gecko-dev/content/media/webaudio/blink/DynamicsCompressorKernel.cpp
Karl Tomlinson 6578a0d181 b=991533 move sample rate limits to WebAudioUtils r=padenot
Also change WebAudioUtils from a class to a namespace, so that constant
variables can be defined inline with internal linkage.

static class variables cannot be defined inline because this violates the one
definition rule, even though some compilers may not notice.

--HG--
extra : transplant_source : %9F4%2Ct%BA%D2%BD%8A1Xev%92%C0%A1%AD%88IH%BF
2014-05-16 08:44:17 +12:00

491 lines
19 KiB
C++

/*
* Copyright (C) 2011 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "DynamicsCompressorKernel.h"
#include "DenormalDisabler.h"
#include <algorithm>
#include "mozilla/FloatingPoint.h"
#include "mozilla/Constants.h"
#include "WebAudioUtils.h"
using namespace std;
using namespace mozilla::dom; // for WebAudioUtils
using mozilla::IsInfinite;
using mozilla::IsNaN;
namespace WebCore {
// Metering hits peaks instantly, but releases this fast (in seconds).
const float meteringReleaseTimeConstant = 0.325f;
const float uninitializedValue = -1;
DynamicsCompressorKernel::DynamicsCompressorKernel(float sampleRate, unsigned numberOfChannels)
: m_sampleRate(sampleRate)
, m_lastPreDelayFrames(DefaultPreDelayFrames)
, m_preDelayReadIndex(0)
, m_preDelayWriteIndex(DefaultPreDelayFrames)
, m_ratio(uninitializedValue)
, m_slope(uninitializedValue)
, m_linearThreshold(uninitializedValue)
, m_dbThreshold(uninitializedValue)
, m_dbKnee(uninitializedValue)
, m_kneeThreshold(uninitializedValue)
, m_kneeThresholdDb(uninitializedValue)
, m_ykneeThresholdDb(uninitializedValue)
, m_K(uninitializedValue)
{
setNumberOfChannels(numberOfChannels);
// Initializes most member variables
reset();
m_meteringReleaseK =
static_cast<float>(WebAudioUtils::DiscreteTimeConstantForSampleRate(meteringReleaseTimeConstant, sampleRate));
}
size_t DynamicsCompressorKernel::sizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
size_t amount = 0;
amount += m_preDelayBuffers.SizeOfExcludingThis(aMallocSizeOf);
for (size_t i = 0; i < m_preDelayBuffers.Length(); i++) {
amount += m_preDelayBuffers[i].SizeOfExcludingThis(aMallocSizeOf);
}
return amount;
}
void DynamicsCompressorKernel::setNumberOfChannels(unsigned numberOfChannels)
{
if (m_preDelayBuffers.Length() == numberOfChannels)
return;
m_preDelayBuffers.Clear();
for (unsigned i = 0; i < numberOfChannels; ++i)
m_preDelayBuffers.AppendElement(new float[MaxPreDelayFrames]);
}
void DynamicsCompressorKernel::setPreDelayTime(float preDelayTime)
{
// Re-configure look-ahead section pre-delay if delay time has changed.
unsigned preDelayFrames = preDelayTime * sampleRate();
if (preDelayFrames > MaxPreDelayFrames - 1)
preDelayFrames = MaxPreDelayFrames - 1;
if (m_lastPreDelayFrames != preDelayFrames) {
m_lastPreDelayFrames = preDelayFrames;
for (unsigned i = 0; i < m_preDelayBuffers.Length(); ++i)
memset(m_preDelayBuffers[i], 0, sizeof(float) * MaxPreDelayFrames);
m_preDelayReadIndex = 0;
m_preDelayWriteIndex = preDelayFrames;
}
}
// Exponential curve for the knee.
// It is 1st derivative matched at m_linearThreshold and asymptotically approaches the value m_linearThreshold + 1 / k.
float DynamicsCompressorKernel::kneeCurve(float x, float k)
{
// Linear up to threshold.
if (x < m_linearThreshold)
return x;
return m_linearThreshold + (1 - expf(-k * (x - m_linearThreshold))) / k;
}
// Full compression curve with constant ratio after knee.
float DynamicsCompressorKernel::saturate(float x, float k)
{
float y;
if (x < m_kneeThreshold)
y = kneeCurve(x, k);
else {
// Constant ratio after knee.
float xDb = WebAudioUtils::ConvertLinearToDecibels(x, -1000.0f);
float yDb = m_ykneeThresholdDb + m_slope * (xDb - m_kneeThresholdDb);
y = WebAudioUtils::ConvertDecibelsToLinear(yDb);
}
return y;
}
// Approximate 1st derivative with input and output expressed in dB.
// This slope is equal to the inverse of the compression "ratio".
// In other words, a compression ratio of 20 would be a slope of 1/20.
float DynamicsCompressorKernel::slopeAt(float x, float k)
{
if (x < m_linearThreshold)
return 1;
float x2 = x * 1.001;
float xDb = WebAudioUtils::ConvertLinearToDecibels(x, -1000.0f);
float x2Db = WebAudioUtils::ConvertLinearToDecibels(x2, -1000.0f);
float yDb = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(x, k), -1000.0f);
float y2Db = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(x2, k), -1000.0f);
float m = (y2Db - yDb) / (x2Db - xDb);
return m;
}
float DynamicsCompressorKernel::kAtSlope(float desiredSlope)
{
float xDb = m_dbThreshold + m_dbKnee;
float x = WebAudioUtils::ConvertDecibelsToLinear(xDb);
// Approximate k given initial values.
float minK = 0.1;
float maxK = 10000;
float k = 5;
for (int i = 0; i < 15; ++i) {
// A high value for k will more quickly asymptotically approach a slope of 0.
float slope = slopeAt(x, k);
if (slope < desiredSlope) {
// k is too high.
maxK = k;
} else {
// k is too low.
minK = k;
}
// Re-calculate based on geometric mean.
k = sqrtf(minK * maxK);
}
return k;
}
float DynamicsCompressorKernel::updateStaticCurveParameters(float dbThreshold, float dbKnee, float ratio)
{
if (dbThreshold != m_dbThreshold || dbKnee != m_dbKnee || ratio != m_ratio) {
// Threshold and knee.
m_dbThreshold = dbThreshold;
m_linearThreshold = WebAudioUtils::ConvertDecibelsToLinear(dbThreshold);
m_dbKnee = dbKnee;
// Compute knee parameters.
m_ratio = ratio;
m_slope = 1 / m_ratio;
float k = kAtSlope(1 / m_ratio);
m_kneeThresholdDb = dbThreshold + dbKnee;
m_kneeThreshold = WebAudioUtils::ConvertDecibelsToLinear(m_kneeThresholdDb);
m_ykneeThresholdDb = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(m_kneeThreshold, k), -1000.0f);
m_K = k;
}
return m_K;
}
void DynamicsCompressorKernel::process(float* sourceChannels[],
float* destinationChannels[],
unsigned numberOfChannels,
unsigned framesToProcess,
float dbThreshold,
float dbKnee,
float ratio,
float attackTime,
float releaseTime,
float preDelayTime,
float dbPostGain,
float effectBlend, /* equal power crossfade */
float releaseZone1,
float releaseZone2,
float releaseZone3,
float releaseZone4
)
{
MOZ_ASSERT(m_preDelayBuffers.Length() == numberOfChannels);
float sampleRate = this->sampleRate();
float dryMix = 1 - effectBlend;
float wetMix = effectBlend;
float k = updateStaticCurveParameters(dbThreshold, dbKnee, ratio);
// Makeup gain.
float fullRangeGain = saturate(1, k);
float fullRangeMakeupGain = 1 / fullRangeGain;
// Empirical/perceptual tuning.
fullRangeMakeupGain = powf(fullRangeMakeupGain, 0.6f);
float masterLinearGain = WebAudioUtils::ConvertDecibelsToLinear(dbPostGain) * fullRangeMakeupGain;
// Attack parameters.
attackTime = max(0.001f, attackTime);
float attackFrames = attackTime * sampleRate;
// Release parameters.
float releaseFrames = sampleRate * releaseTime;
// Detector release time.
float satReleaseTime = 0.0025f;
float satReleaseFrames = satReleaseTime * sampleRate;
// Create a smooth function which passes through four points.
// Polynomial of the form
// y = a + b*x + c*x^2 + d*x^3 + e*x^4;
float y1 = releaseFrames * releaseZone1;
float y2 = releaseFrames * releaseZone2;
float y3 = releaseFrames * releaseZone3;
float y4 = releaseFrames * releaseZone4;
// All of these coefficients were derived for 4th order polynomial curve fitting where the y values
// match the evenly spaced x values as follows: (y1 : x == 0, y2 : x == 1, y3 : x == 2, y4 : x == 3)
float kA = 0.9999999999999998f*y1 + 1.8432219684323923e-16f*y2 - 1.9373394351676423e-16f*y3 + 8.824516011816245e-18f*y4;
float kB = -1.5788320352845888f*y1 + 2.3305837032074286f*y2 - 0.9141194204840429f*y3 + 0.1623677525612032f*y4;
float kC = 0.5334142869106424f*y1 - 1.272736789213631f*y2 + 0.9258856042207512f*y3 - 0.18656310191776226f*y4;
float kD = 0.08783463138207234f*y1 - 0.1694162967925622f*y2 + 0.08588057951595272f*y3 - 0.00429891410546283f*y4;
float kE = -0.042416883008123074f*y1 + 0.1115693827987602f*y2 - 0.09764676325265872f*y3 + 0.028494263462021576f*y4;
// x ranges from 0 -> 3 0 1 2 3
// -15 -10 -5 0db
// y calculates adaptive release frames depending on the amount of compression.
setPreDelayTime(preDelayTime);
const int nDivisionFrames = 32;
const int nDivisions = framesToProcess / nDivisionFrames;
unsigned frameIndex = 0;
for (int i = 0; i < nDivisions; ++i) {
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Calculate desired gain
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Fix gremlins.
if (IsNaN(m_detectorAverage))
m_detectorAverage = 1;
if (IsInfinite(m_detectorAverage))
m_detectorAverage = 1;
float desiredGain = m_detectorAverage;
// Pre-warp so we get desiredGain after sin() warp below.
float scaledDesiredGain = asinf(desiredGain) / (0.5f * M_PI);
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Deal with envelopes
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// envelopeRate is the rate we slew from current compressor level to the desired level.
// The exact rate depends on if we're attacking or releasing and by how much.
float envelopeRate;
bool isReleasing = scaledDesiredGain > m_compressorGain;
// compressionDiffDb is the difference between current compression level and the desired level.
float compressionDiffDb = WebAudioUtils::ConvertLinearToDecibels(m_compressorGain / scaledDesiredGain, -1000.0f);
if (isReleasing) {
// Release mode - compressionDiffDb should be negative dB
m_maxAttackCompressionDiffDb = -1;
// Fix gremlins.
if (IsNaN(compressionDiffDb))
compressionDiffDb = -1;
if (IsInfinite(compressionDiffDb))
compressionDiffDb = -1;
// Adaptive release - higher compression (lower compressionDiffDb) releases faster.
// Contain within range: -12 -> 0 then scale to go from 0 -> 3
float x = compressionDiffDb;
x = max(-12.0f, x);
x = min(0.0f, x);
x = 0.25f * (x + 12);
// Compute adaptive release curve using 4th order polynomial.
// Normal values for the polynomial coefficients would create a monotonically increasing function.
float x2 = x * x;
float x3 = x2 * x;
float x4 = x2 * x2;
float releaseFrames = kA + kB * x + kC * x2 + kD * x3 + kE * x4;
#define kSpacingDb 5
float dbPerFrame = kSpacingDb / releaseFrames;
envelopeRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame);
} else {
// Attack mode - compressionDiffDb should be positive dB
// Fix gremlins.
if (IsNaN(compressionDiffDb))
compressionDiffDb = 1;
if (IsInfinite(compressionDiffDb))
compressionDiffDb = 1;
// As long as we're still in attack mode, use a rate based off
// the largest compressionDiffDb we've encountered so far.
if (m_maxAttackCompressionDiffDb == -1 || m_maxAttackCompressionDiffDb < compressionDiffDb)
m_maxAttackCompressionDiffDb = compressionDiffDb;
float effAttenDiffDb = max(0.5f, m_maxAttackCompressionDiffDb);
float x = 0.25f / effAttenDiffDb;
envelopeRate = 1 - powf(x, 1 / attackFrames);
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Inner loop - calculate shaped power average - apply compression.
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{
int preDelayReadIndex = m_preDelayReadIndex;
int preDelayWriteIndex = m_preDelayWriteIndex;
float detectorAverage = m_detectorAverage;
float compressorGain = m_compressorGain;
int loopFrames = nDivisionFrames;
while (loopFrames--) {
float compressorInput = 0;
// Predelay signal, computing compression amount from un-delayed version.
for (unsigned i = 0; i < numberOfChannels; ++i) {
float* delayBuffer = m_preDelayBuffers[i];
float undelayedSource = sourceChannels[i][frameIndex];
delayBuffer[preDelayWriteIndex] = undelayedSource;
float absUndelayedSource = undelayedSource > 0 ? undelayedSource : -undelayedSource;
if (compressorInput < absUndelayedSource)
compressorInput = absUndelayedSource;
}
// Calculate shaped power on undelayed input.
float scaledInput = compressorInput;
float absInput = scaledInput > 0 ? scaledInput : -scaledInput;
// Put through shaping curve.
// This is linear up to the threshold, then enters a "knee" portion followed by the "ratio" portion.
// The transition from the threshold to the knee is smooth (1st derivative matched).
// The transition from the knee to the ratio portion is smooth (1st derivative matched).
float shapedInput = saturate(absInput, k);
float attenuation = absInput <= 0.0001f ? 1 : shapedInput / absInput;
float attenuationDb = -WebAudioUtils::ConvertLinearToDecibels(attenuation, -1000.0f);
attenuationDb = max(2.0f, attenuationDb);
float dbPerFrame = attenuationDb / satReleaseFrames;
float satReleaseRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame) - 1;
bool isRelease = (attenuation > detectorAverage);
float rate = isRelease ? satReleaseRate : 1;
detectorAverage += (attenuation - detectorAverage) * rate;
detectorAverage = min(1.0f, detectorAverage);
// Fix gremlins.
if (IsNaN(detectorAverage))
detectorAverage = 1;
if (IsInfinite(detectorAverage))
detectorAverage = 1;
// Exponential approach to desired gain.
if (envelopeRate < 1) {
// Attack - reduce gain to desired.
compressorGain += (scaledDesiredGain - compressorGain) * envelopeRate;
} else {
// Release - exponentially increase gain to 1.0
compressorGain *= envelopeRate;
compressorGain = min(1.0f, compressorGain);
}
// Warp pre-compression gain to smooth out sharp exponential transition points.
float postWarpCompressorGain = sinf(0.5f * M_PI * compressorGain);
// Calculate total gain using master gain and effect blend.
float totalGain = dryMix + wetMix * masterLinearGain * postWarpCompressorGain;
// Calculate metering.
float dbRealGain = 20 * log10(postWarpCompressorGain);
if (dbRealGain < m_meteringGain)
m_meteringGain = dbRealGain;
else
m_meteringGain += (dbRealGain - m_meteringGain) * m_meteringReleaseK;
// Apply final gain.
for (unsigned i = 0; i < numberOfChannels; ++i) {
float* delayBuffer = m_preDelayBuffers[i];
destinationChannels[i][frameIndex] = delayBuffer[preDelayReadIndex] * totalGain;
}
frameIndex++;
preDelayReadIndex = (preDelayReadIndex + 1) & MaxPreDelayFramesMask;
preDelayWriteIndex = (preDelayWriteIndex + 1) & MaxPreDelayFramesMask;
}
// Locals back to member variables.
m_preDelayReadIndex = preDelayReadIndex;
m_preDelayWriteIndex = preDelayWriteIndex;
m_detectorAverage = DenormalDisabler::flushDenormalFloatToZero(detectorAverage);
m_compressorGain = DenormalDisabler::flushDenormalFloatToZero(compressorGain);
}
}
}
void DynamicsCompressorKernel::reset()
{
m_detectorAverage = 0;
m_compressorGain = 1;
m_meteringGain = 1;
// Predelay section.
for (unsigned i = 0; i < m_preDelayBuffers.Length(); ++i)
memset(m_preDelayBuffers[i], 0, sizeof(float) * MaxPreDelayFrames);
m_preDelayReadIndex = 0;
m_preDelayWriteIndex = DefaultPreDelayFrames;
m_maxAttackCompressionDiffDb = -1; // uninitialized state
}
} // namespace WebCore