gecko-dev/content/media/AudioNodeStream.cpp
Karl Tomlinson fec6395878 b=910174 add DelayNode's tail-time reference as soon as the engine receives sound r=ehsan
This removes the dependence on AllInputsFinished() which didn't return true
for many input types.

The DelayProcessor is no longer continuously reset (bug 921457) and the
reference is now correctly added again when all inputs are finished and then
new inputs are connected.

--HG--
extra : rebase_source : b85c62305a6fcfce57bd40a11edaeaaf2a63c188
2013-10-01 09:50:04 +13:00

504 lines
16 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioNodeStream.h"
#include "MediaStreamGraphImpl.h"
#include "AudioNodeEngine.h"
#include "ThreeDPoint.h"
#include "AudioChannelFormat.h"
#include "AudioParamTimeline.h"
using namespace mozilla::dom;
namespace mozilla {
/**
* An AudioNodeStream produces a single audio track with ID
* AUDIO_NODE_STREAM_TRACK_ID. This track has rate AudioContext::sIdealAudioRate
* for regular audio contexts, and the rate requested by the web content
* for offline audio contexts.
* Each chunk in the track is a single block of WEBAUDIO_BLOCK_SIZE samples.
* Note: This must be a different value than MEDIA_STREAM_DEST_TRACK_ID
*/
static const int AUDIO_NODE_STREAM_TRACK_ID = 1;
AudioNodeStream::~AudioNodeStream()
{
MOZ_COUNT_DTOR(AudioNodeStream);
}
void
AudioNodeStream::SetStreamTimeParameter(uint32_t aIndex, MediaStream* aRelativeToStream,
double aStreamTime)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, MediaStream* aRelativeToStream,
double aStreamTime)
: ControlMessage(aStream), mStreamTime(aStreamTime),
mRelativeToStream(aRelativeToStream), mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->
SetStreamTimeParameterImpl(mIndex, mRelativeToStream, mStreamTime);
}
double mStreamTime;
MediaStream* mRelativeToStream;
uint32_t mIndex;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aIndex, aRelativeToStream, aStreamTime));
}
void
AudioNodeStream::SetStreamTimeParameterImpl(uint32_t aIndex, MediaStream* aRelativeToStream,
double aStreamTime)
{
TrackTicks ticks =
WebAudioUtils::ConvertDestinationStreamTimeToSourceStreamTime(
aStreamTime, this, aRelativeToStream);
mEngine->SetStreamTimeParameter(aIndex, ticks);
}
void
AudioNodeStream::SetDoubleParameter(uint32_t aIndex, double aValue)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, double aValue)
: ControlMessage(aStream), mValue(aValue), mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetDoubleParameter(mIndex, mValue);
}
double mValue;
uint32_t mIndex;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetInt32Parameter(uint32_t aIndex, int32_t aValue)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, int32_t aValue)
: ControlMessage(aStream), mValue(aValue), mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetInt32Parameter(mIndex, mValue);
}
int32_t mValue;
uint32_t mIndex;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetTimelineParameter(uint32_t aIndex,
const AudioParamTimeline& aValue)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex,
const AudioParamTimeline& aValue)
: ControlMessage(aStream),
mValue(aValue),
mSampleRate(aStream->SampleRate()),
mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetTimelineParameter(mIndex, mValue, mSampleRate);
}
AudioParamTimeline mValue;
TrackRate mSampleRate;
uint32_t mIndex;
};
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetThreeDPointParameter(uint32_t aIndex, const ThreeDPoint& aValue)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, const ThreeDPoint& aValue)
: ControlMessage(aStream), mValue(aValue), mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetThreeDPointParameter(mIndex, mValue);
}
ThreeDPoint mValue;
uint32_t mIndex;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetBuffer(already_AddRefed<ThreadSharedFloatArrayBufferList> aBuffer)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream,
already_AddRefed<ThreadSharedFloatArrayBufferList> aBuffer)
: ControlMessage(aStream), mBuffer(aBuffer) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetBuffer(mBuffer.forget());
}
nsRefPtr<ThreadSharedFloatArrayBufferList> mBuffer;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aBuffer));
}
void
AudioNodeStream::SetRawArrayData(nsTArray<float>& aData)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream,
nsTArray<float>& aData)
: ControlMessage(aStream)
{
mData.SwapElements(aData);
}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->SetRawArrayData(mData);
}
nsTArray<float> mData;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aData));
}
void
AudioNodeStream::SetChannelMixingParameters(uint32_t aNumberOfChannels,
ChannelCountMode aChannelCountMode,
ChannelInterpretation aChannelInterpretation)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream,
uint32_t aNumberOfChannels,
ChannelCountMode aChannelCountMode,
ChannelInterpretation aChannelInterpretation)
: ControlMessage(aStream),
mNumberOfChannels(aNumberOfChannels),
mChannelCountMode(aChannelCountMode),
mChannelInterpretation(aChannelInterpretation)
{}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->
SetChannelMixingParametersImpl(mNumberOfChannels, mChannelCountMode,
mChannelInterpretation);
}
uint32_t mNumberOfChannels;
ChannelCountMode mChannelCountMode;
ChannelInterpretation mChannelInterpretation;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aNumberOfChannels,
aChannelCountMode,
aChannelInterpretation));
}
void
AudioNodeStream::SetChannelMixingParametersImpl(uint32_t aNumberOfChannels,
ChannelCountMode aChannelCountMode,
ChannelInterpretation aChannelInterpretation)
{
// Make sure that we're not clobbering any significant bits by fitting these
// values in 16 bits.
MOZ_ASSERT(int(aChannelCountMode) < INT16_MAX);
MOZ_ASSERT(int(aChannelInterpretation) < INT16_MAX);
mNumberOfInputChannels = aNumberOfChannels;
mChannelCountMode = aChannelCountMode;
mChannelInterpretation = aChannelInterpretation;
}
uint32_t
AudioNodeStream::ComputeFinalOuputChannelCount(uint32_t aInputChannelCount)
{
switch (mChannelCountMode) {
case ChannelCountMode::Explicit:
// Disregard the channel count we've calculated from inputs, and just use
// mNumberOfInputChannels.
return mNumberOfInputChannels;
case ChannelCountMode::Clamped_max:
// Clamp the computed output channel count to mNumberOfInputChannels.
return std::min(aInputChannelCount, mNumberOfInputChannels);
default:
case ChannelCountMode::Max:
// Nothing to do here, just shut up the compiler warning.
return aInputChannelCount;
}
}
void
AudioNodeStream::ObtainInputBlock(AudioChunk& aTmpChunk, uint32_t aPortIndex)
{
uint32_t inputCount = mInputs.Length();
uint32_t outputChannelCount = 1;
nsAutoTArray<AudioChunk*,250> inputChunks;
for (uint32_t i = 0; i < inputCount; ++i) {
if (aPortIndex != mInputs[i]->InputNumber()) {
// This input is connected to a different port
continue;
}
MediaStream* s = mInputs[i]->GetSource();
AudioNodeStream* a = static_cast<AudioNodeStream*>(s);
MOZ_ASSERT(a == s->AsAudioNodeStream());
if (a->IsFinishedOnGraphThread() ||
a->IsAudioParamStream()) {
continue;
}
// It is possible for mLastChunks to be empty here, because `a` might be a
// AudioNodeStream that has not been scheduled yet, because it is further
// down the graph _but_ as a connection to this node. Because we enforce the
// presence of at least one DelayNode, with at least one block of delay, and
// because the output of a DelayNode when it has been fed less that
// `delayTime` amount of audio is silence, we can simply continue here,
// because this input would not influence the output of this node. Next
// iteration, a->mLastChunks.IsEmpty() will be false, and everthing will
// work as usual.
if (a->mLastChunks.IsEmpty()) {
continue;
}
AudioChunk* chunk = &a->mLastChunks[mInputs[i]->OutputNumber()];
MOZ_ASSERT(chunk);
if (chunk->IsNull() || chunk->mChannelData.IsEmpty()) {
continue;
}
inputChunks.AppendElement(chunk);
outputChannelCount =
GetAudioChannelsSuperset(outputChannelCount, chunk->mChannelData.Length());
}
outputChannelCount = ComputeFinalOuputChannelCount(outputChannelCount);
uint32_t inputChunkCount = inputChunks.Length();
if (inputChunkCount == 0 ||
(inputChunkCount == 1 && inputChunks[0]->mChannelData.Length() == 0)) {
aTmpChunk.SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
if (inputChunkCount == 1 &&
inputChunks[0]->mChannelData.Length() == outputChannelCount) {
aTmpChunk = *inputChunks[0];
return;
}
if (outputChannelCount == 0) {
aTmpChunk.SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
AllocateAudioBlock(outputChannelCount, &aTmpChunk);
// The static storage here should be 1KB, so it's fine
nsAutoTArray<float, GUESS_AUDIO_CHANNELS*WEBAUDIO_BLOCK_SIZE> downmixBuffer;
for (uint32_t i = 0; i < inputChunkCount; ++i) {
AccumulateInputChunk(i, *inputChunks[i], &aTmpChunk, &downmixBuffer);
}
}
void
AudioNodeStream::AccumulateInputChunk(uint32_t aInputIndex, const AudioChunk& aChunk,
AudioChunk* aBlock,
nsTArray<float>* aDownmixBuffer)
{
nsAutoTArray<const void*,GUESS_AUDIO_CHANNELS> channels;
UpMixDownMixChunk(&aChunk, aBlock->mChannelData.Length(), channels, *aDownmixBuffer);
for (uint32_t c = 0; c < channels.Length(); ++c) {
const float* inputData = static_cast<const float*>(channels[c]);
float* outputData = static_cast<float*>(const_cast<void*>(aBlock->mChannelData[c]));
if (inputData) {
if (aInputIndex == 0) {
AudioBlockCopyChannelWithScale(inputData, aChunk.mVolume, outputData);
} else {
AudioBlockAddChannelWithScale(inputData, aChunk.mVolume, outputData);
}
} else {
if (aInputIndex == 0) {
PodZero(outputData, WEBAUDIO_BLOCK_SIZE);
}
}
}
}
void
AudioNodeStream::UpMixDownMixChunk(const AudioChunk* aChunk,
uint32_t aOutputChannelCount,
nsTArray<const void*>& aOutputChannels,
nsTArray<float>& aDownmixBuffer)
{
static const float silenceChannel[WEBAUDIO_BLOCK_SIZE] = {0.f};
aOutputChannels.AppendElements(aChunk->mChannelData);
if (aOutputChannels.Length() < aOutputChannelCount) {
if (mChannelInterpretation == ChannelInterpretation::Speakers) {
AudioChannelsUpMix(&aOutputChannels, aOutputChannelCount, nullptr);
NS_ASSERTION(aOutputChannelCount == aOutputChannels.Length(),
"We called GetAudioChannelsSuperset to avoid this");
} else {
// Fill up the remaining aOutputChannels by zeros
for (uint32_t j = aOutputChannels.Length(); j < aOutputChannelCount; ++j) {
aOutputChannels.AppendElement(silenceChannel);
}
}
} else if (aOutputChannels.Length() > aOutputChannelCount) {
if (mChannelInterpretation == ChannelInterpretation::Speakers) {
nsAutoTArray<float*,GUESS_AUDIO_CHANNELS> outputChannels;
outputChannels.SetLength(aOutputChannelCount);
aDownmixBuffer.SetLength(aOutputChannelCount * WEBAUDIO_BLOCK_SIZE);
for (uint32_t j = 0; j < aOutputChannelCount; ++j) {
outputChannels[j] = &aDownmixBuffer[j * WEBAUDIO_BLOCK_SIZE];
}
AudioChannelsDownMix(aOutputChannels, outputChannels.Elements(),
aOutputChannelCount, WEBAUDIO_BLOCK_SIZE);
aOutputChannels.SetLength(aOutputChannelCount);
for (uint32_t j = 0; j < aOutputChannels.Length(); ++j) {
aOutputChannels[j] = outputChannels[j];
}
} else {
// Drop the remaining aOutputChannels
aOutputChannels.RemoveElementsAt(aOutputChannelCount,
aOutputChannels.Length() - aOutputChannelCount);
}
}
}
// The MediaStreamGraph guarantees that this is actually one block, for
// AudioNodeStreams.
void
AudioNodeStream::ProduceOutput(GraphTime aFrom, GraphTime aTo)
{
if (mMarkAsFinishedAfterThisBlock) {
// This stream was finished the last time that we looked at it, and all
// of the depending streams have finished their output as well, so now
// it's time to mark this stream as finished.
FinishOutput();
}
EnsureTrack(AUDIO_NODE_STREAM_TRACK_ID, mSampleRate);
uint16_t outputCount = std::max(uint16_t(1), mEngine->OutputCount());
mLastChunks.SetLength(outputCount);
if (mMuted) {
for (uint16_t i = 0; i < outputCount; ++i) {
mLastChunks[i].SetNull(WEBAUDIO_BLOCK_SIZE);
}
} else {
for (uint16_t i = 0; i < outputCount; ++i) {
mLastChunks[i].SetNull(0);
}
// We need to generate at least one input
uint16_t maxInputs = std::max(uint16_t(1), mEngine->InputCount());
OutputChunks inputChunks;
inputChunks.SetLength(maxInputs);
for (uint16_t i = 0; i < maxInputs; ++i) {
ObtainInputBlock(inputChunks[i], i);
}
bool finished = false;
if (maxInputs <= 1 && mEngine->OutputCount() <= 1) {
mEngine->ProduceAudioBlock(this, inputChunks[0], &mLastChunks[0], &finished);
} else {
mEngine->ProduceAudioBlocksOnPorts(this, inputChunks, mLastChunks, &finished);
}
if (finished) {
mMarkAsFinishedAfterThisBlock = true;
}
}
if (mDisabledTrackIDs.Contains(AUDIO_NODE_STREAM_TRACK_ID)) {
for (uint32_t i = 0; i < mLastChunks.Length(); ++i) {
mLastChunks[i].SetNull(WEBAUDIO_BLOCK_SIZE);
}
}
AdvanceOutputSegment();
}
void
AudioNodeStream::AdvanceOutputSegment()
{
StreamBuffer::Track* track = EnsureTrack(AUDIO_NODE_STREAM_TRACK_ID, mSampleRate);
AudioSegment* segment = track->Get<AudioSegment>();
if (mKind == MediaStreamGraph::EXTERNAL_STREAM) {
segment->AppendAndConsumeChunk(&mLastChunks[0]);
} else {
segment->AppendNullData(mLastChunks[0].GetDuration());
}
for (uint32_t j = 0; j < mListeners.Length(); ++j) {
MediaStreamListener* l = mListeners[j];
AudioChunk copyChunk = mLastChunks[0];
AudioSegment tmpSegment;
tmpSegment.AppendAndConsumeChunk(&copyChunk);
l->NotifyQueuedTrackChanges(Graph(), AUDIO_NODE_STREAM_TRACK_ID,
mSampleRate, segment->GetDuration(), 0,
tmpSegment);
}
}
TrackTicks
AudioNodeStream::GetCurrentPosition()
{
return EnsureTrack(AUDIO_NODE_STREAM_TRACK_ID, mSampleRate)->Get<AudioSegment>()->GetDuration();
}
void
AudioNodeStream::FinishOutput()
{
if (IsFinishedOnGraphThread()) {
return;
}
StreamBuffer::Track* track = EnsureTrack(AUDIO_NODE_STREAM_TRACK_ID, mSampleRate);
track->SetEnded();
FinishOnGraphThread();
for (uint32_t j = 0; j < mListeners.Length(); ++j) {
MediaStreamListener* l = mListeners[j];
AudioSegment emptySegment;
l->NotifyQueuedTrackChanges(Graph(), AUDIO_NODE_STREAM_TRACK_ID,
mSampleRate,
track->GetSegment()->GetDuration(),
MediaStreamListener::TRACK_EVENT_ENDED, emptySegment);
}
}
}