mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-27 02:43:07 +00:00
1059 lines
36 KiB
C++
1059 lines
36 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/SystemMemoryReporter.h"
|
|
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/LinuxUtils.h"
|
|
#include "mozilla/PodOperations.h"
|
|
#include "mozilla/Preferences.h"
|
|
#include "mozilla/TaggedAnonymousMemory.h"
|
|
#include "mozilla/unused.h"
|
|
|
|
#include "nsDataHashtable.h"
|
|
#include "nsIMemoryReporter.h"
|
|
#include "nsPrintfCString.h"
|
|
#include "nsString.h"
|
|
#include "nsTHashtable.h"
|
|
#include "nsHashKeys.h"
|
|
|
|
#include <dirent.h>
|
|
#include <inttypes.h>
|
|
#include <stdio.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
|
|
// This file implements a Linux-specific, system-wide memory reporter. It
|
|
// gathers all the useful memory measurements obtainable from the OS in a
|
|
// single place, giving a high-level view of memory consumption for the entire
|
|
// machine/device.
|
|
//
|
|
// Other memory reporters measure part of a single process's memory consumption.
|
|
// This reporter is different in that it measures memory consumption of many
|
|
// processes, and they end up in a single reports tree. This is a slight abuse
|
|
// of the memory reporting infrastructure, and therefore the results are given
|
|
// their own "process" called "System", which means they show up in about:memory
|
|
// in their own section, distinct from the per-process sections.
|
|
|
|
namespace mozilla {
|
|
namespace SystemMemoryReporter {
|
|
|
|
#if !defined(XP_LINUX)
|
|
#error "This won't work if we're not on Linux."
|
|
#endif
|
|
|
|
/**
|
|
* RAII helper that will close an open DIR handle.
|
|
*/
|
|
struct MOZ_STACK_CLASS AutoDir
|
|
{
|
|
explicit AutoDir(DIR* aDir) : mDir(aDir) {}
|
|
~AutoDir() { if (mDir) closedir(mDir); };
|
|
DIR* mDir;
|
|
};
|
|
|
|
/**
|
|
* RAII helper that will close an open FILE handle.
|
|
*/
|
|
struct MOZ_STACK_CLASS AutoFile
|
|
{
|
|
explicit AutoFile(FILE* aFile) : mFile(aFile) {}
|
|
~AutoFile() { if (mFile) fclose(mFile); }
|
|
FILE* mFile;
|
|
};
|
|
|
|
static bool
|
|
EndsWithLiteral(const nsCString& aHaystack, const char* aNeedle)
|
|
{
|
|
int32_t idx = aHaystack.RFind(aNeedle);
|
|
return idx != -1 && idx + strlen(aNeedle) == aHaystack.Length();
|
|
}
|
|
|
|
static void
|
|
GetDirname(const nsCString& aPath, nsACString& aOut)
|
|
{
|
|
int32_t idx = aPath.RFind("/");
|
|
if (idx == -1) {
|
|
aOut.Truncate();
|
|
} else {
|
|
aOut.Assign(Substring(aPath, 0, idx));
|
|
}
|
|
}
|
|
|
|
static void
|
|
GetBasename(const nsCString& aPath, nsACString& aOut)
|
|
{
|
|
nsCString out;
|
|
int32_t idx = aPath.RFind("/");
|
|
if (idx == -1) {
|
|
out.Assign(aPath);
|
|
} else {
|
|
out.Assign(Substring(aPath, idx + 1));
|
|
}
|
|
|
|
// On Android, some entries in /dev/ashmem end with "(deleted)" (e.g.
|
|
// "/dev/ashmem/libxul.so(deleted)"). We don't care about this modifier, so
|
|
// cut it off when getting the entry's basename.
|
|
if (EndsWithLiteral(out, "(deleted)")) {
|
|
out.Assign(Substring(out, 0, out.RFind("(deleted)")));
|
|
}
|
|
out.StripChars(" ");
|
|
|
|
aOut.Assign(out);
|
|
}
|
|
|
|
static bool
|
|
IsNumeric(const char* aStr)
|
|
{
|
|
MOZ_ASSERT(*aStr); // shouldn't see empty strings
|
|
while (*aStr) {
|
|
if (!isdigit(*aStr)) {
|
|
return false;
|
|
}
|
|
++aStr;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
IsAnonymous(const nsACString& aName)
|
|
{
|
|
// Recent kernels have multiple [stack:nnnn] entries, where |nnnn| is a
|
|
// thread ID. However, the entire virtual memory area containing a thread's
|
|
// stack pointer is considered the stack for that thread, even if it was
|
|
// merged with an adjacent area containing non-stack data. So we treat them
|
|
// as regular anonymous memory. However, see below about tagged anonymous
|
|
// memory.
|
|
return aName.IsEmpty() ||
|
|
StringBeginsWith(aName, NS_LITERAL_CSTRING("[stack:"));
|
|
}
|
|
|
|
class SystemReporter MOZ_FINAL : public nsIMemoryReporter
|
|
{
|
|
~SystemReporter() {}
|
|
|
|
public:
|
|
NS_DECL_THREADSAFE_ISUPPORTS
|
|
|
|
#define REPORT_WITH_CLEANUP(_path, _units, _amount, _desc, _cleanup) \
|
|
do { \
|
|
size_t amount = _amount; /* evaluate _amount only once */ \
|
|
if (amount > 0) { \
|
|
nsresult rv; \
|
|
rv = aHandleReport->Callback(NS_LITERAL_CSTRING("System"), _path, \
|
|
KIND_NONHEAP, _units, amount, _desc, \
|
|
aData); \
|
|
if (NS_WARN_IF(NS_FAILED(rv))) { \
|
|
_cleanup; \
|
|
return rv; \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
#define REPORT(_path, _amount, _desc) \
|
|
REPORT_WITH_CLEANUP(_path, UNITS_BYTES, _amount, _desc, (void)0)
|
|
|
|
NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData, bool aAnonymize)
|
|
{
|
|
// There is lots of privacy-sensitive data in /proc. Just skip this
|
|
// reporter entirely when anonymization is required.
|
|
if (aAnonymize) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (!Preferences::GetBool("memory.system_memory_reporter")) {
|
|
return NS_OK;
|
|
}
|
|
|
|
// Read relevant fields from /proc/meminfo.
|
|
int64_t memTotal = 0, memFree = 0;
|
|
nsresult rv = ReadMemInfo(&memTotal, &memFree);
|
|
|
|
// Collect per-process reports from /proc/<pid>/smaps.
|
|
int64_t totalPss = 0;
|
|
rv = CollectProcessReports(aHandleReport, aData, &totalPss);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Report the non-process numbers.
|
|
int64_t other = memTotal - memFree - totalPss;
|
|
REPORT(NS_LITERAL_CSTRING("mem/other"), other, NS_LITERAL_CSTRING(
|
|
"Memory which is neither owned by any user-space process nor free. Note that "
|
|
"this includes memory holding cached files from the disk which can be "
|
|
"reclaimed by the OS at any time."));
|
|
|
|
REPORT(NS_LITERAL_CSTRING("mem/free"), memFree, NS_LITERAL_CSTRING(
|
|
"Memory which is free and not being used for any purpose."));
|
|
|
|
// Report reserved memory not included in memTotal.
|
|
rv = CollectPmemReports(aHandleReport, aData);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Report zram usage statistics.
|
|
rv = CollectZramReports(aHandleReport, aData);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Report kgsl graphics memory usage.
|
|
rv = CollectKgslReports(aHandleReport, aData);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Report ION memory usage.
|
|
rv = CollectIonReports(aHandleReport, aData);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
return rv;
|
|
}
|
|
|
|
private:
|
|
// These are the cross-cutting measurements across all processes.
|
|
class ProcessSizes
|
|
{
|
|
public:
|
|
void Add(const nsACString& aKey, size_t aSize)
|
|
{
|
|
mTagged.Put(aKey, mTagged.Get(aKey) + aSize);
|
|
}
|
|
|
|
void Report(nsIHandleReportCallback* aHandleReport, nsISupports* aData)
|
|
{
|
|
EnumArgs env = { aHandleReport, aData };
|
|
mTagged.EnumerateRead(ReportSizes, &env);
|
|
}
|
|
|
|
private:
|
|
nsDataHashtable<nsCStringHashKey, size_t> mTagged;
|
|
|
|
struct EnumArgs
|
|
{
|
|
nsIHandleReportCallback* mHandleReport;
|
|
nsISupports* mData;
|
|
};
|
|
|
|
static PLDHashOperator ReportSizes(nsCStringHashKey::KeyType aKey,
|
|
size_t aAmount,
|
|
void* aUserArg)
|
|
{
|
|
const EnumArgs* envp = reinterpret_cast<const EnumArgs*>(aUserArg);
|
|
|
|
nsAutoCString path("processes/");
|
|
path.Append(aKey);
|
|
|
|
nsAutoCString desc("This is the sum of all processes' '");
|
|
desc.Append(aKey);
|
|
desc.AppendLiteral("' numbers.");
|
|
|
|
envp->mHandleReport->Callback(NS_LITERAL_CSTRING("System"), path,
|
|
KIND_NONHEAP, UNITS_BYTES, aAmount,
|
|
desc, envp->mData);
|
|
|
|
return PL_DHASH_NEXT;
|
|
}
|
|
};
|
|
|
|
nsresult ReadMemInfo(int64_t* aMemTotal, int64_t* aMemFree)
|
|
{
|
|
FILE* f = fopen("/proc/meminfo", "r");
|
|
if (!f) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
int n1 = fscanf(f, "MemTotal: %" SCNd64 " kB\n", aMemTotal);
|
|
int n2 = fscanf(f, "MemFree: %" SCNd64 " kB\n", aMemFree);
|
|
|
|
fclose(f);
|
|
|
|
if (n1 != 1 || n2 != 1) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// Convert from KB to B.
|
|
*aMemTotal *= 1024;
|
|
*aMemFree *= 1024;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult CollectProcessReports(nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData,
|
|
int64_t* aTotalPss)
|
|
{
|
|
*aTotalPss = 0;
|
|
ProcessSizes processSizes;
|
|
|
|
DIR* d = opendir("/proc");
|
|
if (NS_WARN_IF(!d)) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
struct dirent* ent;
|
|
while ((ent = readdir(d))) {
|
|
struct stat statbuf;
|
|
const char* pidStr = ent->d_name;
|
|
// Don't check the return value of stat() -- it can return -1 for these
|
|
// directories even when it has succeeded, apparently.
|
|
stat(pidStr, &statbuf);
|
|
if (S_ISDIR(statbuf.st_mode) && IsNumeric(pidStr)) {
|
|
nsCString processName("process(");
|
|
|
|
// Get the command name from cmdline. If that fails, the pid is still
|
|
// shown.
|
|
nsPrintfCString cmdlinePath("/proc/%s/cmdline", pidStr);
|
|
FILE* f = fopen(cmdlinePath.get(), "r");
|
|
if (f) {
|
|
static const size_t len = 256;
|
|
char buf[len];
|
|
if (fgets(buf, len, f)) {
|
|
processName.Append(buf);
|
|
// A hack: replace forward slashes with '\\' so they aren't treated
|
|
// as path separators. Consumers of this reporter (such as
|
|
// about:memory) have to undo this change.
|
|
processName.ReplaceChar('/', '\\');
|
|
processName.AppendLiteral(", ");
|
|
}
|
|
fclose(f);
|
|
}
|
|
processName.AppendLiteral("pid=");
|
|
processName.Append(pidStr);
|
|
processName.Append(')');
|
|
|
|
// Read the PSS values from the smaps file.
|
|
nsPrintfCString smapsPath("/proc/%s/smaps", pidStr);
|
|
f = fopen(smapsPath.get(), "r");
|
|
if (!f) {
|
|
// Processes can terminate between the readdir() call above and now,
|
|
// so just skip if we can't open the file.
|
|
continue;
|
|
}
|
|
nsresult rv = ParseMappings(f, processName, aHandleReport, aData,
|
|
&processSizes, aTotalPss);
|
|
fclose(f);
|
|
if (NS_FAILED(rv)) {
|
|
continue;
|
|
}
|
|
|
|
// Report the open file descriptors for this process.
|
|
nsPrintfCString procFdPath("/proc/%s/fd", pidStr);
|
|
rv = CollectOpenFileReports(aHandleReport, aData, procFdPath,
|
|
processName);
|
|
if (NS_FAILED(rv)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
closedir(d);
|
|
|
|
// Report the "processes/" tree.
|
|
processSizes.Report(aHandleReport, aData);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult ParseMappings(FILE* aFile,
|
|
const nsACString& aProcessName,
|
|
nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData,
|
|
ProcessSizes* aProcessSizes,
|
|
int64_t* aTotalPss)
|
|
{
|
|
// The first line of an entry in /proc/<pid>/smaps looks just like an entry
|
|
// in /proc/<pid>/maps:
|
|
//
|
|
// address perms offset dev inode pathname
|
|
// 02366000-025d8000 rw-p 00000000 00:00 0 [heap]
|
|
//
|
|
// Each of the following lines contains a key and a value, separated
|
|
// by ": ", where the key does not contain either of those characters.
|
|
// Assuming more than this about the structure of those lines has
|
|
// failed to be future-proof in the past, so we avoid doing so.
|
|
//
|
|
// This makes it difficult to detect the start of a new entry
|
|
// until it's been removed from the stdio buffer, so we just loop
|
|
// over all lines in the file in this routine.
|
|
|
|
const int argCount = 8;
|
|
|
|
unsigned long long addrStart, addrEnd;
|
|
char perms[5];
|
|
unsigned long long offset;
|
|
// The 2.6 and 3.0 kernels allocate 12 bits for the major device number and
|
|
// 20 bits for the minor device number. Future kernels might allocate more.
|
|
// 64 bits ought to be enough for anybody.
|
|
char devMajor[17];
|
|
char devMinor[17];
|
|
unsigned int inode;
|
|
char line[1025];
|
|
// This variable holds the path of the current entry, or is void
|
|
// if we're scanning for the start of a new entry.
|
|
nsAutoCString path;
|
|
int pathOffset;
|
|
|
|
path.SetIsVoid(true);
|
|
while (fgets(line, sizeof(line), aFile)) {
|
|
if (path.IsVoid()) {
|
|
int n = sscanf(line,
|
|
"%llx-%llx %4s %llx "
|
|
"%16[0-9a-fA-F]:%16[0-9a-fA-F] %u %n",
|
|
&addrStart, &addrEnd, perms, &offset, devMajor,
|
|
devMinor, &inode, &pathOffset);
|
|
|
|
if (n >= argCount - 1) {
|
|
path.Assign(line + pathOffset);
|
|
path.StripChars("\n");
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Now that we have a name and other metadata, scan for the PSS.
|
|
size_t pss_kb;
|
|
int n = sscanf(line, "Pss: %zu", &pss_kb);
|
|
if (n < 1) {
|
|
continue;
|
|
}
|
|
|
|
size_t pss = pss_kb * 1024;
|
|
if (pss > 0) {
|
|
nsAutoCString name, description, tag;
|
|
GetReporterNameAndDescription(path.get(), perms, name, description, tag);
|
|
|
|
nsAutoCString path("mem/processes/");
|
|
path.Append(aProcessName);
|
|
path.Append('/');
|
|
path.Append(name);
|
|
|
|
REPORT(path, pss, description);
|
|
|
|
// Increment the appropriate aProcessSizes values, and the total.
|
|
aProcessSizes->Add(tag, pss);
|
|
*aTotalPss += pss;
|
|
}
|
|
|
|
// Now that we've seen the PSS, we're done with this entry.
|
|
path.SetIsVoid(true);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
void GetReporterNameAndDescription(const char* aPath,
|
|
const char* aPerms,
|
|
nsACString& aName,
|
|
nsACString& aDesc,
|
|
nsACString& aTag)
|
|
{
|
|
aName.Truncate();
|
|
aDesc.Truncate();
|
|
aTag.Truncate();
|
|
|
|
// If aPath points to a file, we have its absolute path; it might
|
|
// also be a bracketed pseudo-name (see below). In either case
|
|
// there is also some whitespace to trim.
|
|
nsAutoCString absPath;
|
|
absPath.Append(aPath);
|
|
absPath.StripChars(" ");
|
|
|
|
if (absPath.EqualsLiteral("[heap]")) {
|
|
aName.AppendLiteral("anonymous/brk-heap");
|
|
aDesc.AppendLiteral(
|
|
"Memory in anonymous mappings within the boundaries defined by "
|
|
"brk() / sbrk(). This is likely to be just a portion of the "
|
|
"application's heap; the remainder lives in other anonymous mappings. "
|
|
"This corresponds to '[heap]' in /proc/<pid>/smaps.");
|
|
aTag = aName;
|
|
} else if (absPath.EqualsLiteral("[stack]")) {
|
|
aName.AppendLiteral("stack/main-thread");
|
|
aDesc.AppendPrintf(
|
|
"The stack size of the process's main thread. This corresponds to "
|
|
"'[stack]' in /proc/<pid>/smaps.");
|
|
aTag = aName;
|
|
} else if (MozTaggedMemoryIsSupported() &&
|
|
StringBeginsWith(absPath, NS_LITERAL_CSTRING("[stack:"))) {
|
|
// If tagged memory is supported, we can be reasonably sure that
|
|
// the virtual memory area containing the stack hasn't been
|
|
// merged with unrelated heap memory. (This prevents the
|
|
// "[stack:" entries from reaching the IsAnonymous case below.)
|
|
pid_t tid = atoi(absPath.get() + 7);
|
|
nsAutoCString threadName, escapedThreadName;
|
|
LinuxUtils::GetThreadName(tid, threadName);
|
|
if (threadName.IsEmpty()) {
|
|
threadName.AssignLiteral("<unknown>");
|
|
}
|
|
escapedThreadName.Assign(threadName);
|
|
escapedThreadName.StripChars("()");
|
|
escapedThreadName.ReplaceChar('/', '\\');
|
|
|
|
aName.AppendLiteral("stack/non-main-thread");
|
|
aName.AppendLiteral("/name(");
|
|
aName.Append(escapedThreadName);
|
|
aName.Append(')');
|
|
aTag = aName;
|
|
aName.AppendPrintf("/thread(%d)", tid);
|
|
|
|
aDesc.AppendPrintf("The stack size of a non-main thread named '%s' with "
|
|
"thread ID %d. This corresponds to '[stack:%d]' "
|
|
"in /proc/%d/smaps.", threadName.get(), tid, tid);
|
|
} else if (absPath.EqualsLiteral("[vdso]")) {
|
|
aName.AppendLiteral("vdso");
|
|
aDesc.AppendLiteral(
|
|
"The virtual dynamically-linked shared object, also known as the "
|
|
"'vsyscall page'. This is a memory region mapped by the operating "
|
|
"system for the purpose of allowing processes to perform some "
|
|
"privileged actions without the overhead of a syscall.");
|
|
aTag = aName;
|
|
} else if (StringBeginsWith(absPath, NS_LITERAL_CSTRING("[anon:")) &&
|
|
EndsWithLiteral(absPath, "]")) {
|
|
// It's tagged memory; see also "mfbt/TaggedAnonymousMemory.h".
|
|
nsAutoCString tag(Substring(absPath, 6, absPath.Length() - 7));
|
|
|
|
aName.AppendLiteral("anonymous/");
|
|
aName.Append(tag);
|
|
aTag = aName;
|
|
aDesc.AppendLiteral("Memory in anonymous mappings tagged with '");
|
|
aDesc.Append(tag);
|
|
aDesc.Append('\'');
|
|
} else if (!IsAnonymous(absPath)) {
|
|
// We now know it's an actual file. Truncate this to its
|
|
// basename, and put the absolute path in the description.
|
|
nsAutoCString basename, dirname;
|
|
GetBasename(absPath, basename);
|
|
GetDirname(absPath, dirname);
|
|
|
|
// Hack: A file is a shared library if the basename contains ".so" and
|
|
// its dirname contains "/lib", or if the basename ends with ".so".
|
|
if (EndsWithLiteral(basename, ".so") ||
|
|
(basename.Find(".so") != -1 && dirname.Find("/lib") != -1)) {
|
|
aName.AppendLiteral("shared-libraries/");
|
|
aTag = aName;
|
|
|
|
if (strncmp(aPerms, "r-x", 3) == 0) {
|
|
aTag.AppendLiteral("read-executable");
|
|
} else if (strncmp(aPerms, "rw-", 3) == 0) {
|
|
aTag.AppendLiteral("read-write");
|
|
} else if (strncmp(aPerms, "r--", 3) == 0) {
|
|
aTag.AppendLiteral("read-only");
|
|
} else {
|
|
aTag.AppendLiteral("other");
|
|
}
|
|
|
|
} else {
|
|
aName.AppendLiteral("other-files");
|
|
if (EndsWithLiteral(basename, ".xpi")) {
|
|
aName.AppendLiteral("/extensions");
|
|
} else if (dirname.Find("/fontconfig") != -1) {
|
|
aName.AppendLiteral("/fontconfig");
|
|
} else {
|
|
aName.AppendLiteral("/misc");
|
|
}
|
|
aTag = aName;
|
|
aName.Append('/');
|
|
}
|
|
|
|
aName.Append(basename);
|
|
aDesc.Append(absPath);
|
|
} else {
|
|
if (MozTaggedMemoryIsSupported()) {
|
|
aName.AppendLiteral("anonymous/untagged");
|
|
aDesc.AppendLiteral("Memory in untagged anonymous mappings.");
|
|
aTag = aName;
|
|
} else {
|
|
aName.AppendLiteral("anonymous/outside-brk");
|
|
aDesc.AppendLiteral("Memory in anonymous mappings outside the "
|
|
"boundaries defined by brk() / sbrk().");
|
|
aTag = aName;
|
|
}
|
|
}
|
|
|
|
aName.AppendLiteral("/[");
|
|
aName.Append(aPerms);
|
|
aName.Append(']');
|
|
|
|
// Append the permissions. This is useful for non-verbose mode in
|
|
// about:memory when the filename is long and goes of the right side of the
|
|
// window.
|
|
aDesc.AppendLiteral(" [");
|
|
aDesc.Append(aPerms);
|
|
aDesc.Append(']');
|
|
}
|
|
|
|
nsresult CollectPmemReports(nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData)
|
|
{
|
|
// The pmem subsystem allocates physically contiguous memory for
|
|
// interfacing with hardware. In order to ensure availability,
|
|
// this memory is reserved during boot, and allocations are made
|
|
// within these regions at runtime.
|
|
//
|
|
// There are typically several of these pools allocated at boot.
|
|
// The /sys/kernel/pmem_regions directory contains a subdirectory
|
|
// for each one. Within each subdirectory, the files we care
|
|
// about are "size" (the total amount of physical memory) and
|
|
// "mapped_regions" (a list of the current allocations within that
|
|
// area).
|
|
DIR* d = opendir("/sys/kernel/pmem_regions");
|
|
if (!d) {
|
|
if (NS_WARN_IF(errno != ENOENT)) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
// If ENOENT, system doesn't use pmem.
|
|
return NS_OK;
|
|
}
|
|
|
|
struct dirent* ent;
|
|
while ((ent = readdir(d))) {
|
|
const char* name = ent->d_name;
|
|
uint64_t size;
|
|
int scanned;
|
|
|
|
// Skip "." and ".." (and any other dotfiles).
|
|
if (name[0] == '.') {
|
|
continue;
|
|
}
|
|
|
|
// Read the total size. The file gives the size in decimal and
|
|
// hex, in the form "13631488(0xd00000)"; we parse the former.
|
|
nsPrintfCString sizePath("/sys/kernel/pmem_regions/%s/size", name);
|
|
FILE* sizeFile = fopen(sizePath.get(), "r");
|
|
if (NS_WARN_IF(!sizeFile)) {
|
|
continue;
|
|
}
|
|
scanned = fscanf(sizeFile, "%" SCNu64, &size);
|
|
fclose(sizeFile);
|
|
if (NS_WARN_IF(scanned != 1)) {
|
|
continue;
|
|
}
|
|
|
|
// Read mapped regions; format described below.
|
|
uint64_t freeSize = size;
|
|
nsPrintfCString regionsPath("/sys/kernel/pmem_regions/%s/mapped_regions",
|
|
name);
|
|
FILE* regionsFile = fopen(regionsPath.get(), "r");
|
|
if (regionsFile) {
|
|
static const size_t bufLen = 4096;
|
|
char buf[bufLen];
|
|
while (fgets(buf, bufLen, regionsFile)) {
|
|
int pid;
|
|
|
|
// Skip header line.
|
|
if (strncmp(buf, "pid #", 5) == 0) {
|
|
continue;
|
|
}
|
|
// Line format: "pid N:" + zero or more "(Start,Len) ".
|
|
// N is decimal; Start and Len are in hex.
|
|
scanned = sscanf(buf, "pid %d", &pid);
|
|
if (NS_WARN_IF(scanned != 1)) {
|
|
continue;
|
|
}
|
|
for (const char* nextParen = strchr(buf, '(');
|
|
nextParen != nullptr;
|
|
nextParen = strchr(nextParen + 1, '(')) {
|
|
uint64_t mapStart, mapLen;
|
|
|
|
scanned = sscanf(nextParen + 1, "%" SCNx64 ",%" SCNx64,
|
|
&mapStart, &mapLen);
|
|
if (NS_WARN_IF(scanned != 2)) {
|
|
break;
|
|
}
|
|
|
|
nsPrintfCString path("mem/pmem/used/%s/segment(pid=%d, "
|
|
"offset=0x%" PRIx64 ")", name, pid, mapStart);
|
|
nsPrintfCString desc("Physical memory reserved for the \"%s\" pool "
|
|
"and allocated to a buffer.", name);
|
|
REPORT_WITH_CLEANUP(path, UNITS_BYTES, mapLen, desc,
|
|
(fclose(regionsFile), closedir(d)));
|
|
freeSize -= mapLen;
|
|
}
|
|
}
|
|
fclose(regionsFile);
|
|
}
|
|
|
|
nsPrintfCString path("mem/pmem/free/%s", name);
|
|
nsPrintfCString desc("Physical memory reserved for the \"%s\" pool and "
|
|
"unavailable to the rest of the system, but not "
|
|
"currently allocated.", name);
|
|
REPORT_WITH_CLEANUP(path, UNITS_BYTES, freeSize, desc, closedir(d));
|
|
}
|
|
closedir(d);
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
CollectIonReports(nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData)
|
|
{
|
|
// ION is a replacement for PMEM (and other similar allocators).
|
|
//
|
|
// More details from http://lwn.net/Articles/480055/
|
|
// "Like its PMEM-like predecessors, ION manages one or more memory pools,
|
|
// some of which are set aside at boot time to combat fragmentation or to
|
|
// serve special hardware needs. GPUs, display controllers, and cameras
|
|
// are some of the hardware blocks that may have special memory
|
|
// requirements."
|
|
//
|
|
// The file format starts as follows:
|
|
// client pid size
|
|
// ----------------------------------------------------
|
|
// adsprpc-smd 1 4096
|
|
// fd900000.qcom,mdss_mdp 1 1658880
|
|
// ----------------------------------------------------
|
|
// orphaned allocations (info is from last known client):
|
|
// Homescreen 24100 294912 0 1
|
|
// b2g 23987 1658880 0 1
|
|
// mdss_fb0 401 1658880 0 1
|
|
// b2g 23987 4096 0 1
|
|
// Built-in Keyboa 24205 61440 0 1
|
|
// ----------------------------------------------------
|
|
// <other stuff>
|
|
//
|
|
// For our purposes we only care about the first portion of the file noted
|
|
// above which contains memory alloations (both sections). The term
|
|
// "orphaned" is misleading, it appears that every allocation not by the
|
|
// first process is considered orphaned on FxOS devices.
|
|
|
|
// The first three fields of each entry interest us:
|
|
// 1) client - Essentially the process name. We limit client names to 63
|
|
// characters, in theory they should never be greater than 15
|
|
// due to thread name length limitations.
|
|
// 2) pid - The ID of the allocating process, read as a uint32_t.
|
|
// 3) size - The size of the allocation in bytes, read as as a uint64_t.
|
|
const char* const kFormatString = "%63s %" SCNu32 " %" SCNu64;
|
|
const size_t kNumFields = 3;
|
|
const size_t kStringSize = 64;
|
|
const char* const kIonIommuPath = "/sys/kernel/debug/ion/iommu";
|
|
|
|
FILE* iommu = fopen(kIonIommuPath, "r");
|
|
if (!iommu) {
|
|
if (NS_WARN_IF(errno != ENOENT)) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
// If ENOENT, system doesn't use ION.
|
|
return NS_OK;
|
|
}
|
|
|
|
AutoFile iommuGuard(iommu);
|
|
|
|
const size_t kBufferLen = 256;
|
|
char buffer[kBufferLen];
|
|
char client[kStringSize];
|
|
uint32_t pid;
|
|
uint64_t size;
|
|
|
|
// Ignore the header line.
|
|
fgets(buffer, kBufferLen, iommu);
|
|
|
|
// Ignore the separator line.
|
|
fgets(buffer, kBufferLen, iommu);
|
|
|
|
const char* const kSep = "----";
|
|
const size_t kSepLen = 4;
|
|
|
|
// Read non-orphaned entries.
|
|
while (fgets(buffer, kBufferLen, iommu) &&
|
|
strncmp(kSep, buffer, kSepLen) != 0) {
|
|
if (sscanf(buffer, kFormatString, client, &pid, &size) == kNumFields) {
|
|
nsPrintfCString entryPath("ion-memory/%s (pid=%d)", client, pid);
|
|
REPORT(entryPath,
|
|
size,
|
|
NS_LITERAL_CSTRING("An ION kernel memory allocation."));
|
|
}
|
|
}
|
|
|
|
// Ignore the orphaned header.
|
|
fgets(buffer, kBufferLen, iommu);
|
|
|
|
// Read orphaned entries.
|
|
while (fgets(buffer, kBufferLen, iommu) &&
|
|
strncmp(kSep, buffer, kSepLen) != 0) {
|
|
if (sscanf(buffer, kFormatString, client, &pid, &size) == kNumFields) {
|
|
nsPrintfCString entryPath("ion-memory/%s (pid=%d)", client, pid);
|
|
REPORT(entryPath,
|
|
size,
|
|
NS_LITERAL_CSTRING("An ION kernel memory allocation."));
|
|
}
|
|
}
|
|
|
|
// Ignore the rest of the file.
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
uint64_t
|
|
ReadSizeFromFile(const char* aFilename)
|
|
{
|
|
FILE* sizeFile = fopen(aFilename, "r");
|
|
if (NS_WARN_IF(!sizeFile)) {
|
|
return 0;
|
|
}
|
|
|
|
uint64_t size = 0;
|
|
fscanf(sizeFile, "%" SCNu64, &size);
|
|
fclose(sizeFile);
|
|
|
|
return size;
|
|
}
|
|
|
|
nsresult
|
|
CollectZramReports(nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData)
|
|
{
|
|
// zram usage stats files can be found under:
|
|
// /sys/block/zram<id>
|
|
// |--> disksize - Maximum amount of uncompressed data that can be
|
|
// stored on the disk (bytes)
|
|
// |--> orig_data_size - Uncompressed size of data in the disk (bytes)
|
|
// |--> compr_data_size - Compressed size of the data in the disk (bytes)
|
|
// |--> num_reads - Number of attempted reads to the disk (count)
|
|
// |--> num_writes - Number of attempted writes to the disk (count)
|
|
//
|
|
// Each file contains a single integer value in decimal form.
|
|
|
|
DIR* d = opendir("/sys/block");
|
|
if (!d) {
|
|
if (NS_WARN_IF(errno != ENOENT)) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
struct dirent* ent;
|
|
while ((ent = readdir(d))) {
|
|
const char* name = ent->d_name;
|
|
|
|
// Skip non-zram entries.
|
|
if (strncmp("zram", name, 4) != 0) {
|
|
continue;
|
|
}
|
|
|
|
// Report disk size statistics.
|
|
nsPrintfCString diskSizeFile("/sys/block/%s/disksize", name);
|
|
nsPrintfCString origSizeFile("/sys/block/%s/orig_data_size", name);
|
|
|
|
uint64_t diskSize = ReadSizeFromFile(diskSizeFile.get());
|
|
uint64_t origSize = ReadSizeFromFile(origSizeFile.get());
|
|
uint64_t unusedSize = diskSize - origSize;
|
|
|
|
nsPrintfCString diskUsedPath("zram-disksize/%s/used", name);
|
|
nsPrintfCString diskUsedDesc(
|
|
"The uncompressed size of data stored in \"%s.\" "
|
|
"This excludes zero-filled pages since "
|
|
"no memory is allocated for them.", name);
|
|
REPORT_WITH_CLEANUP(diskUsedPath, UNITS_BYTES, origSize,
|
|
diskUsedDesc, closedir(d));
|
|
|
|
nsPrintfCString diskUnusedPath("zram-disksize/%s/unused", name);
|
|
nsPrintfCString diskUnusedDesc(
|
|
"The amount of uncompressed data that can still be "
|
|
"be stored in \"%s\"", name);
|
|
REPORT_WITH_CLEANUP(diskUnusedPath, UNITS_BYTES, unusedSize,
|
|
diskUnusedDesc, closedir(d));
|
|
|
|
// Report disk accesses.
|
|
nsPrintfCString readsFile("/sys/block/%s/num_reads", name);
|
|
nsPrintfCString writesFile("/sys/block/%s/num_writes", name);
|
|
|
|
uint64_t reads = ReadSizeFromFile(readsFile.get());
|
|
uint64_t writes = ReadSizeFromFile(writesFile.get());
|
|
|
|
nsPrintfCString readsDesc(
|
|
"The number of reads (failed or successful) done on "
|
|
"\"%s\"", name);
|
|
nsPrintfCString readsPath("zram-accesses/%s/reads", name);
|
|
REPORT_WITH_CLEANUP(readsPath, UNITS_COUNT_CUMULATIVE, reads,
|
|
readsDesc, closedir(d));
|
|
|
|
nsPrintfCString writesDesc(
|
|
"The number of writes (failed or successful) done "
|
|
"on \"%s\"", name);
|
|
nsPrintfCString writesPath("zram-accesses/%s/writes", name);
|
|
REPORT_WITH_CLEANUP(writesPath, UNITS_COUNT_CUMULATIVE, writes,
|
|
writesDesc, closedir(d));
|
|
|
|
// Report compressed data size.
|
|
nsPrintfCString comprSizeFile("/sys/block/%s/compr_data_size", name);
|
|
uint64_t comprSize = ReadSizeFromFile(comprSizeFile.get());
|
|
|
|
nsPrintfCString comprSizeDesc(
|
|
"The compressed size of data stored in \"%s\"",
|
|
name);
|
|
nsPrintfCString comprSizePath("zram-compr-data-size/%s", name);
|
|
REPORT_WITH_CLEANUP(comprSizePath, UNITS_BYTES, comprSize,
|
|
comprSizeDesc, closedir(d));
|
|
}
|
|
|
|
closedir(d);
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
CollectOpenFileReports(nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData,
|
|
const nsACString& aProcPath,
|
|
const nsACString& aProcessName)
|
|
{
|
|
// All file descriptors opened by a process are listed under
|
|
// /proc/<pid>/fd/<numerical_fd>. Each entry is a symlink that points to the
|
|
// path that was opened. This can be an actual file, a socket, a pipe, an
|
|
// anon_inode, or possibly an uncategorized device.
|
|
const char kFilePrefix[] = "/";
|
|
const char kSocketPrefix[] = "socket:";
|
|
const char kPipePrefix[] = "pipe:";
|
|
const char kAnonInodePrefix[] = "anon_inode:";
|
|
|
|
const nsCString procPath(aProcPath);
|
|
DIR* d = opendir(procPath.get());
|
|
if (!d) {
|
|
if (NS_WARN_IF(errno != ENOENT && errno != EACCES)) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
char linkPath[PATH_MAX + 1];
|
|
struct dirent* ent;
|
|
while ((ent = readdir(d))) {
|
|
const char* fd = ent->d_name;
|
|
|
|
// Skip "." and ".." (and any other dotfiles).
|
|
if (fd[0] == '.') {
|
|
continue;
|
|
}
|
|
|
|
nsPrintfCString fullPath("%s/%s", procPath.get(), fd);
|
|
ssize_t linkPathSize = readlink(fullPath.get(), linkPath, PATH_MAX);
|
|
if (linkPathSize > 0) {
|
|
linkPath[linkPathSize] = '\0';
|
|
|
|
#define CHECK_PREFIX(prefix) \
|
|
(strncmp(linkPath, prefix, sizeof(prefix) - 1) == 0)
|
|
|
|
const char* category = nullptr;
|
|
const char* descriptionPrefix = nullptr;
|
|
|
|
if (CHECK_PREFIX(kFilePrefix)) {
|
|
category = "files"; // No trailing slash, the file path will have one
|
|
descriptionPrefix = "An open";
|
|
} else if (CHECK_PREFIX(kSocketPrefix)) {
|
|
category = "sockets/";
|
|
descriptionPrefix = "A socket";
|
|
} else if (CHECK_PREFIX(kPipePrefix)) {
|
|
category = "pipes/";
|
|
descriptionPrefix = "A pipe";
|
|
} else if (CHECK_PREFIX(kAnonInodePrefix)) {
|
|
category = "anon_inodes/";
|
|
descriptionPrefix = "An anon_inode";
|
|
} else {
|
|
category = "";
|
|
descriptionPrefix = "An uncategorized";
|
|
}
|
|
|
|
#undef CHECK_PREFIX
|
|
|
|
const nsCString processName(aProcessName);
|
|
nsPrintfCString entryPath("open-fds/%s/%s%s/%s",
|
|
processName.get(), category, linkPath, fd);
|
|
nsPrintfCString entryDescription("%s file descriptor opened by the process",
|
|
descriptionPrefix);
|
|
REPORT_WITH_CLEANUP(entryPath, UNITS_COUNT, 1, entryDescription,
|
|
closedir(d));
|
|
}
|
|
}
|
|
|
|
closedir(d);
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
CollectKgslReports(nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData)
|
|
{
|
|
// Each process that uses kgsl memory will have an entry under
|
|
// /sys/kernel/debug/kgsl/proc/<pid>/mem. This file format includes a
|
|
// header and then entries with types as follows:
|
|
// gpuaddr useraddr size id flags type usage sglen
|
|
// hexaddr hexaddr int int str str str int
|
|
// We care primarily about the usage and size.
|
|
|
|
// For simplicity numbers will be uint64_t, strings 63 chars max.
|
|
const char* const kScanFormat =
|
|
"%" SCNx64 " %" SCNx64 " %" SCNu64 " %" SCNu64
|
|
" %63s %63s %63s %" SCNu64;
|
|
const int kNumFields = 8;
|
|
const size_t kStringSize = 64;
|
|
|
|
DIR* d = opendir("/sys/kernel/debug/kgsl/proc/");
|
|
if (!d) {
|
|
if (NS_WARN_IF(errno != ENOENT && errno != EACCES)) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
AutoDir dirGuard(d);
|
|
|
|
struct dirent* ent;
|
|
while ((ent = readdir(d))) {
|
|
const char* pid = ent->d_name;
|
|
|
|
// Skip "." and ".." (and any other dotfiles).
|
|
if (pid[0] == '.') {
|
|
continue;
|
|
}
|
|
|
|
nsPrintfCString memPath("/sys/kernel/debug/kgsl/proc/%s/mem", pid);
|
|
FILE* memFile = fopen(memPath.get(), "r");
|
|
if (NS_WARN_IF(!memFile)) {
|
|
continue;
|
|
}
|
|
|
|
AutoFile fileGuard(memFile);
|
|
|
|
// Attempt to map the pid to a more useful name.
|
|
nsAutoCString procName;
|
|
LinuxUtils::GetThreadName(atoi(pid), procName);
|
|
|
|
if (procName.IsEmpty()) {
|
|
procName.Append("pid=");
|
|
procName.Append(pid);
|
|
} else {
|
|
procName.Append(" (pid=");
|
|
procName.Append(pid);
|
|
procName.Append(")");
|
|
}
|
|
|
|
uint64_t gpuaddr, useraddr, size, id, sglen;
|
|
char flags[kStringSize];
|
|
char type[kStringSize];
|
|
char usage[kStringSize];
|
|
|
|
// Bypass the header line.
|
|
char buff[1024];
|
|
fgets(buff, 1024, memFile);
|
|
|
|
while (fscanf(memFile, kScanFormat, &gpuaddr, &useraddr, &size, &id,
|
|
flags, type, usage, &sglen) == kNumFields) {
|
|
nsPrintfCString entryPath("kgsl-memory/%s/%s", procName.get(), usage);
|
|
REPORT(entryPath,
|
|
size,
|
|
NS_LITERAL_CSTRING("A kgsl graphics memory allocation."));
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
#undef REPORT
|
|
};
|
|
|
|
NS_IMPL_ISUPPORTS(SystemReporter, nsIMemoryReporter)
|
|
|
|
void
|
|
Init()
|
|
{
|
|
RegisterStrongMemoryReporter(new SystemReporter());
|
|
}
|
|
|
|
} // namespace SystemMemoryReporter
|
|
} // namespace mozilla
|