gecko-dev/content/media/MediaResource.h

481 lines
19 KiB
C++

/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if !defined(MediaResource_h_)
#define MediaResource_h_
#include "mozilla/Mutex.h"
#include "mozilla/XPCOM.h"
#include "nsIChannel.h"
#include "nsIPrincipal.h"
#include "nsIURI.h"
#include "nsIStreamListener.h"
#include "nsIChannelEventSink.h"
#include "nsIInterfaceRequestor.h"
#include "nsMediaCache.h"
#include "mozilla/Attributes.h"
// For HTTP seeking, if number of bytes needing to be
// seeked forward is less than this value then a read is
// done rather than a byte range request.
static const PRInt64 SEEK_VS_READ_THRESHOLD = 32*1024;
static const PRUint32 HTTP_REQUESTED_RANGE_NOT_SATISFIABLE_CODE = 416;
class nsMediaDecoder;
namespace mozilla {
/**
* This class is useful for estimating rates of data passing through
* some channel. The idea is that activity on the channel "starts"
* and "stops" over time. At certain times data passes through the
* channel (usually while the channel is active; data passing through
* an inactive channel is ignored). The GetRate() function computes
* an estimate of the "current rate" of the channel, which is some
* kind of average of the data passing through over the time the
* channel is active.
*
* All methods take "now" as a parameter so the user of this class can
* control the timeline used.
*/
class MediaChannelStatistics {
public:
MediaChannelStatistics() { Reset(); }
void Reset() {
mLastStartTime = TimeStamp();
mAccumulatedTime = TimeDuration(0);
mAccumulatedBytes = 0;
mIsStarted = false;
}
void Start(TimeStamp aNow) {
if (mIsStarted)
return;
mLastStartTime = aNow;
mIsStarted = true;
}
void Stop(TimeStamp aNow) {
if (!mIsStarted)
return;
mAccumulatedTime += aNow - mLastStartTime;
mIsStarted = false;
}
void AddBytes(PRInt64 aBytes) {
if (!mIsStarted) {
// ignore this data, it may be related to seeking or some other
// operation we don't care about
return;
}
mAccumulatedBytes += aBytes;
}
double GetRateAtLastStop(bool* aReliable) {
double seconds = mAccumulatedTime.ToSeconds();
*aReliable = seconds >= 1.0;
if (seconds <= 0.0)
return 0.0;
return static_cast<double>(mAccumulatedBytes)/seconds;
}
double GetRate(TimeStamp aNow, bool* aReliable) {
TimeDuration time = mAccumulatedTime;
if (mIsStarted) {
time += aNow - mLastStartTime;
}
double seconds = time.ToSeconds();
*aReliable = seconds >= 3.0;
if (seconds <= 0.0)
return 0.0;
return static_cast<double>(mAccumulatedBytes)/seconds;
}
private:
PRInt64 mAccumulatedBytes;
TimeDuration mAccumulatedTime;
TimeStamp mLastStartTime;
bool mIsStarted;
};
// Represents a section of contiguous media, with a start and end offset.
// Used to denote ranges of data which are cached.
class MediaByteRange {
public:
MediaByteRange() : mStart(0), mEnd(0) {}
MediaByteRange(PRInt64 aStart, PRInt64 aEnd)
: mStart(aStart), mEnd(aEnd)
{
NS_ASSERTION(mStart < mEnd, "Range should end after start!");
}
bool IsNull() const {
return mStart == 0 && mEnd == 0;
}
PRInt64 mStart, mEnd;
};
/**
* Provides a thread-safe, seek/read interface to resources
* loaded from a URI. Uses nsMediaCache to cache data received over
* Necko's async channel API, thus resolving the mismatch between clients
* that need efficient random access to the data and protocols that do not
* support efficient random access, such as HTTP.
*
* Instances of this class must be created on the main thread.
* Most methods must be called on the main thread only. Read, Seek and
* Tell must only be called on non-main threads. In the case of the Ogg
* Decoder they are called on the Decode thread for example. You must
* ensure that no threads are calling these methods once Close is called.
*
* Instances of this class are explicitly managed. 'delete' it when done.
*
* The generic implementation of this class is ChannelMediaResource, which can
* handle any URI for which Necko supports AsyncOpen.
* The 'file:' protocol can be implemented efficiently with direct random
* access, so the FileMediaResource implementation class bypasses the cache.
* MediaResource::Create automatically chooses the best implementation class.
*/
class MediaResource
{
public:
virtual ~MediaResource()
{
MOZ_COUNT_DTOR(MediaResource);
}
// The following can be called on the main thread only:
// Get the URI
nsIURI* URI() const { return mURI; }
// Close the resource, stop any listeners, channels, etc.
// Cancels any currently blocking Read request and forces that request to
// return an error.
virtual nsresult Close() = 0;
// Suspend any downloads that are in progress.
// If aCloseImmediately is set, resources should be released immediately
// since we don't expect to resume again any time soon. Otherwise we
// may resume again soon so resources should be held for a little
// while.
virtual void Suspend(bool aCloseImmediately) = 0;
// Resume any downloads that have been suspended.
virtual void Resume() = 0;
// Get the current principal for the channel
virtual already_AddRefed<nsIPrincipal> GetCurrentPrincipal() = 0;
// If this returns false, then we shouldn't try to clone this MediaResource
// because its underlying resources are not suitable for reuse (e.g.
// because the underlying connection has been lost, or this resource
// just can't be safely cloned). If this returns true, CloneData could
// still fail. If this returns false, CloneData should not be called.
virtual bool CanClone() { return false; }
// Create a new stream of the same type that refers to the same URI
// with a new channel. Any cached data associated with the original
// stream should be accessible in the new stream too.
virtual MediaResource* CloneData(nsMediaDecoder* aDecoder) = 0;
// These methods are called off the main thread.
// The mode is initially MODE_PLAYBACK.
virtual void SetReadMode(nsMediaCacheStream::ReadMode aMode) = 0;
// This is the client's estimate of the playback rate assuming
// the media plays continuously. The cache can't guess this itself
// because it doesn't know when the decoder was paused, buffering, etc.
virtual void SetPlaybackRate(PRUint32 aBytesPerSecond) = 0;
// Read up to aCount bytes from the stream. The buffer must have
// enough room for at least aCount bytes. Stores the number of
// actual bytes read in aBytes (0 on end of file).
// May read less than aCount bytes if the number of
// available bytes is less than aCount. Always check *aBytes after
// read, and call again if necessary.
virtual nsresult Read(char* aBuffer, PRUint32 aCount, PRUint32* aBytes) = 0;
// Seek to the given bytes offset in the stream. aWhence can be
// one of:
// NS_SEEK_SET
// NS_SEEK_CUR
// NS_SEEK_END
//
// In the Http strategy case the cancel will cause the http
// channel's listener to close the pipe, forcing an i/o error on any
// blocked read. This will allow the decode thread to complete the
// event.
//
// In the case of a seek in progress, the byte range request creates
// a new listener. This is done on the main thread via seek
// synchronously dispatching an event. This avoids the issue of us
// closing the listener but an outstanding byte range request
// creating a new one. They run on the same thread so no explicit
// synchronisation is required. The byte range request checks for
// the cancel flag and does not create a new channel or listener if
// we are cancelling.
//
// The default strategy does not do any seeking - the only issue is
// a blocked read which it handles by causing the listener to close
// the pipe, as per the http case.
//
// The file strategy doesn't block for any great length of time so
// is fine for a no-op cancel.
virtual nsresult Seek(PRInt32 aWhence, PRInt64 aOffset) = 0;
// Report the current offset in bytes from the start of the stream.
virtual PRInt64 Tell() = 0;
// Moves any existing channel loads into the background, so that they don't
// block the load event. Any new loads initiated (for example to seek)
// will also be in the background.
void MoveLoadsToBackground();
// Ensures that the value returned by IsSuspendedByCache below is up to date
// (i.e. the cache has examined this stream at least once).
virtual void EnsureCacheUpToDate() {}
// These can be called on any thread.
// Cached blocks associated with this stream will not be evicted
// while the stream is pinned.
virtual void Pin() = 0;
virtual void Unpin() = 0;
// Get the estimated download rate in bytes per second (assuming no
// pausing of the channel is requested by Gecko).
// *aIsReliable is set to true if we think the estimate is useful.
virtual double GetDownloadRate(bool* aIsReliable) = 0;
// Get the length of the stream in bytes. Returns -1 if not known.
// This can change over time; after a seek operation, a misbehaving
// server may give us a resource of a different length to what it had
// reported previously --- or it may just lie in its Content-Length
// header and give us more or less data than it reported. We will adjust
// the result of GetLength to reflect the data that's actually arriving.
virtual PRInt64 GetLength() = 0;
// Returns the offset of the first byte of cached data at or after aOffset,
// or -1 if there is no such cached data.
virtual PRInt64 GetNextCachedData(PRInt64 aOffset) = 0;
// Returns the end of the bytes starting at the given offset
// which are in cache.
virtual PRInt64 GetCachedDataEnd(PRInt64 aOffset) = 0;
// Returns true if all the data from aOffset to the end of the stream
// is in cache. If the end of the stream is not known, we return false.
virtual bool IsDataCachedToEndOfResource(PRInt64 aOffset) = 0;
// Returns true if this stream is suspended by the cache because the
// cache is full. If true then the decoder should try to start consuming
// data, otherwise we may not be able to make progress.
// nsMediaDecoder::NotifySuspendedStatusChanged is called when this
// changes.
// For resources using the media cache, this returns true only when all
// streams for the same resource are all suspended.
// If aActiveResource is non-null, fills it with a pointer to a stream
// for this resource that is not suspended or ended.
virtual bool IsSuspendedByCache(MediaResource** aActiveResource) = 0;
// Returns true if this stream has been suspended.
virtual bool IsSuspended() = 0;
// Reads only data which is cached in the media cache. If you try to read
// any data which overlaps uncached data, or if aCount bytes otherwise can't
// be read, this function will return failure. This function be called from
// any thread, and it is the only read operation which is safe to call on
// the main thread, since it's guaranteed to be non blocking.
virtual nsresult ReadFromCache(char* aBuffer,
PRInt64 aOffset,
PRUint32 aCount) = 0;
/**
* Create a resource, reading data from the channel. Call on main thread only.
* The caller must follow up by calling resource->Open().
*/
static MediaResource* Create(nsMediaDecoder* aDecoder, nsIChannel* aChannel);
/**
* Open the stream. This creates a stream listener and returns it in
* aStreamListener; this listener needs to be notified of incoming data.
*/
virtual nsresult Open(nsIStreamListener** aStreamListener) = 0;
/**
* Fills aRanges with MediaByteRanges representing the data which is cached
* in the media cache. Stream should be pinned during call and while
* aRanges is being used.
*/
virtual nsresult GetCachedRanges(nsTArray<MediaByteRange>& aRanges) = 0;
protected:
MediaResource(nsMediaDecoder* aDecoder, nsIChannel* aChannel, nsIURI* aURI) :
mDecoder(aDecoder),
mChannel(aChannel),
mURI(aURI),
mLoadInBackground(false)
{
MOZ_COUNT_CTOR(MediaResource);
}
// Set the request's load flags to aFlags. If the request is part of a
// load group, the request is removed from the group, the flags are set, and
// then the request is added back to the load group.
void ModifyLoadFlags(nsLoadFlags aFlags);
// This is not an nsCOMPointer to prevent a circular reference
// between the decoder to the media stream object. The stream never
// outlives the lifetime of the decoder.
nsMediaDecoder* mDecoder;
// Channel used to download the media data. Must be accessed
// from the main thread only.
nsCOMPtr<nsIChannel> mChannel;
// URI in case the stream needs to be re-opened. Access from
// main thread only.
nsCOMPtr<nsIURI> mURI;
// True if MoveLoadsToBackground() has been called, i.e. the load event
// has been fired, and all channel loads will be in the background.
bool mLoadInBackground;
};
/**
* This is the MediaResource implementation that wraps Necko channels.
* Much of its functionality is actually delegated to nsMediaCache via
* an underlying nsMediaCacheStream.
*
* All synchronization is performed by nsMediaCacheStream; all off-main-
* thread operations are delegated directly to that object.
*/
class ChannelMediaResource : public MediaResource
{
public:
ChannelMediaResource(nsMediaDecoder* aDecoder, nsIChannel* aChannel, nsIURI* aURI);
~ChannelMediaResource();
// These are called on the main thread by nsMediaCache. These must
// not block or grab locks, because the media cache is holding its lock.
// Notify that data is available from the cache. This can happen even
// if this stream didn't read any data, since another stream might have
// received data for the same resource.
void CacheClientNotifyDataReceived();
// Notify that we reached the end of the stream. This can happen even
// if this stream didn't read any data, since another stream might have
// received data for the same resource.
void CacheClientNotifyDataEnded(nsresult aStatus);
// Notify that the principal for the cached resource changed.
void CacheClientNotifyPrincipalChanged();
// These are called on the main thread by nsMediaCache. These shouldn't block,
// but they may grab locks --- the media cache is not holding its lock
// when these are called.
// Start a new load at the given aOffset. The old load is cancelled
// and no more data from the old load will be notified via
// nsMediaCacheStream::NotifyDataReceived/Ended.
// This can fail.
nsresult CacheClientSeek(PRInt64 aOffset, bool aResume);
// Suspend the current load since data is currently not wanted
nsresult CacheClientSuspend();
// Resume the current load since data is wanted again
nsresult CacheClientResume();
// Main thread
virtual nsresult Open(nsIStreamListener** aStreamListener);
virtual nsresult Close();
virtual void Suspend(bool aCloseImmediately);
virtual void Resume();
virtual already_AddRefed<nsIPrincipal> GetCurrentPrincipal();
// Return true if the stream has been closed.
bool IsClosed() const { return mCacheStream.IsClosed(); }
virtual bool CanClone();
virtual MediaResource* CloneData(nsMediaDecoder* aDecoder);
virtual nsresult ReadFromCache(char* aBuffer, PRInt64 aOffset, PRUint32 aCount);
virtual void EnsureCacheUpToDate();
// Other thread
virtual void SetReadMode(nsMediaCacheStream::ReadMode aMode);
virtual void SetPlaybackRate(PRUint32 aBytesPerSecond);
virtual nsresult Read(char* aBuffer, PRUint32 aCount, PRUint32* aBytes);
virtual nsresult Seek(PRInt32 aWhence, PRInt64 aOffset);
virtual PRInt64 Tell();
// Any thread
virtual void Pin();
virtual void Unpin();
virtual double GetDownloadRate(bool* aIsReliable);
virtual PRInt64 GetLength();
virtual PRInt64 GetNextCachedData(PRInt64 aOffset);
virtual PRInt64 GetCachedDataEnd(PRInt64 aOffset);
virtual bool IsDataCachedToEndOfResource(PRInt64 aOffset);
virtual bool IsSuspendedByCache(MediaResource** aActiveResource);
virtual bool IsSuspended();
class Listener MOZ_FINAL : public nsIStreamListener,
public nsIInterfaceRequestor,
public nsIChannelEventSink
{
public:
Listener(ChannelMediaResource* aResource) : mResource(aResource) {}
NS_DECL_ISUPPORTS
NS_DECL_NSIREQUESTOBSERVER
NS_DECL_NSISTREAMLISTENER
NS_DECL_NSICHANNELEVENTSINK
NS_DECL_NSIINTERFACEREQUESTOR
void Revoke() { mResource = nsnull; }
private:
ChannelMediaResource* mResource;
};
friend class Listener;
nsresult GetCachedRanges(nsTArray<MediaByteRange>& aRanges);
protected:
// These are called on the main thread by Listener.
nsresult OnStartRequest(nsIRequest* aRequest);
nsresult OnStopRequest(nsIRequest* aRequest, nsresult aStatus);
nsresult OnDataAvailable(nsIRequest* aRequest,
nsIInputStream* aStream,
PRUint32 aCount);
nsresult OnChannelRedirect(nsIChannel* aOld, nsIChannel* aNew, PRUint32 aFlags);
// Opens the channel, using an HTTP byte range request to start at mOffset
// if possible. Main thread only.
nsresult OpenChannel(nsIStreamListener** aStreamListener);
nsresult RecreateChannel();
// Add headers to HTTP request. Main thread only.
void SetupChannelHeaders();
// Closes the channel. Main thread only.
void CloseChannel();
void DoNotifyDataReceived();
static NS_METHOD CopySegmentToCache(nsIInputStream *aInStream,
void *aClosure,
const char *aFromSegment,
PRUint32 aToOffset,
PRUint32 aCount,
PRUint32 *aWriteCount);
// Suspend the channel only if the channels is currently downloading data.
// If it isn't we set a flag, mIgnoreResume, so that PossiblyResume knows
// whether to acutually resume or not.
void PossiblySuspend();
// Resume from a suspend if we actually suspended (See PossiblySuspend).
void PossiblyResume();
// Main thread access only
PRInt64 mOffset;
nsRefPtr<Listener> mListener;
// A data received event for the decoder that has been dispatched but has
// not yet been processed.
nsRevocableEventPtr<nsRunnableMethod<ChannelMediaResource, void, false> > mDataReceivedEvent;
PRUint32 mSuspendCount;
// When this flag is set, if we get a network error we should silently
// reopen the stream.
bool mReopenOnError;
// When this flag is set, we should not report the next close of the
// channel.
bool mIgnoreClose;
// Any thread access
nsMediaCacheStream mCacheStream;
// This lock protects mChannelStatistics
Mutex mLock;
MediaChannelStatistics mChannelStatistics;
// True if we couldn't suspend the stream and we therefore don't want
// to resume later. This is usually due to the channel not being in the
// isPending state at the time of the suspend request.
bool mIgnoreResume;
};
}
#endif