memorySize == 0) {
MOZ_ASSERT_UNREACHABLE("PR_GetPhysicalMemorySize not implemented here");
memorySize = 256 * 1024 * 1024; // Fall back to 256MB.
}
uint64_t proposedSize = memorySize / surfaceCacheSizeFactor;
uint64_t surfaceCacheSizeBytes = min(proposedSize,
surfaceCacheMaxSizeKB * 1024);
uint32_t finalSurfaceCacheSizeBytes =
min(surfaceCacheSizeBytes, uint64_t(UINT32_MAX));
// Create the surface cache singleton with the requested settings. Note that
// the size is a limit that the cache may not grow beyond, but we do not
// actually allocate any storage for surfaces at this time.
sInstance = new SurfaceCacheImpl(surfaceCacheExpirationTimeMS,
surfaceCacheDiscardFactor,
finalSurfaceCacheSizeBytes);
sInstance->InitMemoryReporter();
}
/* static */ void
SurfaceCache::Shutdown()
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(sInstance, "No singleton - was Shutdown() called twice?");
sInstance = nullptr;
}
/* static */ LookupResult
SurfaceCache::Lookup(const ImageKey aImageKey,
const SurfaceKey& aSurfaceKey)
{
if (!sInstance) {
return LookupResult(MatchType::NOT_FOUND);
}
MutexAutoLock lock(sInstance->GetMutex());
return sInstance->Lookup(aImageKey, aSurfaceKey);
}
/* static */ LookupResult
SurfaceCache::LookupBestMatch(const ImageKey aImageKey,
const SurfaceKey& aSurfaceKey)
{
if (!sInstance) {
return LookupResult(MatchType::NOT_FOUND);
}
MutexAutoLock lock(sInstance->GetMutex());
return sInstance->LookupBestMatch(aImageKey, aSurfaceKey);
}
/* static */ InsertOutcome
SurfaceCache::Insert(NotNull<ISurfaceProvider*> aProvider)
{
if (!sInstance) {
return InsertOutcome::FAILURE;
}
MutexAutoLock lock(sInstance->GetMutex());
return sInstance->Insert(aProvider, /* aSetAvailable = */ false);
}
/* static */ bool
SurfaceCache::CanHold(const IntSize& aSize, uint32_t aBytesPerPixel /* = 4 */)
{
if (!sInstance) {
return false;
}
Cost cost = ComputeCost(aSize, aBytesPerPixel);
return sInstance->CanHold(cost);
}
/* static */ bool
SurfaceCache::CanHold(size_t aSize)
{
if (!sInstance) {
return false;
}
return sInstance->CanHold(aSize);
}
/* static */ void
SurfaceCache::SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider)
{
if (!sInstance) {
return;
}
MutexAutoLock lock(sInstance->GetMutex());
sInstance->SurfaceAvailable(aProvider);
}
/* static */ void
SurfaceCache::LockImage(const ImageKey aImageKey)
{
if (sInstance) {
MutexAutoLock lock(sInstance->GetMutex());
return sInstance->LockImage(aImageKey);
}
}
/* static */ void
SurfaceCache::UnlockImage(const ImageKey aImageKey)
{
if (sInstance) {
MutexAutoLock lock(sInstance->GetMutex());
return sInstance->UnlockImage(aImageKey);
}
}
/* static */ void
SurfaceCache::UnlockEntries(const ImageKey aImageKey)
{
if (sInstance) {
MutexAutoLock lock(sInstance->GetMutex());
return sInstance->UnlockEntries(aImageKey);
}
}
/* static */ void
SurfaceCache::RemoveImage(const ImageKey aImageKey)
{
if (sInstance) {
MutexAutoLock lock(sInstance->GetMutex());
sInstance->RemoveImage(aImageKey);
}
}
/* static */ void
SurfaceCache::DiscardAll()
{
if (sInstance) {
MutexAutoLock lock(sInstance->GetMutex());
sInstance->DiscardAll();
}
}
/* static */ void
SurfaceCache::CollectSizeOfSurfaces(const ImageKey aImageKey,
nsTArray<SurfaceMemoryCounter>& aCounters,
MallocSizeOf aMallocSizeOf)
{
if (!sInstance) {
return;
}
MutexAutoLock lock(sInstance->GetMutex());
return sInstance->CollectSizeOfSurfaces(aImageKey, aCounters, aMallocSizeOf);
}
/* static */ size_t
SurfaceCache::MaximumCapacity()
{
if (!sInstance) {
return 0;
}
MutexAutoLock lock(sInstance->GetMutex());
return sInstance->MaximumCapacity();
}
} // namespace image
} // namespace mozilla