mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-06 17:16:12 +00:00
b6f4fbbe82
--HG-- extra : rebase_source : c5c8865774d32513cbed97b98b3084f04a61a7f1
1426 lines
44 KiB
C++
1426 lines
44 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* vim: set ts=8 sw=4 et tw=99 ft=cpp:
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef jshashtable_h_
|
|
#define jshashtable_h_
|
|
|
|
#include "TemplateLib.h"
|
|
#include "Utility.h"
|
|
|
|
namespace js {
|
|
|
|
class TempAllocPolicy;
|
|
|
|
/*****************************************************************************/
|
|
|
|
namespace detail {
|
|
|
|
template <class T, class HashPolicy, class AllocPolicy>
|
|
class HashTable;
|
|
|
|
template <class T>
|
|
class HashTableEntry {
|
|
HashNumber keyHash;
|
|
|
|
typedef typename tl::StripConst<T>::result NonConstT;
|
|
|
|
static const HashNumber sFreeKey = 0;
|
|
static const HashNumber sRemovedKey = 1;
|
|
static const HashNumber sCollisionBit = 1;
|
|
|
|
template <class, class, class> friend class HashTable;
|
|
|
|
static bool isLiveHash(HashNumber hash)
|
|
{
|
|
return hash > sRemovedKey;
|
|
}
|
|
|
|
public:
|
|
HashTableEntry() : keyHash(0), t() {}
|
|
HashTableEntry(MoveRef<HashTableEntry> rhs) : keyHash(rhs->keyHash), t(Move(rhs->t)) { }
|
|
void operator=(const HashTableEntry &rhs) { keyHash = rhs.keyHash; t = rhs.t; }
|
|
void operator=(MoveRef<HashTableEntry> rhs) { keyHash = rhs->keyHash; t = Move(rhs->t); }
|
|
|
|
NonConstT t;
|
|
|
|
bool isFree() const { return keyHash == sFreeKey; }
|
|
void setFree() { keyHash = sFreeKey; t = T(); }
|
|
bool isRemoved() const { return keyHash == sRemovedKey; }
|
|
void setRemoved() { keyHash = sRemovedKey; t = T(); }
|
|
bool isLive() const { return isLiveHash(keyHash); }
|
|
void setLive(HashNumber hn) { JS_ASSERT(isLiveHash(hn)); keyHash = hn; }
|
|
|
|
void setCollision() { JS_ASSERT(isLive()); keyHash |= sCollisionBit; }
|
|
void setCollision(HashNumber collisionBit) {
|
|
JS_ASSERT(isLive()); keyHash |= collisionBit;
|
|
}
|
|
void unsetCollision() { keyHash &= ~sCollisionBit; }
|
|
bool hasCollision() const { return keyHash & sCollisionBit; }
|
|
bool matchHash(HashNumber hn) { return (keyHash & ~sCollisionBit) == hn; }
|
|
HashNumber getKeyHash() const { JS_ASSERT(!hasCollision()); return keyHash; }
|
|
};
|
|
|
|
/*
|
|
* js::detail::HashTable is an implementation detail of the js::HashMap and
|
|
* js::HashSet templates. For js::Hash{Map,Set} API documentation and examples,
|
|
* skip to the end of the detail namespace.
|
|
*/
|
|
|
|
/* Reusable implementation of HashMap and HashSet. */
|
|
template <class T, class HashPolicy, class AllocPolicy>
|
|
class HashTable : private AllocPolicy
|
|
{
|
|
typedef typename tl::StripConst<T>::result NonConstT;
|
|
typedef typename HashPolicy::KeyType Key;
|
|
typedef typename HashPolicy::Lookup Lookup;
|
|
|
|
public:
|
|
typedef HashTableEntry<T> Entry;
|
|
|
|
/*
|
|
* A nullable pointer to a hash table element. A Ptr |p| can be tested
|
|
* either explicitly |if (p.found()) p->...| or using boolean conversion
|
|
* |if (p) p->...|. Ptr objects must not be used after any mutating hash
|
|
* table operations unless |generation()| is tested.
|
|
*/
|
|
class Ptr
|
|
{
|
|
friend class HashTable;
|
|
typedef void (Ptr::* ConvertibleToBool)();
|
|
void nonNull() {}
|
|
|
|
Entry *entry;
|
|
|
|
protected:
|
|
Ptr(Entry &entry) : entry(&entry) {}
|
|
|
|
public:
|
|
/* Leaves Ptr uninitialized. */
|
|
Ptr() {
|
|
#ifdef DEBUG
|
|
entry = (Entry *)0xbad;
|
|
#endif
|
|
}
|
|
|
|
bool found() const { return entry->isLive(); }
|
|
operator ConvertibleToBool() const { return found() ? &Ptr::nonNull : 0; }
|
|
bool operator==(const Ptr &rhs) const { JS_ASSERT(found() && rhs.found()); return entry == rhs.entry; }
|
|
bool operator!=(const Ptr &rhs) const { return !(*this == rhs); }
|
|
|
|
T &operator*() const { return entry->t; }
|
|
T *operator->() const { return &entry->t; }
|
|
};
|
|
|
|
/* A Ptr that can be used to add a key after a failed lookup. */
|
|
class AddPtr : public Ptr
|
|
{
|
|
friend class HashTable;
|
|
HashNumber keyHash;
|
|
DebugOnly<uint64_t> mutationCount;
|
|
|
|
AddPtr(Entry &entry, HashNumber hn) : Ptr(entry), keyHash(hn) {}
|
|
public:
|
|
/* Leaves AddPtr uninitialized. */
|
|
AddPtr() {}
|
|
};
|
|
|
|
/*
|
|
* A collection of hash table entries. The collection is enumerated by
|
|
* calling |front()| followed by |popFront()| as long as |!empty()|. As
|
|
* with Ptr/AddPtr, Range objects must not be used after any mutating hash
|
|
* table operation unless the |generation()| is tested.
|
|
*/
|
|
class Range
|
|
{
|
|
protected:
|
|
friend class HashTable;
|
|
|
|
Range(Entry *c, Entry *e) : cur(c), end(e), validEntry(true) {
|
|
while (cur < end && !cur->isLive())
|
|
++cur;
|
|
}
|
|
|
|
Entry *cur, *end;
|
|
DebugOnly<bool> validEntry;
|
|
|
|
public:
|
|
Range() : cur(NULL), end(NULL), validEntry(false) {}
|
|
|
|
bool empty() const {
|
|
return cur == end;
|
|
}
|
|
|
|
T &front() const {
|
|
JS_ASSERT(validEntry);
|
|
JS_ASSERT(!empty());
|
|
return cur->t;
|
|
}
|
|
|
|
void popFront() {
|
|
JS_ASSERT(!empty());
|
|
while (++cur < end && !cur->isLive())
|
|
continue;
|
|
validEntry = true;
|
|
}
|
|
};
|
|
|
|
/*
|
|
* A Range whose lifetime delimits a mutating enumeration of a hash table.
|
|
* Since rehashing when elements were removed during enumeration would be
|
|
* bad, it is postponed until |endEnumeration()| is called. If
|
|
* |endEnumeration()| is not called before an Enum's constructor, it will
|
|
* be called automatically. Since |endEnumeration()| touches the hash
|
|
* table, the user must ensure that the hash table is still alive when this
|
|
* happens.
|
|
*/
|
|
class Enum : public Range
|
|
{
|
|
friend class HashTable;
|
|
|
|
HashTable &table;
|
|
bool rekeyed;
|
|
bool removed;
|
|
|
|
/* Not copyable. */
|
|
Enum(const Enum &);
|
|
void operator=(const Enum &);
|
|
|
|
public:
|
|
template<class Map> explicit
|
|
Enum(Map &map) : Range(map.all()), table(map.impl), rekeyed(false), removed(false) {}
|
|
|
|
/*
|
|
* Removes the |front()| element from the table, leaving |front()|
|
|
* invalid until the next call to |popFront()|. For example:
|
|
*
|
|
* HashSet<int> s;
|
|
* for (HashSet<int>::Enum e(s); !e.empty(); e.popFront())
|
|
* if (e.front() == 42)
|
|
* e.removeFront();
|
|
*/
|
|
void removeFront() {
|
|
table.remove(*this->cur);
|
|
removed = true;
|
|
this->validEntry = false;
|
|
}
|
|
|
|
/*
|
|
* Removes the |front()| element and re-inserts it into the table with
|
|
* a new key at the new Lookup position. |front()| is invalid after
|
|
* this operation until the next call to |popFront()|.
|
|
*/
|
|
void rekeyFront(const Lookup &l, const Key &k) {
|
|
typename HashTableEntry<T>::NonConstT t = this->cur->t;
|
|
HashPolicy::setKey(t, const_cast<Key &>(k));
|
|
table.remove(*this->cur);
|
|
table.putNewInfallible(l, t);
|
|
rekeyed = true;
|
|
this->validEntry = false;
|
|
}
|
|
|
|
void rekeyFront(const Key &k) {
|
|
rekeyFront(k, k);
|
|
}
|
|
|
|
/* Potentially rehashes the table. */
|
|
~Enum() {
|
|
if (rekeyed)
|
|
table.checkOverRemoved();
|
|
if (removed)
|
|
table.checkUnderloaded();
|
|
}
|
|
};
|
|
|
|
private:
|
|
uint32_t hashShift; /* multiplicative hash shift */
|
|
uint32_t entryCount; /* number of entries in table */
|
|
uint32_t gen; /* entry storage generation number */
|
|
uint32_t removedCount; /* removed entry sentinels in table */
|
|
Entry *table; /* entry storage */
|
|
|
|
void setTableSizeLog2(unsigned sizeLog2) {
|
|
hashShift = sHashBits - sizeLog2;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
mutable struct Stats {
|
|
uint32_t searches; /* total number of table searches */
|
|
uint32_t steps; /* hash chain links traversed */
|
|
uint32_t hits; /* searches that found key */
|
|
uint32_t misses; /* searches that didn't find key */
|
|
uint32_t addOverRemoved; /* adds that recycled a removed entry */
|
|
uint32_t removes; /* calls to remove */
|
|
uint32_t removeFrees; /* calls to remove that freed the entry */
|
|
uint32_t grows; /* table expansions */
|
|
uint32_t shrinks; /* table contractions */
|
|
uint32_t compresses; /* table compressions */
|
|
uint32_t rehashes; /* tombstone decontaminations */
|
|
} stats;
|
|
# define METER(x) x
|
|
#else
|
|
# define METER(x)
|
|
#endif
|
|
|
|
friend class js::ReentrancyGuard;
|
|
mutable DebugOnly<bool> entered;
|
|
DebugOnly<uint64_t> mutationCount;
|
|
|
|
/* The default initial capacity is 16, but you can ask for as small as 4. */
|
|
static const unsigned sMinSizeLog2 = 2;
|
|
static const unsigned sMinSize = 1 << sMinSizeLog2;
|
|
static const unsigned sDefaultInitSizeLog2 = 4;
|
|
public:
|
|
static const unsigned sDefaultInitSize = 1 << sDefaultInitSizeLog2;
|
|
private:
|
|
static const unsigned sMaxInit = JS_BIT(23);
|
|
static const unsigned sMaxCapacity = JS_BIT(24);
|
|
static const unsigned sHashBits = tl::BitSize<HashNumber>::result;
|
|
static const uint8_t sMinAlphaFrac = 64; /* (0x100 * .25) taken from jsdhash.h */
|
|
static const uint8_t sMaxAlphaFrac = 192; /* (0x100 * .75) taken from jsdhash.h */
|
|
static const uint8_t sInvMaxAlpha = 171; /* (ceil(0x100 / .75) >> 1) */
|
|
static const HashNumber sFreeKey = Entry::sFreeKey;
|
|
static const HashNumber sRemovedKey = Entry::sRemovedKey;
|
|
static const HashNumber sCollisionBit = Entry::sCollisionBit;
|
|
|
|
static void staticAsserts()
|
|
{
|
|
/* Rely on compiler "constant overflow warnings". */
|
|
JS_STATIC_ASSERT(((sMaxInit * sInvMaxAlpha) >> 7) < sMaxCapacity);
|
|
JS_STATIC_ASSERT((sMaxCapacity * sInvMaxAlpha) <= UINT32_MAX);
|
|
JS_STATIC_ASSERT((sMaxCapacity * sizeof(Entry)) <= UINT32_MAX);
|
|
}
|
|
|
|
static bool isLiveHash(HashNumber hash)
|
|
{
|
|
return Entry::isLiveHash(hash);
|
|
}
|
|
|
|
static HashNumber prepareHash(const Lookup& l)
|
|
{
|
|
HashNumber keyHash = ScrambleHashCode(HashPolicy::hash(l));
|
|
|
|
/* Avoid reserved hash codes. */
|
|
if (!isLiveHash(keyHash))
|
|
keyHash -= (sRemovedKey + 1);
|
|
return keyHash & ~sCollisionBit;
|
|
}
|
|
|
|
static Entry *createTable(AllocPolicy &alloc, uint32_t capacity)
|
|
{
|
|
Entry *newTable = (Entry *)alloc.malloc_(capacity * sizeof(Entry));
|
|
if (!newTable)
|
|
return NULL;
|
|
for (Entry *e = newTable, *end = e + capacity; e < end; ++e)
|
|
new(e) Entry();
|
|
return newTable;
|
|
}
|
|
|
|
static void destroyTable(AllocPolicy &alloc, Entry *oldTable, uint32_t capacity)
|
|
{
|
|
for (Entry *e = oldTable, *end = e + capacity; e < end; ++e)
|
|
e->~Entry();
|
|
alloc.free_(oldTable);
|
|
}
|
|
|
|
public:
|
|
HashTable(AllocPolicy ap)
|
|
: AllocPolicy(ap),
|
|
hashShift(sHashBits),
|
|
entryCount(0),
|
|
gen(0),
|
|
removedCount(0),
|
|
table(NULL),
|
|
entered(false),
|
|
mutationCount(0)
|
|
{}
|
|
|
|
MOZ_WARN_UNUSED_RESULT bool init(uint32_t length)
|
|
{
|
|
/* Make sure that init isn't called twice. */
|
|
JS_ASSERT(table == NULL);
|
|
|
|
/*
|
|
* Correct for sMaxAlphaFrac such that the table will not resize
|
|
* when adding 'length' entries.
|
|
*/
|
|
if (length > sMaxInit) {
|
|
this->reportAllocOverflow();
|
|
return false;
|
|
}
|
|
uint32_t capacity = (length * sInvMaxAlpha) >> 7;
|
|
|
|
if (capacity < sMinSize)
|
|
capacity = sMinSize;
|
|
|
|
/* FIXME: use JS_CEILING_LOG2 when PGO stops crashing (bug 543034). */
|
|
uint32_t roundUp = sMinSize, roundUpLog2 = sMinSizeLog2;
|
|
while (roundUp < capacity) {
|
|
roundUp <<= 1;
|
|
++roundUpLog2;
|
|
}
|
|
|
|
capacity = roundUp;
|
|
JS_ASSERT(capacity <= sMaxCapacity);
|
|
|
|
table = createTable(*this, capacity);
|
|
if (!table)
|
|
return false;
|
|
|
|
setTableSizeLog2(roundUpLog2);
|
|
METER(memset(&stats, 0, sizeof(stats)));
|
|
return true;
|
|
}
|
|
|
|
bool initialized() const
|
|
{
|
|
return !!table;
|
|
}
|
|
|
|
~HashTable()
|
|
{
|
|
if (table)
|
|
destroyTable(*this, table, capacity());
|
|
}
|
|
|
|
private:
|
|
static HashNumber hash1(HashNumber hash0, uint32_t shift) {
|
|
return hash0 >> shift;
|
|
}
|
|
|
|
struct DoubleHash {
|
|
HashNumber h2;
|
|
HashNumber sizeMask;
|
|
};
|
|
|
|
DoubleHash hash2(HashNumber curKeyHash, uint32_t hashShift) const {
|
|
unsigned sizeLog2 = sHashBits - hashShift;
|
|
DoubleHash dh = {
|
|
((curKeyHash << sizeLog2) >> hashShift) | 1,
|
|
(HashNumber(1) << sizeLog2) - 1
|
|
};
|
|
return dh;
|
|
}
|
|
|
|
static HashNumber applyDoubleHash(HashNumber h1, const DoubleHash &dh) {
|
|
return (h1 - dh.h2) & dh.sizeMask;
|
|
}
|
|
|
|
bool overloaded() {
|
|
return entryCount + removedCount >= ((sMaxAlphaFrac * capacity()) >> 8);
|
|
}
|
|
|
|
bool underloaded() {
|
|
uint32_t tableCapacity = capacity();
|
|
return tableCapacity > sMinSize &&
|
|
entryCount <= ((sMinAlphaFrac * tableCapacity) >> 8);
|
|
}
|
|
|
|
static bool match(Entry &e, const Lookup &l) {
|
|
return HashPolicy::match(HashPolicy::getKey(e.t), l);
|
|
}
|
|
|
|
Entry &lookup(const Lookup &l, HashNumber keyHash, unsigned collisionBit) const
|
|
{
|
|
JS_ASSERT(isLiveHash(keyHash));
|
|
JS_ASSERT(!(keyHash & sCollisionBit));
|
|
JS_ASSERT(collisionBit == 0 || collisionBit == sCollisionBit);
|
|
JS_ASSERT(table);
|
|
METER(stats.searches++);
|
|
|
|
/* Compute the primary hash address. */
|
|
HashNumber h1 = hash1(keyHash, hashShift);
|
|
Entry *entry = &table[h1];
|
|
|
|
/* Miss: return space for a new entry. */
|
|
if (entry->isFree()) {
|
|
METER(stats.misses++);
|
|
return *entry;
|
|
}
|
|
|
|
/* Hit: return entry. */
|
|
if (entry->matchHash(keyHash) && match(*entry, l)) {
|
|
METER(stats.hits++);
|
|
return *entry;
|
|
}
|
|
|
|
/* Collision: double hash. */
|
|
DoubleHash dh = hash2(keyHash, hashShift);
|
|
|
|
/* Save the first removed entry pointer so we can recycle later. */
|
|
Entry *firstRemoved = NULL;
|
|
|
|
while(true) {
|
|
if (JS_UNLIKELY(entry->isRemoved())) {
|
|
if (!firstRemoved)
|
|
firstRemoved = entry;
|
|
} else {
|
|
entry->setCollision(collisionBit);
|
|
}
|
|
|
|
METER(stats.steps++);
|
|
h1 = applyDoubleHash(h1, dh);
|
|
|
|
entry = &table[h1];
|
|
if (entry->isFree()) {
|
|
METER(stats.misses++);
|
|
return firstRemoved ? *firstRemoved : *entry;
|
|
}
|
|
|
|
if (entry->matchHash(keyHash) && match(*entry, l)) {
|
|
METER(stats.hits++);
|
|
return *entry;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is a copy of lookup hardcoded to the assumptions:
|
|
* 1. the lookup is a lookupForAdd
|
|
* 2. the key, whose |keyHash| has been passed is not in the table,
|
|
* 3. no entries have been removed from the table.
|
|
* This specialized search avoids the need for recovering lookup values
|
|
* from entries, which allows more flexible Lookup/Key types.
|
|
*/
|
|
Entry &findFreeEntry(HashNumber keyHash)
|
|
{
|
|
JS_ASSERT(!(keyHash & sCollisionBit));
|
|
JS_ASSERT(table);
|
|
METER(stats.searches++);
|
|
|
|
/* N.B. the |keyHash| has already been distributed. */
|
|
|
|
/* Compute the primary hash address. */
|
|
HashNumber h1 = hash1(keyHash, hashShift);
|
|
Entry *entry = &table[h1];
|
|
|
|
/* Miss: return space for a new entry. */
|
|
if (!entry->isLive()) {
|
|
METER(stats.misses++);
|
|
return *entry;
|
|
}
|
|
|
|
/* Collision: double hash. */
|
|
DoubleHash dh = hash2(keyHash, hashShift);
|
|
|
|
while(true) {
|
|
JS_ASSERT(!entry->isRemoved());
|
|
entry->setCollision();
|
|
|
|
METER(stats.steps++);
|
|
h1 = applyDoubleHash(h1, dh);
|
|
|
|
entry = &table[h1];
|
|
if (!entry->isLive()) {
|
|
METER(stats.misses++);
|
|
return *entry;
|
|
}
|
|
}
|
|
}
|
|
|
|
enum RebuildStatus { NotOverloaded, Rehashed, RehashFailed };
|
|
|
|
RebuildStatus changeTableSize(int deltaLog2)
|
|
{
|
|
/* Look, but don't touch, until we succeed in getting new entry store. */
|
|
Entry *oldTable = table;
|
|
uint32_t oldCap = capacity();
|
|
uint32_t newLog2 = sHashBits - hashShift + deltaLog2;
|
|
uint32_t newCapacity = JS_BIT(newLog2);
|
|
if (newCapacity > sMaxCapacity) {
|
|
this->reportAllocOverflow();
|
|
return RehashFailed;
|
|
}
|
|
|
|
Entry *newTable = createTable(*this, newCapacity);
|
|
if (!newTable)
|
|
return RehashFailed;
|
|
|
|
/* We can't fail from here on, so update table parameters. */
|
|
setTableSizeLog2(newLog2);
|
|
removedCount = 0;
|
|
gen++;
|
|
table = newTable;
|
|
|
|
/* Copy only live entries, leaving removed ones behind. */
|
|
for (Entry *src = oldTable, *end = src + oldCap; src < end; ++src) {
|
|
if (src->isLive()) {
|
|
src->unsetCollision();
|
|
findFreeEntry(src->getKeyHash()) = Move(*src);
|
|
}
|
|
}
|
|
|
|
destroyTable(*this, oldTable, oldCap);
|
|
return Rehashed;
|
|
}
|
|
|
|
RebuildStatus checkOverloaded()
|
|
{
|
|
if (!overloaded())
|
|
return NotOverloaded;
|
|
|
|
/* Compress if a quarter or more of all entries are removed. */
|
|
int deltaLog2;
|
|
if (removedCount >= (capacity() >> 2)) {
|
|
METER(stats.compresses++);
|
|
deltaLog2 = 0;
|
|
} else {
|
|
METER(stats.grows++);
|
|
deltaLog2 = 1;
|
|
}
|
|
|
|
return changeTableSize(deltaLog2);
|
|
}
|
|
|
|
/* Infallibly rehash the table if we are overloaded with removals. */
|
|
void checkOverRemoved()
|
|
{
|
|
if (overloaded()) {
|
|
METER(stats.rehashes++);
|
|
rehashTable();
|
|
JS_ASSERT(!overloaded());
|
|
}
|
|
}
|
|
|
|
void remove(Entry &e)
|
|
{
|
|
JS_ASSERT(table);
|
|
METER(stats.removes++);
|
|
|
|
if (e.hasCollision()) {
|
|
e.setRemoved();
|
|
removedCount++;
|
|
} else {
|
|
METER(stats.removeFrees++);
|
|
e.setFree();
|
|
}
|
|
entryCount--;
|
|
mutationCount++;
|
|
}
|
|
|
|
void checkUnderloaded()
|
|
{
|
|
if (underloaded()) {
|
|
METER(stats.shrinks++);
|
|
(void) changeTableSize(-1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is identical to changeTableSize(currentSize), but without requiring
|
|
* a second table. We do this by recycling the collision bits to tell us if
|
|
* the element is already inserted or still waiting to be inserted. Since
|
|
* already-inserted elements win any conflicts, we get the same table as we
|
|
* would have gotten through random insertion order.
|
|
*/
|
|
void rehashTable()
|
|
{
|
|
removedCount = 0;
|
|
for (size_t i = 0; i < capacity(); ++i)
|
|
table[i].unsetCollision();
|
|
|
|
for (size_t i = 0; i < capacity();) {
|
|
Entry *src = &table[i];
|
|
|
|
if (!src->isLive() || src->hasCollision()) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
HashNumber keyHash = src->getKeyHash();
|
|
HashNumber h1 = hash1(keyHash, hashShift);
|
|
DoubleHash dh = hash2(keyHash, hashShift);
|
|
Entry *tgt = &table[h1];
|
|
while (true) {
|
|
if (!tgt->hasCollision()) {
|
|
Swap(*src, *tgt);
|
|
tgt->setCollision();
|
|
break;
|
|
}
|
|
|
|
h1 = applyDoubleHash(h1, dh);
|
|
tgt = &table[h1];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TODO: this algorithm leaves collision bits on *all* elements, even if
|
|
* they are on no collision path. We have the option of setting the
|
|
* collision bits correctly on a subsequent pass or skipping the rehash
|
|
* unless we are totally filled with tombstones: benchmark to find out
|
|
* which approach is best.
|
|
*/
|
|
}
|
|
|
|
public:
|
|
void clear()
|
|
{
|
|
if (tl::IsPodType<Entry>::result) {
|
|
memset(table, 0, sizeof(*table) * capacity());
|
|
} else {
|
|
uint32_t tableCapacity = capacity();
|
|
for (Entry *e = table, *end = table + tableCapacity; e < end; ++e)
|
|
*e = Move(Entry());
|
|
}
|
|
removedCount = 0;
|
|
entryCount = 0;
|
|
mutationCount++;
|
|
}
|
|
|
|
void finish()
|
|
{
|
|
JS_ASSERT(!entered);
|
|
|
|
if (!table)
|
|
return;
|
|
|
|
destroyTable(*this, table, capacity());
|
|
table = NULL;
|
|
gen++;
|
|
entryCount = 0;
|
|
removedCount = 0;
|
|
mutationCount++;
|
|
}
|
|
|
|
Range all() const {
|
|
JS_ASSERT(table);
|
|
return Range(table, table + capacity());
|
|
}
|
|
|
|
bool empty() const {
|
|
JS_ASSERT(table);
|
|
return !entryCount;
|
|
}
|
|
|
|
uint32_t count() const {
|
|
JS_ASSERT(table);
|
|
return entryCount;
|
|
}
|
|
|
|
uint32_t capacity() const {
|
|
JS_ASSERT(table);
|
|
return JS_BIT(sHashBits - hashShift);
|
|
}
|
|
|
|
uint32_t generation() const {
|
|
JS_ASSERT(table);
|
|
return gen;
|
|
}
|
|
|
|
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const {
|
|
return mallocSizeOf(table);
|
|
}
|
|
|
|
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const {
|
|
return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
|
|
}
|
|
|
|
Ptr lookup(const Lookup &l) const {
|
|
ReentrancyGuard g(*this);
|
|
HashNumber keyHash = prepareHash(l);
|
|
return Ptr(lookup(l, keyHash, 0));
|
|
}
|
|
|
|
AddPtr lookupForAdd(const Lookup &l) const {
|
|
ReentrancyGuard g(*this);
|
|
HashNumber keyHash = prepareHash(l);
|
|
Entry &entry = lookup(l, keyHash, sCollisionBit);
|
|
AddPtr p(entry, keyHash);
|
|
p.mutationCount = mutationCount;
|
|
return p;
|
|
}
|
|
|
|
bool add(AddPtr &p)
|
|
{
|
|
ReentrancyGuard g(*this);
|
|
JS_ASSERT(mutationCount == p.mutationCount);
|
|
JS_ASSERT(table);
|
|
JS_ASSERT(!p.found());
|
|
JS_ASSERT(!(p.keyHash & sCollisionBit));
|
|
|
|
/*
|
|
* Changing an entry from removed to live does not affect whether we
|
|
* are overloaded and can be handled separately.
|
|
*/
|
|
if (p.entry->isRemoved()) {
|
|
METER(stats.addOverRemoved++);
|
|
removedCount--;
|
|
p.keyHash |= sCollisionBit;
|
|
} else {
|
|
/* Preserve the validity of |p.entry|. */
|
|
RebuildStatus status = checkOverloaded();
|
|
if (status == RehashFailed)
|
|
return false;
|
|
if (status == Rehashed)
|
|
p.entry = &findFreeEntry(p.keyHash);
|
|
}
|
|
|
|
p.entry->setLive(p.keyHash);
|
|
entryCount++;
|
|
mutationCount++;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* There is an important contract between the caller and callee for this
|
|
* function: if add() returns true, the caller must assign the T value
|
|
* which produced p before using the hashtable again.
|
|
*/
|
|
bool add(AddPtr &p, T** pentry)
|
|
{
|
|
if (!add(p))
|
|
return false;
|
|
*pentry = &p.entry->t;
|
|
return true;
|
|
}
|
|
|
|
bool add(AddPtr &p, const T &t)
|
|
{
|
|
if (!add(p))
|
|
return false;
|
|
p.entry->t = t;
|
|
return true;
|
|
}
|
|
|
|
void putNewInfallible(const Lookup &l, const T &t)
|
|
{
|
|
JS_ASSERT(table);
|
|
|
|
HashNumber keyHash = prepareHash(l);
|
|
Entry *entry = &findFreeEntry(keyHash);
|
|
|
|
if (entry->isRemoved()) {
|
|
METER(stats.addOverRemoved++);
|
|
removedCount--;
|
|
keyHash |= sCollisionBit;
|
|
}
|
|
|
|
entry->t = t;
|
|
entry->setLive(keyHash);
|
|
entryCount++;
|
|
mutationCount++;
|
|
}
|
|
|
|
bool putNew(const Lookup &l, const T &t)
|
|
{
|
|
if (checkOverloaded() == RehashFailed)
|
|
return false;
|
|
|
|
putNewInfallible(l, t);
|
|
return true;
|
|
}
|
|
|
|
bool relookupOrAdd(AddPtr& p, const Lookup &l, const T& t)
|
|
{
|
|
p.mutationCount = mutationCount;
|
|
{
|
|
ReentrancyGuard g(*this);
|
|
p.entry = &lookup(l, p.keyHash, sCollisionBit);
|
|
}
|
|
return p.found() || add(p, t);
|
|
}
|
|
|
|
void remove(Ptr p)
|
|
{
|
|
JS_ASSERT(table);
|
|
ReentrancyGuard g(*this);
|
|
JS_ASSERT(p.found());
|
|
remove(*p.entry);
|
|
checkUnderloaded();
|
|
}
|
|
|
|
#undef METER
|
|
};
|
|
|
|
} /* namespace detail */
|
|
|
|
/*****************************************************************************/
|
|
|
|
/*
|
|
* Hash policy
|
|
*
|
|
* A hash policy P for a hash table with key-type Key must provide:
|
|
* - a type |P::Lookup| to use to lookup table entries;
|
|
* - a static member function |P::hash| with signature
|
|
*
|
|
* static js::HashNumber hash(Lookup)
|
|
*
|
|
* to use to hash the lookup type; and
|
|
* - a static member function |P::match| with signature
|
|
*
|
|
* static bool match(Key, Lookup)
|
|
*
|
|
* to use to test equality of key and lookup values.
|
|
*
|
|
* Normally, Lookup = Key. In general, though, different values and types of
|
|
* values can be used to lookup and store. If a Lookup value |l| is != to the
|
|
* added Key value |k|, the user must ensure that |P::match(k,l)|. E.g.:
|
|
*
|
|
* js::HashSet<Key, P>::AddPtr p = h.lookup(l);
|
|
* if (!p) {
|
|
* assert(P::match(k, l)); // must hold
|
|
* h.add(p, k);
|
|
* }
|
|
*/
|
|
|
|
/* Default hashing policies. */
|
|
template <class Key>
|
|
struct DefaultHasher
|
|
{
|
|
typedef Key Lookup;
|
|
static HashNumber hash(const Lookup &l) {
|
|
/* Hash if can implicitly cast to hash number type. */
|
|
return l;
|
|
}
|
|
static bool match(const Key &k, const Lookup &l) {
|
|
/* Use builtin or overloaded operator==. */
|
|
return k == l;
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Pointer hashing policy that strips the lowest zeroBits when calculating the
|
|
* hash to improve key distribution.
|
|
*/
|
|
template <typename Key, size_t zeroBits>
|
|
struct PointerHasher
|
|
{
|
|
typedef Key Lookup;
|
|
static HashNumber hash(const Lookup &l) {
|
|
size_t word = reinterpret_cast<size_t>(l) >> zeroBits;
|
|
JS_STATIC_ASSERT(sizeof(HashNumber) == 4);
|
|
#if JS_BYTES_PER_WORD == 4
|
|
return HashNumber(word);
|
|
#else
|
|
JS_STATIC_ASSERT(sizeof word == 8);
|
|
return HashNumber((word >> 32) ^ word);
|
|
#endif
|
|
}
|
|
static bool match(const Key &k, const Lookup &l) {
|
|
return k == l;
|
|
}
|
|
};
|
|
|
|
template <typename Key, size_t zeroBits>
|
|
struct TaggedPointerHasher
|
|
{
|
|
typedef Key Lookup;
|
|
|
|
static HashNumber hash(const Lookup &l) {
|
|
return PointerHasher<Key, zeroBits>::hash(l);
|
|
}
|
|
|
|
static const uintptr_t COMPARE_MASK = uintptr_t(-1) - 1;
|
|
|
|
static bool match(const Key &k, const Lookup &l) {
|
|
return (uintptr_t(k) & COMPARE_MASK) == uintptr_t(l);
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Specialized hashing policy for pointer types. It assumes that the type is
|
|
* at least word-aligned. For types with smaller size use PointerHasher.
|
|
*/
|
|
template <class T>
|
|
struct DefaultHasher<T *>: PointerHasher<T *, tl::FloorLog2<sizeof(void *)>::result> { };
|
|
|
|
/* Looking for a hasher for jsid? Try the DefaultHasher<jsid> in jsatom.h. */
|
|
|
|
template <class Key, class Value>
|
|
class HashMapEntry
|
|
{
|
|
template <class, class, class> friend class detail::HashTable;
|
|
template <class> friend class detail::HashTableEntry;
|
|
void operator=(const HashMapEntry &rhs) {
|
|
const_cast<Key &>(key) = rhs.key;
|
|
value = rhs.value;
|
|
}
|
|
|
|
public:
|
|
HashMapEntry() : key(), value() {}
|
|
|
|
template<typename KeyInput, typename ValueInput>
|
|
HashMapEntry(const KeyInput &k, const ValueInput &v) : key(k), value(v) {}
|
|
|
|
HashMapEntry(MoveRef<HashMapEntry> rhs)
|
|
: key(Move(rhs->key)), value(Move(rhs->value)) { }
|
|
void operator=(MoveRef<HashMapEntry> rhs) {
|
|
const_cast<Key &>(key) = Move(rhs->key);
|
|
value = Move(rhs->value);
|
|
}
|
|
|
|
const Key key;
|
|
Value value;
|
|
};
|
|
|
|
namespace tl {
|
|
|
|
template <class T>
|
|
struct IsPodType<detail::HashTableEntry<T> > {
|
|
static const bool result = IsPodType<T>::result;
|
|
};
|
|
|
|
template <class K, class V>
|
|
struct IsPodType<HashMapEntry<K, V> >
|
|
{
|
|
static const bool result = IsPodType<K>::result && IsPodType<V>::result;
|
|
};
|
|
|
|
} /* namespace tl */
|
|
|
|
/*
|
|
* JS-friendly, STL-like container providing a hash-based map from keys to
|
|
* values. In particular, HashMap calls constructors and destructors of all
|
|
* objects added so non-PODs may be used safely.
|
|
*
|
|
* Key/Value requirements:
|
|
* - default constructible, copyable, destructible, assignable
|
|
* HashPolicy requirements:
|
|
* - see "Hash policy" above (default js::DefaultHasher<Key>)
|
|
* AllocPolicy:
|
|
* - see "Allocation policies" in jsalloc.h
|
|
*
|
|
* N.B: HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
|
|
* called by HashMap must not call back into the same HashMap object.
|
|
* N.B: Due to the lack of exception handling, the user must call |init()|.
|
|
*/
|
|
template <class Key,
|
|
class Value,
|
|
class HashPolicy = DefaultHasher<Key>,
|
|
class AllocPolicy = TempAllocPolicy>
|
|
class HashMap
|
|
{
|
|
typedef typename tl::StaticAssert<tl::IsRelocatableHeapType<Key>::result>::result keyAssert;
|
|
typedef typename tl::StaticAssert<tl::IsRelocatableHeapType<Value>::result>::result valAssert;
|
|
|
|
public:
|
|
typedef typename HashPolicy::Lookup Lookup;
|
|
|
|
typedef HashMapEntry<Key, Value> Entry;
|
|
|
|
private:
|
|
/* Implement HashMap using HashTable. Lift |Key| operations to |Entry|. */
|
|
struct MapHashPolicy : HashPolicy
|
|
{
|
|
typedef Key KeyType;
|
|
static const Key &getKey(Entry &e) { return e.key; }
|
|
static void setKey(Entry &e, Key &k) { const_cast<Key &>(e.key) = k; }
|
|
};
|
|
typedef detail::HashTable<Entry, MapHashPolicy, AllocPolicy> Impl;
|
|
|
|
friend class Impl::Enum;
|
|
|
|
/* Not implicitly copyable (expensive). May add explicit |clone| later. */
|
|
HashMap(const HashMap &);
|
|
HashMap &operator=(const HashMap &);
|
|
|
|
Impl impl;
|
|
|
|
public:
|
|
const static unsigned sDefaultInitSize = Impl::sDefaultInitSize;
|
|
|
|
/*
|
|
* HashMap construction is fallible (due to OOM); thus the user must call
|
|
* init after constructing a HashMap and check the return value.
|
|
*/
|
|
HashMap(AllocPolicy a = AllocPolicy()) : impl(a) {}
|
|
bool init(uint32_t len = sDefaultInitSize) { return impl.init(len); }
|
|
bool initialized() const { return impl.initialized(); }
|
|
|
|
/*
|
|
* Return whether the given lookup value is present in the map. E.g.:
|
|
*
|
|
* typedef HashMap<int,char> HM;
|
|
* HM h;
|
|
* if (HM::Ptr p = h.lookup(3)) {
|
|
* const HM::Entry &e = *p; // p acts like a pointer to Entry
|
|
* assert(p->key == 3); // Entry contains the key
|
|
* char val = p->value; // and value
|
|
* }
|
|
*
|
|
* Also see the definition of Ptr in HashTable above (with T = Entry).
|
|
*/
|
|
typedef typename Impl::Ptr Ptr;
|
|
Ptr lookup(const Lookup &l) const { return impl.lookup(l); }
|
|
|
|
/* Assuming |p.found()|, remove |*p|. */
|
|
void remove(Ptr p) { impl.remove(p); }
|
|
|
|
/*
|
|
* Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
|
|
* insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
|
|
* |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new Entry. E.g.:
|
|
*
|
|
* typedef HashMap<int,char> HM;
|
|
* HM h;
|
|
* HM::AddPtr p = h.lookupForAdd(3);
|
|
* if (!p) {
|
|
* if (!h.add(p, 3, 'a'))
|
|
* return false;
|
|
* }
|
|
* const HM::Entry &e = *p; // p acts like a pointer to Entry
|
|
* assert(p->key == 3); // Entry contains the key
|
|
* char val = p->value; // and value
|
|
*
|
|
* Also see the definition of AddPtr in HashTable above (with T = Entry).
|
|
*
|
|
* N.B. The caller must ensure that no mutating hash table operations
|
|
* occur between a pair of |lookupForAdd| and |add| calls. To avoid
|
|
* looking up the key a second time, the caller may use the more efficient
|
|
* relookupOrAdd method. This method reuses part of the hashing computation
|
|
* to more efficiently insert the key if it has not been added. For
|
|
* example, a mutation-handling version of the previous example:
|
|
*
|
|
* HM::AddPtr p = h.lookupForAdd(3);
|
|
* if (!p) {
|
|
* call_that_may_mutate_h();
|
|
* if (!h.relookupOrAdd(p, 3, 'a'))
|
|
* return false;
|
|
* }
|
|
* const HM::Entry &e = *p;
|
|
* assert(p->key == 3);
|
|
* char val = p->value;
|
|
*/
|
|
typedef typename Impl::AddPtr AddPtr;
|
|
AddPtr lookupForAdd(const Lookup &l) const {
|
|
return impl.lookupForAdd(l);
|
|
}
|
|
|
|
template<typename KeyInput, typename ValueInput>
|
|
bool add(AddPtr &p, const KeyInput &k, const ValueInput &v) {
|
|
Entry *pentry;
|
|
if (!impl.add(p, &pentry))
|
|
return false;
|
|
const_cast<Key &>(pentry->key) = k;
|
|
pentry->value = v;
|
|
return true;
|
|
}
|
|
|
|
bool add(AddPtr &p, const Key &k, MoveRef<Value> v) {
|
|
Entry *pentry;
|
|
if (!impl.add(p, &pentry))
|
|
return false;
|
|
const_cast<Key &>(pentry->key) = k;
|
|
pentry->value = v;
|
|
return true;
|
|
}
|
|
|
|
bool add(AddPtr &p, const Key &k) {
|
|
Entry *pentry;
|
|
if (!impl.add(p, &pentry))
|
|
return false;
|
|
const_cast<Key &>(pentry->key) = k;
|
|
return true;
|
|
}
|
|
|
|
template<typename KeyInput, typename ValueInput>
|
|
bool relookupOrAdd(AddPtr &p, const KeyInput &k, const ValueInput &v) {
|
|
return impl.relookupOrAdd(p, k, Entry(k, v));
|
|
}
|
|
|
|
/*
|
|
* |all()| returns a Range containing |count()| elements. E.g.:
|
|
*
|
|
* typedef HashMap<int,char> HM;
|
|
* HM h;
|
|
* for (HM::Range r = h.all(); !r.empty(); r.popFront())
|
|
* char c = r.front().value;
|
|
*
|
|
* Also see the definition of Range in HashTable above (with T = Entry).
|
|
*/
|
|
typedef typename Impl::Range Range;
|
|
Range all() const { return impl.all(); }
|
|
uint32_t count() const { return impl.count(); }
|
|
size_t capacity() const { return impl.capacity(); }
|
|
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const {
|
|
return impl.sizeOfExcludingThis(mallocSizeOf);
|
|
}
|
|
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const {
|
|
/*
|
|
* Don't just call |impl.sizeOfExcludingThis()| because there's no
|
|
* guarantee that |impl| is the first field in HashMap.
|
|
*/
|
|
return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
|
|
}
|
|
|
|
/*
|
|
* Typedef for the enumeration class. An Enum may be used to examine and
|
|
* remove table entries:
|
|
*
|
|
* typedef HashMap<int,char> HM;
|
|
* HM s;
|
|
* for (HM::Enum e(s); !e.empty(); e.popFront())
|
|
* if (e.front().value == 'l')
|
|
* e.removeFront();
|
|
*
|
|
* Table resize may occur in Enum's destructor. Also see the definition of
|
|
* Enum in HashTable above (with T = Entry).
|
|
*/
|
|
typedef typename Impl::Enum Enum;
|
|
|
|
/*
|
|
* Remove all entries. This does not shrink the table. For that consider
|
|
* using the finish() method.
|
|
*/
|
|
void clear() { impl.clear(); }
|
|
|
|
/*
|
|
* Remove all the entries and release all internal buffers. The map must
|
|
* be initialized again before any use.
|
|
*/
|
|
void finish() { impl.finish(); }
|
|
|
|
/* Does the table contain any entries? */
|
|
bool empty() const { return impl.empty(); }
|
|
|
|
/*
|
|
* If |generation()| is the same before and after a HashMap operation,
|
|
* pointers into the table remain valid.
|
|
*/
|
|
unsigned generation() const { return impl.generation(); }
|
|
|
|
/* Shorthand operations: */
|
|
|
|
bool has(const Lookup &l) const {
|
|
return impl.lookup(l) != NULL;
|
|
}
|
|
|
|
/* Overwrite existing value with v. Return false on oom. */
|
|
template<typename KeyInput, typename ValueInput>
|
|
bool put(const KeyInput &k, const ValueInput &v) {
|
|
AddPtr p = lookupForAdd(k);
|
|
if (p) {
|
|
p->value = v;
|
|
return true;
|
|
}
|
|
return add(p, k, v);
|
|
}
|
|
|
|
/* Like put, but assert that the given key is not already present. */
|
|
bool putNew(const Key &k, const Value &v) {
|
|
return impl.putNew(k, Entry(k, v));
|
|
}
|
|
|
|
/* Add (k,defaultValue) if k no found. Return false-y Ptr on oom. */
|
|
Ptr lookupWithDefault(const Key &k, const Value &defaultValue) {
|
|
AddPtr p = lookupForAdd(k);
|
|
if (p)
|
|
return p;
|
|
(void)add(p, k, defaultValue); /* p is left false-y on oom. */
|
|
return p;
|
|
}
|
|
|
|
/* Remove if present. */
|
|
void remove(const Lookup &l) {
|
|
if (Ptr p = lookup(l))
|
|
remove(p);
|
|
}
|
|
};
|
|
|
|
/*
|
|
* JS-friendly, STL-like container providing a hash-based set of values. In
|
|
* particular, HashSet calls constructors and destructors of all objects added
|
|
* so non-PODs may be used safely.
|
|
*
|
|
* T requirements:
|
|
* - default constructible, copyable, destructible, assignable
|
|
* HashPolicy requirements:
|
|
* - see "Hash policy" above (default js::DefaultHasher<Key>)
|
|
* AllocPolicy:
|
|
* - see "Allocation policies" in jsalloc.h
|
|
*
|
|
* N.B: HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
|
|
* HashSet must not call back into the same HashSet object.
|
|
* N.B: Due to the lack of exception handling, the user must call |init()|.
|
|
*/
|
|
template <class T, class HashPolicy = DefaultHasher<T>, class AllocPolicy = TempAllocPolicy>
|
|
class HashSet
|
|
{
|
|
typedef typename HashPolicy::Lookup Lookup;
|
|
|
|
/* Implement HashSet in terms of HashTable. */
|
|
struct SetOps : HashPolicy {
|
|
typedef T KeyType;
|
|
static const KeyType &getKey(const T &t) { return t; }
|
|
static void setKey(T &t, KeyType &k) { t = k; }
|
|
};
|
|
typedef detail::HashTable<const T, SetOps, AllocPolicy> Impl;
|
|
|
|
friend class Impl::Enum;
|
|
|
|
/* Not implicitly copyable (expensive). May add explicit |clone| later. */
|
|
HashSet(const HashSet &);
|
|
HashSet &operator=(const HashSet &);
|
|
|
|
Impl impl;
|
|
|
|
public:
|
|
const static unsigned sDefaultInitSize = Impl::sDefaultInitSize;
|
|
|
|
/*
|
|
* HashSet construction is fallible (due to OOM); thus the user must call
|
|
* init after constructing a HashSet and check the return value.
|
|
*/
|
|
HashSet(AllocPolicy a = AllocPolicy()) : impl(a) {}
|
|
bool init(uint32_t len = sDefaultInitSize) { return impl.init(len); }
|
|
bool initialized() const { return impl.initialized(); }
|
|
|
|
/*
|
|
* Return whether the given lookup value is present in the map. E.g.:
|
|
*
|
|
* typedef HashSet<int> HS;
|
|
* HS h;
|
|
* if (HS::Ptr p = h.lookup(3)) {
|
|
* assert(*p == 3); // p acts like a pointer to int
|
|
* }
|
|
*
|
|
* Also see the definition of Ptr in HashTable above.
|
|
*/
|
|
typedef typename Impl::Ptr Ptr;
|
|
Ptr lookup(const Lookup &l) const { return impl.lookup(l); }
|
|
|
|
/* Assuming |p.found()|, remove |*p|. */
|
|
void remove(Ptr p) { impl.remove(p); }
|
|
|
|
/*
|
|
* Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
|
|
* insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
|
|
* |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
|
|
*
|
|
* typedef HashSet<int> HS;
|
|
* HS h;
|
|
* HS::AddPtr p = h.lookupForAdd(3);
|
|
* if (!p) {
|
|
* if (!h.add(p, 3))
|
|
* return false;
|
|
* }
|
|
* assert(*p == 3); // p acts like a pointer to int
|
|
*
|
|
* Also see the definition of AddPtr in HashTable above.
|
|
*
|
|
* N.B. The caller must ensure that no mutating hash table operations
|
|
* occur between a pair of |lookupForAdd| and |add| calls. To avoid
|
|
* looking up the key a second time, the caller may use the more efficient
|
|
* relookupOrAdd method. This method reuses part of the hashing computation
|
|
* to more efficiently insert the key if it has not been added. For
|
|
* example, a mutation-handling version of the previous example:
|
|
*
|
|
* HS::AddPtr p = h.lookupForAdd(3);
|
|
* if (!p) {
|
|
* call_that_may_mutate_h();
|
|
* if (!h.relookupOrAdd(p, 3, 3))
|
|
* return false;
|
|
* }
|
|
* assert(*p == 3);
|
|
*
|
|
* Note that relookupOrAdd(p,l,t) performs Lookup using l and adds the
|
|
* entry t, where the caller ensures match(l,t).
|
|
*/
|
|
typedef typename Impl::AddPtr AddPtr;
|
|
AddPtr lookupForAdd(const Lookup &l) const {
|
|
return impl.lookupForAdd(l);
|
|
}
|
|
|
|
bool add(AddPtr &p, const T &t) {
|
|
return impl.add(p, t);
|
|
}
|
|
|
|
bool relookupOrAdd(AddPtr &p, const Lookup &l, const T &t) {
|
|
return impl.relookupOrAdd(p, l, t);
|
|
}
|
|
|
|
/*
|
|
* |all()| returns a Range containing |count()| elements:
|
|
*
|
|
* typedef HashSet<int> HS;
|
|
* HS h;
|
|
* for (HS::Range r = h.all(); !r.empty(); r.popFront())
|
|
* int i = r.front();
|
|
*
|
|
* Also see the definition of Range in HashTable above.
|
|
*/
|
|
typedef typename Impl::Range Range;
|
|
Range all() const { return impl.all(); }
|
|
uint32_t count() const { return impl.count(); }
|
|
size_t capacity() const { return impl.capacity(); }
|
|
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const {
|
|
return impl.sizeOfExcludingThis(mallocSizeOf);
|
|
}
|
|
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const {
|
|
/*
|
|
* Don't just call |impl.sizeOfExcludingThis()| because there's no
|
|
* guarantee that |impl| is the first field in HashSet.
|
|
*/
|
|
return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
|
|
}
|
|
|
|
/*
|
|
* Typedef for the enumeration class. An Enum may be used to examine and
|
|
* remove table entries:
|
|
*
|
|
* typedef HashSet<int> HS;
|
|
* HS s;
|
|
* for (HS::Enum e(s); !e.empty(); e.popFront())
|
|
* if (e.front() == 42)
|
|
* e.removeFront();
|
|
*
|
|
* Table resize may occur in Enum's destructor. Also see the definition of
|
|
* Enum in HashTable above.
|
|
*/
|
|
typedef typename Impl::Enum Enum;
|
|
|
|
/*
|
|
* Remove all entries. This does not shrink the table. For that consider
|
|
* using the finish() method.
|
|
*/
|
|
void clear() { impl.clear(); }
|
|
|
|
/*
|
|
* Remove all the entries and release all internal buffers. The set must
|
|
* be initialized again before any use.
|
|
*/
|
|
void finish() { impl.finish(); }
|
|
|
|
/* Does the table contain any entries? */
|
|
bool empty() const { return impl.empty(); }
|
|
|
|
/*
|
|
* If |generation()| is the same before and after a HashSet operation,
|
|
* pointers into the table remain valid.
|
|
*/
|
|
unsigned generation() const { return impl.generation(); }
|
|
|
|
/* Shorthand operations: */
|
|
|
|
bool has(const Lookup &l) const {
|
|
return impl.lookup(l) != NULL;
|
|
}
|
|
|
|
/* Overwrite existing value with v. Return false on oom. */
|
|
bool put(const T &t) {
|
|
AddPtr p = lookupForAdd(t);
|
|
return p ? true : add(p, t);
|
|
}
|
|
|
|
/* Like put, but assert that the given key is not already present. */
|
|
bool putNew(const T &t) {
|
|
return impl.putNew(t, t);
|
|
}
|
|
|
|
bool putNew(const Lookup &l, const T &t) {
|
|
return impl.putNew(l, t);
|
|
}
|
|
|
|
void remove(const Lookup &l) {
|
|
if (Ptr p = lookup(l))
|
|
remove(p);
|
|
}
|
|
};
|
|
|
|
} /* namespace js */
|
|
|
|
#endif
|