mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-01 06:35:42 +00:00
801 lines
25 KiB
C++
801 lines
25 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/*
|
|
* Implements (almost always) lock-free atomic operations. The operations here
|
|
* are a subset of that which can be found in C++11's <atomic> header, with a
|
|
* different API to enforce consistent memory ordering constraints.
|
|
*
|
|
* Anyone caught using |volatile| for inter-thread memory safety needs to be
|
|
* sent a copy of this header and the C++11 standard.
|
|
*/
|
|
|
|
#ifndef mozilla_Atomics_h
|
|
#define mozilla_Atomics_h
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/Compiler.h"
|
|
#include "mozilla/TypeTraits.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
/*
|
|
* Our minimum deployment target on clang/OS X is OS X 10.6, whose SDK
|
|
* does not have <atomic>. So be sure to check for <atomic> support
|
|
* along with C++0x support.
|
|
*/
|
|
#if defined(_MSC_VER)
|
|
# define MOZ_HAVE_CXX11_ATOMICS
|
|
#elif defined(__clang__) || defined(__GNUC__)
|
|
/*
|
|
* Clang doesn't like <atomic> from libstdc++ before 4.7 due to the
|
|
* loose typing of the atomic builtins. GCC 4.5 and 4.6 lacks inline
|
|
* definitions for unspecialized std::atomic and causes linking errors.
|
|
* Therefore, we require at least 4.7.0 for using libstdc++.
|
|
*
|
|
* libc++ <atomic> is only functional with clang.
|
|
*/
|
|
# if MOZ_USING_LIBSTDCXX && MOZ_LIBSTDCXX_VERSION_AT_LEAST(4, 7, 0)
|
|
# define MOZ_HAVE_CXX11_ATOMICS
|
|
# elif MOZ_USING_LIBCXX && defined(__clang__)
|
|
# define MOZ_HAVE_CXX11_ATOMICS
|
|
# endif
|
|
#endif
|
|
|
|
namespace mozilla {
|
|
|
|
/**
|
|
* An enum of memory ordering possibilities for atomics.
|
|
*
|
|
* Memory ordering is the observable state of distinct values in memory.
|
|
* (It's a separate concept from atomicity, which concerns whether an
|
|
* operation can ever be observed in an intermediate state. Don't
|
|
* conflate the two!) Given a sequence of operations in source code on
|
|
* memory, it is *not* always the case that, at all times and on all
|
|
* cores, those operations will appear to have occurred in that exact
|
|
* sequence. First, the compiler might reorder that sequence, if it
|
|
* thinks another ordering will be more efficient. Second, the CPU may
|
|
* not expose so consistent a view of memory. CPUs will often perform
|
|
* their own instruction reordering, above and beyond that performed by
|
|
* the compiler. And each core has its own memory caches, and accesses
|
|
* (reads and writes both) to "memory" may only resolve to out-of-date
|
|
* cache entries -- not to the "most recently" performed operation in
|
|
* some global sense. Any access to a value that may be used by
|
|
* multiple threads, potentially across multiple cores, must therefore
|
|
* have a memory ordering imposed on it, for all code on all
|
|
* threads/cores to have a sufficiently coherent worldview.
|
|
*
|
|
* http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync and
|
|
* http://en.cppreference.com/w/cpp/atomic/memory_order go into more
|
|
* detail on all this, including examples of how each mode works.
|
|
*
|
|
* Note that for simplicity and practicality, not all of the modes in
|
|
* C++11 are supported. The missing C++11 modes are either subsumed by
|
|
* the modes we provide below, or not relevant for the CPUs we support
|
|
* in Gecko. These three modes are confusing enough as it is!
|
|
*/
|
|
enum MemoryOrdering {
|
|
/*
|
|
* Relaxed ordering is the simplest memory ordering: none at all.
|
|
* When the result of a write is observed, nothing may be inferred
|
|
* about other memory. Writes ostensibly performed "before" on the
|
|
* writing thread may not yet be visible. Writes performed "after" on
|
|
* the writing thread may already be visible, if the compiler or CPU
|
|
* reordered them. (The latter can happen if reads and/or writes get
|
|
* held up in per-processor caches.) Relaxed ordering means
|
|
* operations can always use cached values (as long as the actual
|
|
* updates to atomic values actually occur, correctly, eventually), so
|
|
* it's usually the fastest sort of atomic access. For this reason,
|
|
* *it's also the most dangerous kind of access*.
|
|
*
|
|
* Relaxed ordering is good for things like process-wide statistics
|
|
* counters that don't need to be consistent with anything else, so
|
|
* long as updates themselves are atomic. (And so long as any
|
|
* observations of that value can tolerate being out-of-date -- if you
|
|
* need some sort of up-to-date value, you need some sort of other
|
|
* synchronizing operation.) It's *not* good for locks, mutexes,
|
|
* reference counts, etc. that mediate access to other memory, or must
|
|
* be observably consistent with other memory.
|
|
*
|
|
* x86 architectures don't take advantage of the optimization
|
|
* opportunities that relaxed ordering permits. Thus it's possible
|
|
* that using relaxed ordering will "work" on x86 but fail elsewhere
|
|
* (ARM, say, which *does* implement non-sequentially-consistent
|
|
* relaxed ordering semantics). Be extra-careful using relaxed
|
|
* ordering if you can't easily test non-x86 architectures!
|
|
*/
|
|
Relaxed,
|
|
|
|
/*
|
|
* When an atomic value is updated with ReleaseAcquire ordering, and
|
|
* that new value is observed with ReleaseAcquire ordering, prior
|
|
* writes (atomic or not) are also observable. What ReleaseAcquire
|
|
* *doesn't* give you is any observable ordering guarantees for
|
|
* ReleaseAcquire-ordered operations on different objects. For
|
|
* example, if there are two cores that each perform ReleaseAcquire
|
|
* operations on separate objects, each core may or may not observe
|
|
* the operations made by the other core. The only way the cores can
|
|
* be synchronized with ReleaseAcquire is if they both
|
|
* ReleaseAcquire-access the same object. This implies that you can't
|
|
* necessarily describe some global total ordering of ReleaseAcquire
|
|
* operations.
|
|
*
|
|
* ReleaseAcquire ordering is good for (as the name implies) atomic
|
|
* operations on values controlling ownership of things: reference
|
|
* counts, mutexes, and the like. However, if you are thinking about
|
|
* using these to implement your own locks or mutexes, you should take
|
|
* a good, hard look at actual lock or mutex primitives first.
|
|
*/
|
|
ReleaseAcquire,
|
|
|
|
/*
|
|
* When an atomic value is updated with SequentiallyConsistent
|
|
* ordering, all writes observable when the update is observed, just
|
|
* as with ReleaseAcquire ordering. But, furthermore, a global total
|
|
* ordering of SequentiallyConsistent operations *can* be described.
|
|
* For example, if two cores perform SequentiallyConsistent operations
|
|
* on separate objects, one core will observably perform its update
|
|
* (and all previous operations will have completed), then the other
|
|
* core will observably perform its update (and all previous
|
|
* operations will have completed). (Although those previous
|
|
* operations aren't themselves ordered -- they could be intermixed,
|
|
* or ordered if they occur on atomic values with ordering
|
|
* requirements.) SequentiallyConsistent is the *simplest and safest*
|
|
* ordering of atomic operations -- it's always as if one operation
|
|
* happens, then another, then another, in some order -- and every
|
|
* core observes updates to happen in that single order. Because it
|
|
* has the most synchronization requirements, operations ordered this
|
|
* way also tend to be slowest.
|
|
*
|
|
* SequentiallyConsistent ordering can be desirable when multiple
|
|
* threads observe objects, and they all have to agree on the
|
|
* observable order of changes to them. People expect
|
|
* SequentiallyConsistent ordering, even if they shouldn't, when
|
|
* writing code, atomic or otherwise. SequentiallyConsistent is also
|
|
* the ordering of choice when designing lockless data structures. If
|
|
* you don't know what order to use, use this one.
|
|
*/
|
|
SequentiallyConsistent,
|
|
};
|
|
|
|
} // namespace mozilla
|
|
|
|
// Build up the underlying intrinsics.
|
|
#ifdef MOZ_HAVE_CXX11_ATOMICS
|
|
|
|
# include <atomic>
|
|
|
|
namespace mozilla {
|
|
namespace detail {
|
|
|
|
/*
|
|
* We provide CompareExchangeFailureOrder to work around a bug in some
|
|
* versions of GCC's <atomic> header. See bug 898491.
|
|
*/
|
|
template<MemoryOrdering Order> struct AtomicOrderConstraints;
|
|
|
|
template<>
|
|
struct AtomicOrderConstraints<Relaxed>
|
|
{
|
|
static const std::memory_order AtomicRMWOrder = std::memory_order_relaxed;
|
|
static const std::memory_order LoadOrder = std::memory_order_relaxed;
|
|
static const std::memory_order StoreOrder = std::memory_order_relaxed;
|
|
static const std::memory_order CompareExchangeFailureOrder =
|
|
std::memory_order_relaxed;
|
|
};
|
|
|
|
template<>
|
|
struct AtomicOrderConstraints<ReleaseAcquire>
|
|
{
|
|
static const std::memory_order AtomicRMWOrder = std::memory_order_acq_rel;
|
|
static const std::memory_order LoadOrder = std::memory_order_acquire;
|
|
static const std::memory_order StoreOrder = std::memory_order_release;
|
|
static const std::memory_order CompareExchangeFailureOrder =
|
|
std::memory_order_acquire;
|
|
};
|
|
|
|
template<>
|
|
struct AtomicOrderConstraints<SequentiallyConsistent>
|
|
{
|
|
static const std::memory_order AtomicRMWOrder = std::memory_order_seq_cst;
|
|
static const std::memory_order LoadOrder = std::memory_order_seq_cst;
|
|
static const std::memory_order StoreOrder = std::memory_order_seq_cst;
|
|
static const std::memory_order CompareExchangeFailureOrder =
|
|
std::memory_order_seq_cst;
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct IntrinsicBase
|
|
{
|
|
typedef std::atomic<T> ValueType;
|
|
typedef AtomicOrderConstraints<Order> OrderedOp;
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct IntrinsicMemoryOps : public IntrinsicBase<T, Order>
|
|
{
|
|
typedef IntrinsicBase<T, Order> Base;
|
|
|
|
static T load(const typename Base::ValueType& aPtr)
|
|
{
|
|
return aPtr.load(Base::OrderedOp::LoadOrder);
|
|
}
|
|
|
|
static void store(typename Base::ValueType& aPtr, T aVal)
|
|
{
|
|
aPtr.store(aVal, Base::OrderedOp::StoreOrder);
|
|
}
|
|
|
|
static T exchange(typename Base::ValueType& aPtr, T aVal)
|
|
{
|
|
return aPtr.exchange(aVal, Base::OrderedOp::AtomicRMWOrder);
|
|
}
|
|
|
|
static bool compareExchange(typename Base::ValueType& aPtr,
|
|
T aOldVal, T aNewVal)
|
|
{
|
|
return aPtr.compare_exchange_strong(aOldVal, aNewVal,
|
|
Base::OrderedOp::AtomicRMWOrder,
|
|
Base::OrderedOp::CompareExchangeFailureOrder);
|
|
}
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct IntrinsicAddSub : public IntrinsicBase<T, Order>
|
|
{
|
|
typedef IntrinsicBase<T, Order> Base;
|
|
|
|
static T add(typename Base::ValueType& aPtr, T aVal)
|
|
{
|
|
return aPtr.fetch_add(aVal, Base::OrderedOp::AtomicRMWOrder);
|
|
}
|
|
|
|
static T sub(typename Base::ValueType& aPtr, T aVal)
|
|
{
|
|
return aPtr.fetch_sub(aVal, Base::OrderedOp::AtomicRMWOrder);
|
|
}
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct IntrinsicAddSub<T*, Order> : public IntrinsicBase<T*, Order>
|
|
{
|
|
typedef IntrinsicBase<T*, Order> Base;
|
|
|
|
static T* add(typename Base::ValueType& aPtr, ptrdiff_t aVal)
|
|
{
|
|
return aPtr.fetch_add(aVal, Base::OrderedOp::AtomicRMWOrder);
|
|
}
|
|
|
|
static T* sub(typename Base::ValueType& aPtr, ptrdiff_t aVal)
|
|
{
|
|
return aPtr.fetch_sub(aVal, Base::OrderedOp::AtomicRMWOrder);
|
|
}
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct IntrinsicIncDec : public IntrinsicAddSub<T, Order>
|
|
{
|
|
typedef IntrinsicBase<T, Order> Base;
|
|
|
|
static T inc(typename Base::ValueType& aPtr)
|
|
{
|
|
return IntrinsicAddSub<T, Order>::add(aPtr, 1);
|
|
}
|
|
|
|
static T dec(typename Base::ValueType& aPtr)
|
|
{
|
|
return IntrinsicAddSub<T, Order>::sub(aPtr, 1);
|
|
}
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
|
|
public IntrinsicIncDec<T, Order>
|
|
{
|
|
typedef IntrinsicBase<T, Order> Base;
|
|
|
|
static T or_(typename Base::ValueType& aPtr, T aVal)
|
|
{
|
|
return aPtr.fetch_or(aVal, Base::OrderedOp::AtomicRMWOrder);
|
|
}
|
|
|
|
static T xor_(typename Base::ValueType& aPtr, T aVal)
|
|
{
|
|
return aPtr.fetch_xor(aVal, Base::OrderedOp::AtomicRMWOrder);
|
|
}
|
|
|
|
static T and_(typename Base::ValueType& aPtr, T aVal)
|
|
{
|
|
return aPtr.fetch_and(aVal, Base::OrderedOp::AtomicRMWOrder);
|
|
}
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct AtomicIntrinsics<T*, Order>
|
|
: public IntrinsicMemoryOps<T*, Order>, public IntrinsicIncDec<T*, Order>
|
|
{
|
|
};
|
|
|
|
template<typename T>
|
|
struct ToStorageTypeArgument
|
|
{
|
|
static constexpr T convert (T aT) { return aT; }
|
|
};
|
|
|
|
} // namespace detail
|
|
} // namespace mozilla
|
|
|
|
#elif defined(__GNUC__)
|
|
|
|
namespace mozilla {
|
|
namespace detail {
|
|
|
|
/*
|
|
* The __sync_* family of intrinsics is documented here:
|
|
*
|
|
* http://gcc.gnu.org/onlinedocs/gcc-4.6.4/gcc/Atomic-Builtins.html
|
|
*
|
|
* While these intrinsics are deprecated in favor of the newer __atomic_*
|
|
* family of intrincs:
|
|
*
|
|
* http://gcc.gnu.org/onlinedocs/gcc-4.7.3/gcc/_005f_005fatomic-Builtins.html
|
|
*
|
|
* any GCC version that supports the __atomic_* intrinsics will also support
|
|
* the <atomic> header and so will be handled above. We provide a version of
|
|
* atomics using the __sync_* intrinsics to support older versions of GCC.
|
|
*
|
|
* All __sync_* intrinsics that we use below act as full memory barriers, for
|
|
* both compiler and hardware reordering, except for __sync_lock_test_and_set,
|
|
* which is a only an acquire barrier. When we call __sync_lock_test_and_set,
|
|
* we add a barrier above it as appropriate.
|
|
*/
|
|
|
|
template<MemoryOrdering Order> struct Barrier;
|
|
|
|
/*
|
|
* Some processors (in particular, x86) don't require quite so many calls to
|
|
* __sync_sychronize as our specializations of Barrier produce. If
|
|
* performance turns out to be an issue, defining these specializations
|
|
* on a per-processor basis would be a good first tuning step.
|
|
*/
|
|
|
|
template<>
|
|
struct Barrier<Relaxed>
|
|
{
|
|
static void beforeLoad() {}
|
|
static void afterLoad() {}
|
|
static void beforeStore() {}
|
|
static void afterStore() {}
|
|
};
|
|
|
|
template<>
|
|
struct Barrier<ReleaseAcquire>
|
|
{
|
|
static void beforeLoad() {}
|
|
static void afterLoad() { __sync_synchronize(); }
|
|
static void beforeStore() { __sync_synchronize(); }
|
|
static void afterStore() {}
|
|
};
|
|
|
|
template<>
|
|
struct Barrier<SequentiallyConsistent>
|
|
{
|
|
static void beforeLoad() { __sync_synchronize(); }
|
|
static void afterLoad() { __sync_synchronize(); }
|
|
static void beforeStore() { __sync_synchronize(); }
|
|
static void afterStore() { __sync_synchronize(); }
|
|
};
|
|
|
|
template<typename T, bool TIsEnum = IsEnum<T>::value>
|
|
struct AtomicStorageType
|
|
{
|
|
// For non-enums, just use the type directly.
|
|
typedef T Type;
|
|
};
|
|
|
|
template<typename T>
|
|
struct AtomicStorageType<T, true>
|
|
: Conditional<sizeof(T) == 4, uint32_t, uint64_t>
|
|
{
|
|
static_assert(sizeof(T) == 4 || sizeof(T) == 8,
|
|
"wrong type computed in conditional above");
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct IntrinsicMemoryOps
|
|
{
|
|
typedef typename AtomicStorageType<T>::Type ValueType;
|
|
|
|
static T load(const ValueType& aPtr)
|
|
{
|
|
Barrier<Order>::beforeLoad();
|
|
T val = T(aPtr);
|
|
Barrier<Order>::afterLoad();
|
|
return val;
|
|
}
|
|
|
|
static void store(ValueType& aPtr, T aVal)
|
|
{
|
|
Barrier<Order>::beforeStore();
|
|
aPtr = ValueType(aVal);
|
|
Barrier<Order>::afterStore();
|
|
}
|
|
|
|
static T exchange(ValueType& aPtr, T aVal)
|
|
{
|
|
// __sync_lock_test_and_set is only an acquire barrier; loads and stores
|
|
// can't be moved up from after to before it, but they can be moved down
|
|
// from before to after it. We may want a stricter ordering, so we need
|
|
// an explicit barrier.
|
|
Barrier<Order>::beforeStore();
|
|
return T(__sync_lock_test_and_set(&aPtr, ValueType(aVal)));
|
|
}
|
|
|
|
static bool compareExchange(ValueType& aPtr, T aOldVal, T aNewVal)
|
|
{
|
|
return __sync_bool_compare_and_swap(&aPtr, ValueType(aOldVal), ValueType(aNewVal));
|
|
}
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct IntrinsicAddSub
|
|
: public IntrinsicMemoryOps<T, Order>
|
|
{
|
|
typedef IntrinsicMemoryOps<T, Order> Base;
|
|
typedef typename Base::ValueType ValueType;
|
|
|
|
static T add(ValueType& aPtr, T aVal)
|
|
{
|
|
return T(__sync_fetch_and_add(&aPtr, ValueType(aVal)));
|
|
}
|
|
|
|
static T sub(ValueType& aPtr, T aVal)
|
|
{
|
|
return T(__sync_fetch_and_sub(&aPtr, ValueType(aVal)));
|
|
}
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct IntrinsicAddSub<T*, Order>
|
|
: public IntrinsicMemoryOps<T*, Order>
|
|
{
|
|
typedef IntrinsicMemoryOps<T*, Order> Base;
|
|
typedef typename Base::ValueType ValueType;
|
|
|
|
/*
|
|
* The reinterpret_casts are needed so that
|
|
* __sync_fetch_and_{add,sub} will properly type-check.
|
|
*
|
|
* Also, these functions do not provide standard semantics for
|
|
* pointer types, so we need to adjust the addend.
|
|
*/
|
|
static ValueType add(ValueType& aPtr, ptrdiff_t aVal)
|
|
{
|
|
ValueType amount = reinterpret_cast<ValueType>(aVal * sizeof(T));
|
|
return __sync_fetch_and_add(&aPtr, amount);
|
|
}
|
|
|
|
static ValueType sub(ValueType& aPtr, ptrdiff_t aVal)
|
|
{
|
|
ValueType amount = reinterpret_cast<ValueType>(aVal * sizeof(T));
|
|
return __sync_fetch_and_sub(&aPtr, amount);
|
|
}
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct IntrinsicIncDec : public IntrinsicAddSub<T, Order>
|
|
{
|
|
typedef IntrinsicAddSub<T, Order> Base;
|
|
typedef typename Base::ValueType ValueType;
|
|
|
|
static T inc(ValueType& aPtr) { return Base::add(aPtr, 1); }
|
|
static T dec(ValueType& aPtr) { return Base::sub(aPtr, 1); }
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct AtomicIntrinsics : public IntrinsicIncDec<T, Order>
|
|
{
|
|
static T or_( T& aPtr, T aVal) { return __sync_fetch_and_or(&aPtr, aVal); }
|
|
static T xor_(T& aPtr, T aVal) { return __sync_fetch_and_xor(&aPtr, aVal); }
|
|
static T and_(T& aPtr, T aVal) { return __sync_fetch_and_and(&aPtr, aVal); }
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
struct AtomicIntrinsics<T*, Order> : public IntrinsicIncDec<T*, Order>
|
|
{
|
|
};
|
|
|
|
template<typename T, bool TIsEnum = IsEnum<T>::value>
|
|
struct ToStorageTypeArgument
|
|
{
|
|
typedef typename AtomicStorageType<T>::Type ResultType;
|
|
|
|
static constexpr ResultType convert (T aT) { return ResultType(aT); }
|
|
};
|
|
|
|
template<typename T>
|
|
struct ToStorageTypeArgument<T, false>
|
|
{
|
|
static constexpr T convert (T aT) { return aT; }
|
|
};
|
|
|
|
} // namespace detail
|
|
} // namespace mozilla
|
|
|
|
#else
|
|
# error "Atomic compiler intrinsics are not supported on your platform"
|
|
#endif
|
|
|
|
namespace mozilla {
|
|
|
|
namespace detail {
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
class AtomicBase
|
|
{
|
|
static_assert(sizeof(T) == 4 || sizeof(T) == 8,
|
|
"mozilla/Atomics.h only supports 32-bit and 64-bit types");
|
|
|
|
protected:
|
|
typedef typename detail::AtomicIntrinsics<T, Order> Intrinsics;
|
|
typedef typename Intrinsics::ValueType ValueType;
|
|
ValueType mValue;
|
|
|
|
public:
|
|
constexpr AtomicBase() : mValue() {}
|
|
explicit constexpr AtomicBase(T aInit)
|
|
: mValue(ToStorageTypeArgument<T>::convert(aInit))
|
|
{}
|
|
|
|
// Note: we can't provide operator T() here because Atomic<bool> inherits
|
|
// from AtomcBase with T=uint32_t and not T=bool. If we implemented
|
|
// operator T() here, it would cause errors when comparing Atomic<bool> with
|
|
// a regular bool.
|
|
|
|
T operator=(T aVal)
|
|
{
|
|
Intrinsics::store(mValue, aVal);
|
|
return aVal;
|
|
}
|
|
|
|
/**
|
|
* Performs an atomic swap operation. aVal is stored and the previous
|
|
* value of this variable is returned.
|
|
*/
|
|
T exchange(T aVal)
|
|
{
|
|
return Intrinsics::exchange(mValue, aVal);
|
|
}
|
|
|
|
/**
|
|
* Performs an atomic compare-and-swap operation and returns true if it
|
|
* succeeded. This is equivalent to atomically doing
|
|
*
|
|
* if (mValue == aOldValue) {
|
|
* mValue = aNewValue;
|
|
* return true;
|
|
* } else {
|
|
* return false;
|
|
* }
|
|
*/
|
|
bool compareExchange(T aOldValue, T aNewValue)
|
|
{
|
|
return Intrinsics::compareExchange(mValue, aOldValue, aNewValue);
|
|
}
|
|
|
|
private:
|
|
template<MemoryOrdering AnyOrder>
|
|
AtomicBase(const AtomicBase<T, AnyOrder>& aCopy) = delete;
|
|
};
|
|
|
|
template<typename T, MemoryOrdering Order>
|
|
class AtomicBaseIncDec : public AtomicBase<T, Order>
|
|
{
|
|
typedef typename detail::AtomicBase<T, Order> Base;
|
|
|
|
public:
|
|
constexpr AtomicBaseIncDec() : Base() {}
|
|
explicit constexpr AtomicBaseIncDec(T aInit) : Base(aInit) {}
|
|
|
|
using Base::operator=;
|
|
|
|
operator T() const { return Base::Intrinsics::load(Base::mValue); }
|
|
T operator++(int) { return Base::Intrinsics::inc(Base::mValue); }
|
|
T operator--(int) { return Base::Intrinsics::dec(Base::mValue); }
|
|
T operator++() { return Base::Intrinsics::inc(Base::mValue) + 1; }
|
|
T operator--() { return Base::Intrinsics::dec(Base::mValue) - 1; }
|
|
|
|
private:
|
|
template<MemoryOrdering AnyOrder>
|
|
AtomicBaseIncDec(const AtomicBaseIncDec<T, AnyOrder>& aCopy) = delete;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
/**
|
|
* A wrapper for a type that enforces that all memory accesses are atomic.
|
|
*
|
|
* In general, where a variable |T foo| exists, |Atomic<T> foo| can be used in
|
|
* its place. Implementations for integral and pointer types are provided
|
|
* below.
|
|
*
|
|
* Atomic accesses are sequentially consistent by default. You should
|
|
* use the default unless you are tall enough to ride the
|
|
* memory-ordering roller coaster (if you're not sure, you aren't) and
|
|
* you have a compelling reason to do otherwise.
|
|
*
|
|
* There is one exception to the case of atomic memory accesses: providing an
|
|
* initial value of the atomic value is not guaranteed to be atomic. This is a
|
|
* deliberate design choice that enables static atomic variables to be declared
|
|
* without introducing extra static constructors.
|
|
*/
|
|
template<typename T,
|
|
MemoryOrdering Order = SequentiallyConsistent,
|
|
typename Enable = void>
|
|
class Atomic;
|
|
|
|
/**
|
|
* Atomic<T> implementation for integral types.
|
|
*
|
|
* In addition to atomic store and load operations, compound assignment and
|
|
* increment/decrement operators are implemented which perform the
|
|
* corresponding read-modify-write operation atomically. Finally, an atomic
|
|
* swap method is provided.
|
|
*/
|
|
template<typename T, MemoryOrdering Order>
|
|
class Atomic<T, Order, typename EnableIf<IsIntegral<T>::value &&
|
|
!IsSame<T, bool>::value>::Type>
|
|
: public detail::AtomicBaseIncDec<T, Order>
|
|
{
|
|
typedef typename detail::AtomicBaseIncDec<T, Order> Base;
|
|
|
|
public:
|
|
constexpr Atomic() : Base() {}
|
|
explicit constexpr Atomic(T aInit) : Base(aInit) {}
|
|
|
|
using Base::operator=;
|
|
|
|
T operator+=(T aDelta)
|
|
{
|
|
return Base::Intrinsics::add(Base::mValue, aDelta) + aDelta;
|
|
}
|
|
|
|
T operator-=(T aDelta)
|
|
{
|
|
return Base::Intrinsics::sub(Base::mValue, aDelta) - aDelta;
|
|
}
|
|
|
|
T operator|=(T aVal)
|
|
{
|
|
return Base::Intrinsics::or_(Base::mValue, aVal) | aVal;
|
|
}
|
|
|
|
T operator^=(T aVal)
|
|
{
|
|
return Base::Intrinsics::xor_(Base::mValue, aVal) ^ aVal;
|
|
}
|
|
|
|
T operator&=(T aVal)
|
|
{
|
|
return Base::Intrinsics::and_(Base::mValue, aVal) & aVal;
|
|
}
|
|
|
|
private:
|
|
Atomic(Atomic<T, Order>& aOther) = delete;
|
|
};
|
|
|
|
/**
|
|
* Atomic<T> implementation for pointer types.
|
|
*
|
|
* An atomic compare-and-swap primitive for pointer variables is provided, as
|
|
* are atomic increment and decement operators. Also provided are the compound
|
|
* assignment operators for addition and subtraction. Atomic swap (via
|
|
* exchange()) is included as well.
|
|
*/
|
|
template<typename T, MemoryOrdering Order>
|
|
class Atomic<T*, Order> : public detail::AtomicBaseIncDec<T*, Order>
|
|
{
|
|
typedef typename detail::AtomicBaseIncDec<T*, Order> Base;
|
|
|
|
public:
|
|
constexpr Atomic() : Base() {}
|
|
explicit constexpr Atomic(T* aInit) : Base(aInit) {}
|
|
|
|
using Base::operator=;
|
|
|
|
T* operator+=(ptrdiff_t aDelta)
|
|
{
|
|
return Base::Intrinsics::add(Base::mValue, aDelta) + aDelta;
|
|
}
|
|
|
|
T* operator-=(ptrdiff_t aDelta)
|
|
{
|
|
return Base::Intrinsics::sub(Base::mValue, aDelta) - aDelta;
|
|
}
|
|
|
|
private:
|
|
Atomic(Atomic<T*, Order>& aOther) = delete;
|
|
};
|
|
|
|
/**
|
|
* Atomic<T> implementation for enum types.
|
|
*
|
|
* The atomic store and load operations and the atomic swap method is provided.
|
|
*/
|
|
template<typename T, MemoryOrdering Order>
|
|
class Atomic<T, Order, typename EnableIf<IsEnum<T>::value>::Type>
|
|
: public detail::AtomicBase<T, Order>
|
|
{
|
|
typedef typename detail::AtomicBase<T, Order> Base;
|
|
|
|
public:
|
|
constexpr Atomic() : Base() {}
|
|
explicit constexpr Atomic(T aInit) : Base(aInit) {}
|
|
|
|
operator T() const { return T(Base::Intrinsics::load(Base::mValue)); }
|
|
|
|
using Base::operator=;
|
|
|
|
private:
|
|
Atomic(Atomic<T, Order>& aOther) = delete;
|
|
};
|
|
|
|
/**
|
|
* Atomic<T> implementation for boolean types.
|
|
*
|
|
* The atomic store and load operations and the atomic swap method is provided.
|
|
*
|
|
* Note:
|
|
*
|
|
* - sizeof(Atomic<bool>) != sizeof(bool) for some implementations of
|
|
* bool and/or some implementations of std::atomic. This is allowed in
|
|
* [atomic.types.generic]p9.
|
|
*
|
|
* - It's not obvious whether the 8-bit atomic functions on Windows are always
|
|
* inlined or not. If they are not inlined, the corresponding functions in the
|
|
* runtime library are not available on Windows XP. This is why we implement
|
|
* Atomic<bool> with an underlying type of uint32_t.
|
|
*/
|
|
template<MemoryOrdering Order>
|
|
class Atomic<bool, Order>
|
|
: protected detail::AtomicBase<uint32_t, Order>
|
|
{
|
|
typedef typename detail::AtomicBase<uint32_t, Order> Base;
|
|
|
|
public:
|
|
constexpr Atomic() : Base() {}
|
|
explicit constexpr Atomic(bool aInit) : Base(aInit) {}
|
|
|
|
// We provide boolean wrappers for the underlying AtomicBase methods.
|
|
MOZ_IMPLICIT operator bool() const
|
|
{
|
|
return Base::Intrinsics::load(Base::mValue);
|
|
}
|
|
|
|
bool operator=(bool aVal)
|
|
{
|
|
return Base::operator=(aVal);
|
|
}
|
|
|
|
bool exchange(bool aVal)
|
|
{
|
|
return Base::exchange(aVal);
|
|
}
|
|
|
|
bool compareExchange(bool aOldValue, bool aNewValue)
|
|
{
|
|
return Base::compareExchange(aOldValue, aNewValue);
|
|
}
|
|
|
|
private:
|
|
Atomic(Atomic<bool, Order>& aOther) = delete;
|
|
};
|
|
|
|
} // namespace mozilla
|
|
|
|
#endif /* mozilla_Atomics_h */
|