mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-13 01:55:44 +00:00
de7bab0f06
Differential Revision: https://phabricator.services.mozilla.com/D82325
2942 lines
92 KiB
C++
2942 lines
92 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* vim: sw=2 ts=4 et :
|
|
*/
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/ipc/MessageChannel.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <utility>
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/CycleCollectedJSContext.h"
|
|
#include "mozilla/DebugOnly.h"
|
|
#include "mozilla/Logging.h"
|
|
#include "mozilla/Mutex.h"
|
|
#include "mozilla/ScopeExit.h"
|
|
#include "mozilla/Sprintf.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "mozilla/TimeStamp.h"
|
|
#include "mozilla/UniquePtrExtensions.h"
|
|
#include "mozilla/dom/ScriptSettings.h"
|
|
#include "mozilla/ipc/ProcessChild.h"
|
|
#include "mozilla/ipc/ProtocolUtils.h"
|
|
#include "nsAppRunner.h"
|
|
#include "nsContentUtils.h"
|
|
#include "nsDataHashtable.h"
|
|
#include "nsDebug.h"
|
|
#include "nsIMemoryReporter.h"
|
|
#include "nsISupportsImpl.h"
|
|
#include "nsPrintfCString.h"
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
# include "GeckoTaskTracer.h"
|
|
using namespace mozilla::tasktracer;
|
|
#endif
|
|
|
|
#ifdef MOZ_GECKO_PROFILER
|
|
# include "ProfilerMarkerPayload.h"
|
|
#endif
|
|
|
|
// Undo the damage done by mozzconf.h
|
|
#undef compress
|
|
|
|
static mozilla::LazyLogModule sLogModule("ipc");
|
|
#define IPC_LOG(...) MOZ_LOG(sLogModule, LogLevel::Debug, (__VA_ARGS__))
|
|
|
|
/*
|
|
* IPC design:
|
|
*
|
|
* There are three kinds of messages: async, sync, and intr. Sync and intr
|
|
* messages are blocking.
|
|
*
|
|
* Terminology: To dispatch a message Foo is to run the RecvFoo code for
|
|
* it. This is also called "handling" the message.
|
|
*
|
|
* Sync and async messages can sometimes "nest" inside other sync messages
|
|
* (i.e., while waiting for the sync reply, we can dispatch the inner
|
|
* message). Intr messages cannot nest. The three possible nesting levels are
|
|
* NOT_NESTED, NESTED_INSIDE_SYNC, and NESTED_INSIDE_CPOW. The intended uses
|
|
* are:
|
|
* NOT_NESTED - most messages.
|
|
* NESTED_INSIDE_SYNC - CPOW-related messages, which are always sync
|
|
* and can go in either direction.
|
|
* NESTED_INSIDE_CPOW - messages where we don't want to dispatch
|
|
* incoming CPOWs while waiting for the response.
|
|
* These nesting levels are ordered: NOT_NESTED, NESTED_INSIDE_SYNC,
|
|
* NESTED_INSIDE_CPOW. Async messages cannot be NESTED_INSIDE_SYNC but they can
|
|
* be NESTED_INSIDE_CPOW.
|
|
*
|
|
* To avoid jank, the parent process is not allowed to send NOT_NESTED sync
|
|
* messages. When a process is waiting for a response to a sync message M0, it
|
|
* will dispatch an incoming message M if:
|
|
* 1. M has a higher nesting level than M0, or
|
|
* 2. if M has the same nesting level as M0 and we're in the child, or
|
|
* 3. if M has the same nesting level as M0 and it was sent by the other side
|
|
* while dispatching M0.
|
|
* The idea is that messages with higher nesting should take precendence. The
|
|
* purpose of rule 2 is to handle a race where both processes send to each other
|
|
* simultaneously. In this case, we resolve the race in favor of the parent (so
|
|
* the child dispatches first).
|
|
*
|
|
* Messages satisfy the following properties:
|
|
* A. When waiting for a response to a sync message, we won't dispatch any
|
|
* messages of nesting level.
|
|
* B. Messages of the same nesting level will be dispatched roughly in the
|
|
* order they were sent. The exception is when the parent and child send
|
|
* sync messages to each other simulataneously. In this case, the parent's
|
|
* message is dispatched first. While it is dispatched, the child may send
|
|
* further nested messages, and these messages may be dispatched before the
|
|
* child's original message. We can consider ordering to be preserved here
|
|
* because we pretend that the child's original message wasn't sent until
|
|
* after the parent's message is finished being dispatched.
|
|
*
|
|
* When waiting for a sync message reply, we dispatch an async message only if
|
|
* it is NESTED_INSIDE_CPOW. Normally NESTED_INSIDE_CPOW async
|
|
* messages are sent only from the child. However, the parent can send
|
|
* NESTED_INSIDE_CPOW async messages when it is creating a bridged protocol.
|
|
*
|
|
* Intr messages are blocking and can nest, but they don't participate in the
|
|
* nesting levels. While waiting for an intr response, all incoming messages are
|
|
* dispatched until a response is received. When two intr messages race with
|
|
* each other, a similar scheme is used to ensure that one side wins. The
|
|
* winning side is chosen based on the message type.
|
|
*
|
|
* Intr messages differ from sync messages in that, while sending an intr
|
|
* message, we may dispatch an async message. This causes some additional
|
|
* complexity. One issue is that replies can be received out of order. It's also
|
|
* more difficult to determine whether one message is nested inside
|
|
* another. Consequently, intr handling uses mOutOfTurnReplies and
|
|
* mRemoteStackDepthGuess, which are not needed for sync messages.
|
|
*/
|
|
|
|
using namespace mozilla;
|
|
using namespace mozilla::ipc;
|
|
|
|
using mozilla::MonitorAutoLock;
|
|
using mozilla::MonitorAutoUnlock;
|
|
using mozilla::dom::AutoNoJSAPI;
|
|
|
|
#define IPC_ASSERT(_cond, ...) \
|
|
do { \
|
|
if (!(_cond)) DebugAbort(__FILE__, __LINE__, #_cond, ##__VA_ARGS__); \
|
|
} while (0)
|
|
|
|
static MessageChannel* gParentProcessBlocker;
|
|
|
|
namespace mozilla {
|
|
namespace ipc {
|
|
|
|
static const uint32_t kMinTelemetryMessageSize = 4096;
|
|
|
|
// Note: we round the time we spend to the nearest millisecond. So a min value
|
|
// of 1 ms actually captures from 500us and above.
|
|
static const uint32_t kMinTelemetryIPCWriteLatencyMs = 1;
|
|
|
|
// Note: we round the time we spend waiting for a response to the nearest
|
|
// millisecond. So a min value of 1 ms actually captures from 500us and above.
|
|
// This is used for both the sending and receiving side telemetry for sync IPC,
|
|
// (IPC_SYNC_MAIN_LATENCY_MS and IPC_SYNC_RECEIVE_MS).
|
|
static const uint32_t kMinTelemetrySyncIPCLatencyMs = 1;
|
|
|
|
const int32_t MessageChannel::kNoTimeout = INT32_MIN;
|
|
|
|
// static
|
|
bool MessageChannel::sIsPumpingMessages = false;
|
|
|
|
enum Direction { IN_MESSAGE, OUT_MESSAGE };
|
|
|
|
class MessageChannel::InterruptFrame {
|
|
private:
|
|
enum Semantics { INTR_SEMS, SYNC_SEMS, ASYNC_SEMS };
|
|
|
|
public:
|
|
InterruptFrame(Direction direction, const Message* msg)
|
|
: mMessageName(msg->name()),
|
|
mMessageRoutingId(msg->routing_id()),
|
|
mMesageSemantics(msg->is_interrupt()
|
|
? INTR_SEMS
|
|
: msg->is_sync() ? SYNC_SEMS : ASYNC_SEMS),
|
|
mDirection(direction),
|
|
mMoved(false) {
|
|
MOZ_RELEASE_ASSERT(mMessageName);
|
|
}
|
|
|
|
InterruptFrame(InterruptFrame&& aOther) {
|
|
MOZ_RELEASE_ASSERT(aOther.mMessageName);
|
|
mMessageName = aOther.mMessageName;
|
|
aOther.mMessageName = nullptr;
|
|
mMoved = aOther.mMoved;
|
|
aOther.mMoved = true;
|
|
|
|
mMessageRoutingId = aOther.mMessageRoutingId;
|
|
mMesageSemantics = aOther.mMesageSemantics;
|
|
mDirection = aOther.mDirection;
|
|
}
|
|
|
|
~InterruptFrame() { MOZ_RELEASE_ASSERT(mMessageName || mMoved); }
|
|
|
|
InterruptFrame& operator=(InterruptFrame&& aOther) {
|
|
MOZ_RELEASE_ASSERT(&aOther != this);
|
|
this->~InterruptFrame();
|
|
new (this) InterruptFrame(std::move(aOther));
|
|
return *this;
|
|
}
|
|
|
|
bool IsInterruptIncall() const {
|
|
return INTR_SEMS == mMesageSemantics && IN_MESSAGE == mDirection;
|
|
}
|
|
|
|
bool IsInterruptOutcall() const {
|
|
return INTR_SEMS == mMesageSemantics && OUT_MESSAGE == mDirection;
|
|
}
|
|
|
|
bool IsOutgoingSync() const {
|
|
return (mMesageSemantics == INTR_SEMS || mMesageSemantics == SYNC_SEMS) &&
|
|
mDirection == OUT_MESSAGE;
|
|
}
|
|
|
|
void Describe(int32_t* id, const char** dir, const char** sems,
|
|
const char** name) const {
|
|
*id = mMessageRoutingId;
|
|
*dir = (IN_MESSAGE == mDirection) ? "in" : "out";
|
|
*sems = (INTR_SEMS == mMesageSemantics)
|
|
? "intr"
|
|
: (SYNC_SEMS == mMesageSemantics) ? "sync" : "async";
|
|
*name = mMessageName;
|
|
}
|
|
|
|
int32_t GetRoutingId() const { return mMessageRoutingId; }
|
|
|
|
private:
|
|
const char* mMessageName;
|
|
int32_t mMessageRoutingId;
|
|
Semantics mMesageSemantics;
|
|
Direction mDirection;
|
|
bool mMoved;
|
|
|
|
// Disable harmful methods.
|
|
InterruptFrame(const InterruptFrame& aOther) = delete;
|
|
InterruptFrame& operator=(const InterruptFrame&) = delete;
|
|
};
|
|
|
|
class MOZ_STACK_CLASS MessageChannel::CxxStackFrame {
|
|
public:
|
|
CxxStackFrame(MessageChannel& that, Direction direction, const Message* msg)
|
|
: mThat(that) {
|
|
mThat.AssertWorkerThread();
|
|
|
|
if (mThat.mCxxStackFrames.empty()) mThat.EnteredCxxStack();
|
|
|
|
if (!mThat.mCxxStackFrames.append(InterruptFrame(direction, msg)))
|
|
MOZ_CRASH();
|
|
|
|
const InterruptFrame& frame = mThat.mCxxStackFrames.back();
|
|
|
|
if (frame.IsInterruptIncall()) mThat.EnteredCall();
|
|
|
|
if (frame.IsOutgoingSync()) mThat.EnteredSyncSend();
|
|
|
|
mThat.mSawInterruptOutMsg |= frame.IsInterruptOutcall();
|
|
}
|
|
|
|
~CxxStackFrame() {
|
|
mThat.AssertWorkerThread();
|
|
|
|
MOZ_RELEASE_ASSERT(!mThat.mCxxStackFrames.empty());
|
|
|
|
const InterruptFrame& frame = mThat.mCxxStackFrames.back();
|
|
bool exitingSync = frame.IsOutgoingSync();
|
|
bool exitingCall = frame.IsInterruptIncall();
|
|
mThat.mCxxStackFrames.shrinkBy(1);
|
|
|
|
bool exitingStack = mThat.mCxxStackFrames.empty();
|
|
|
|
// According how lifetime is declared, mListener on MessageChannel
|
|
// lives longer than MessageChannel itself. Hence is expected to
|
|
// be alive. There is nothing to even assert here, there is no place
|
|
// we would be nullifying mListener on MessageChannel.
|
|
|
|
if (exitingCall) mThat.ExitedCall();
|
|
|
|
if (exitingSync) mThat.ExitedSyncSend();
|
|
|
|
if (exitingStack) mThat.ExitedCxxStack();
|
|
}
|
|
|
|
private:
|
|
MessageChannel& mThat;
|
|
|
|
// Disable harmful methods.
|
|
CxxStackFrame() = delete;
|
|
CxxStackFrame(const CxxStackFrame&) = delete;
|
|
CxxStackFrame& operator=(const CxxStackFrame&) = delete;
|
|
};
|
|
|
|
class AutoEnterTransaction {
|
|
public:
|
|
explicit AutoEnterTransaction(MessageChannel* aChan, int32_t aMsgSeqno,
|
|
int32_t aTransactionID, int aNestedLevel)
|
|
: mChan(aChan),
|
|
mActive(true),
|
|
mOutgoing(true),
|
|
mNestedLevel(aNestedLevel),
|
|
mSeqno(aMsgSeqno),
|
|
mTransaction(aTransactionID),
|
|
mNext(mChan->mTransactionStack) {
|
|
mChan->mMonitor->AssertCurrentThreadOwns();
|
|
mChan->mTransactionStack = this;
|
|
}
|
|
|
|
explicit AutoEnterTransaction(MessageChannel* aChan,
|
|
const IPC::Message& aMessage)
|
|
: mChan(aChan),
|
|
mActive(true),
|
|
mOutgoing(false),
|
|
mNestedLevel(aMessage.nested_level()),
|
|
mSeqno(aMessage.seqno()),
|
|
mTransaction(aMessage.transaction_id()),
|
|
mNext(mChan->mTransactionStack) {
|
|
mChan->mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (!aMessage.is_sync()) {
|
|
mActive = false;
|
|
return;
|
|
}
|
|
|
|
mChan->mTransactionStack = this;
|
|
}
|
|
|
|
~AutoEnterTransaction() {
|
|
mChan->mMonitor->AssertCurrentThreadOwns();
|
|
if (mActive) {
|
|
mChan->mTransactionStack = mNext;
|
|
}
|
|
}
|
|
|
|
void Cancel() {
|
|
AutoEnterTransaction* cur = mChan->mTransactionStack;
|
|
MOZ_RELEASE_ASSERT(cur == this);
|
|
while (cur && cur->mNestedLevel != IPC::Message::NOT_NESTED) {
|
|
// Note that, in the following situation, we will cancel multiple
|
|
// transactions:
|
|
// 1. Parent sends NESTED_INSIDE_SYNC message P1 to child.
|
|
// 2. Child sends NESTED_INSIDE_SYNC message C1 to child.
|
|
// 3. Child dispatches P1, parent blocks.
|
|
// 4. Child cancels.
|
|
// In this case, both P1 and C1 are cancelled. The parent will
|
|
// remove C1 from its queue when it gets the cancellation message.
|
|
MOZ_RELEASE_ASSERT(cur->mActive);
|
|
cur->mActive = false;
|
|
cur = cur->mNext;
|
|
}
|
|
|
|
mChan->mTransactionStack = cur;
|
|
|
|
MOZ_RELEASE_ASSERT(IsComplete());
|
|
}
|
|
|
|
bool AwaitingSyncReply() const {
|
|
MOZ_RELEASE_ASSERT(mActive);
|
|
if (mOutgoing) {
|
|
return true;
|
|
}
|
|
return mNext ? mNext->AwaitingSyncReply() : false;
|
|
}
|
|
|
|
int AwaitingSyncReplyNestedLevel() const {
|
|
MOZ_RELEASE_ASSERT(mActive);
|
|
if (mOutgoing) {
|
|
return mNestedLevel;
|
|
}
|
|
return mNext ? mNext->AwaitingSyncReplyNestedLevel() : 0;
|
|
}
|
|
|
|
bool DispatchingSyncMessage() const {
|
|
MOZ_RELEASE_ASSERT(mActive);
|
|
if (!mOutgoing) {
|
|
return true;
|
|
}
|
|
return mNext ? mNext->DispatchingSyncMessage() : false;
|
|
}
|
|
|
|
int DispatchingSyncMessageNestedLevel() const {
|
|
MOZ_RELEASE_ASSERT(mActive);
|
|
if (!mOutgoing) {
|
|
return mNestedLevel;
|
|
}
|
|
return mNext ? mNext->DispatchingSyncMessageNestedLevel() : 0;
|
|
}
|
|
|
|
int NestedLevel() const {
|
|
MOZ_RELEASE_ASSERT(mActive);
|
|
return mNestedLevel;
|
|
}
|
|
|
|
int32_t SequenceNumber() const {
|
|
MOZ_RELEASE_ASSERT(mActive);
|
|
return mSeqno;
|
|
}
|
|
|
|
int32_t TransactionID() const {
|
|
MOZ_RELEASE_ASSERT(mActive);
|
|
return mTransaction;
|
|
}
|
|
|
|
void ReceivedReply(IPC::Message&& aMessage) {
|
|
MOZ_RELEASE_ASSERT(aMessage.seqno() == mSeqno);
|
|
MOZ_RELEASE_ASSERT(aMessage.transaction_id() == mTransaction);
|
|
MOZ_RELEASE_ASSERT(!mReply);
|
|
IPC_LOG("Reply received on worker thread: seqno=%d", mSeqno);
|
|
mReply = MakeUnique<IPC::Message>(std::move(aMessage));
|
|
MOZ_RELEASE_ASSERT(IsComplete());
|
|
}
|
|
|
|
void HandleReply(IPC::Message&& aMessage) {
|
|
AutoEnterTransaction* cur = mChan->mTransactionStack;
|
|
MOZ_RELEASE_ASSERT(cur == this);
|
|
while (cur) {
|
|
MOZ_RELEASE_ASSERT(cur->mActive);
|
|
if (aMessage.seqno() == cur->mSeqno) {
|
|
cur->ReceivedReply(std::move(aMessage));
|
|
break;
|
|
}
|
|
cur = cur->mNext;
|
|
MOZ_RELEASE_ASSERT(cur);
|
|
}
|
|
}
|
|
|
|
bool IsComplete() { return !mActive || mReply; }
|
|
|
|
bool IsOutgoing() { return mOutgoing; }
|
|
|
|
bool IsCanceled() { return !mActive; }
|
|
|
|
bool IsBottom() const { return !mNext; }
|
|
|
|
bool IsError() {
|
|
MOZ_RELEASE_ASSERT(mReply);
|
|
return mReply->is_reply_error();
|
|
}
|
|
|
|
UniquePtr<IPC::Message> GetReply() { return std::move(mReply); }
|
|
|
|
private:
|
|
MessageChannel* mChan;
|
|
|
|
// Active is true if this transaction is on the mChan->mTransactionStack
|
|
// stack. Generally we're not on the stack if the transaction was canceled
|
|
// or if it was for a message that doesn't require transactions (an async
|
|
// message).
|
|
bool mActive;
|
|
|
|
// Is this stack frame for an outgoing message?
|
|
bool mOutgoing;
|
|
|
|
// Properties of the message being sent/received.
|
|
int mNestedLevel;
|
|
int32_t mSeqno;
|
|
int32_t mTransaction;
|
|
|
|
// Next item in mChan->mTransactionStack.
|
|
AutoEnterTransaction* mNext;
|
|
|
|
// Pointer the a reply received for this message, if one was received.
|
|
UniquePtr<IPC::Message> mReply;
|
|
};
|
|
|
|
class PendingResponseReporter final : public nsIMemoryReporter {
|
|
~PendingResponseReporter() = default;
|
|
|
|
public:
|
|
NS_DECL_THREADSAFE_ISUPPORTS
|
|
|
|
NS_IMETHOD
|
|
CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
|
|
bool aAnonymize) override {
|
|
MOZ_COLLECT_REPORT(
|
|
"unresolved-ipc-responses", KIND_OTHER, UNITS_COUNT,
|
|
MessageChannel::gUnresolvedResponses,
|
|
"Outstanding IPC async message responses that are still not resolved.");
|
|
return NS_OK;
|
|
}
|
|
};
|
|
|
|
NS_IMPL_ISUPPORTS(PendingResponseReporter, nsIMemoryReporter)
|
|
|
|
class ChannelCountReporter final : public nsIMemoryReporter {
|
|
~ChannelCountReporter() = default;
|
|
|
|
struct ChannelCounts {
|
|
size_t mNow;
|
|
size_t mMax;
|
|
|
|
ChannelCounts() : mNow(0), mMax(0) {}
|
|
|
|
void Inc() {
|
|
++mNow;
|
|
if (mMax < mNow) {
|
|
mMax = mNow;
|
|
}
|
|
}
|
|
|
|
void Dec() {
|
|
MOZ_ASSERT(mNow > 0);
|
|
--mNow;
|
|
}
|
|
};
|
|
|
|
using CountTable = nsDataHashtable<nsDepCharHashKey, ChannelCounts>;
|
|
|
|
static StaticMutex sChannelCountMutex;
|
|
static CountTable* sChannelCounts;
|
|
|
|
public:
|
|
NS_DECL_THREADSAFE_ISUPPORTS
|
|
|
|
NS_IMETHOD
|
|
CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
|
|
bool aAnonymize) override {
|
|
StaticMutexAutoLock countLock(sChannelCountMutex);
|
|
if (!sChannelCounts) {
|
|
return NS_OK;
|
|
}
|
|
for (auto iter = sChannelCounts->Iter(); !iter.Done(); iter.Next()) {
|
|
nsPrintfCString pathNow("ipc-channels/%s", iter.Key());
|
|
nsPrintfCString pathMax("ipc-channels-peak/%s", iter.Key());
|
|
nsPrintfCString descNow(
|
|
"Number of IPC channels for"
|
|
" top-level actor type %s",
|
|
iter.Key());
|
|
nsPrintfCString descMax(
|
|
"Peak number of IPC channels for"
|
|
" top-level actor type %s",
|
|
iter.Key());
|
|
|
|
aHandleReport->Callback(""_ns, pathNow, KIND_OTHER, UNITS_COUNT,
|
|
iter.Data().mNow, descNow, aData);
|
|
aHandleReport->Callback(""_ns, pathMax, KIND_OTHER, UNITS_COUNT,
|
|
iter.Data().mMax, descMax, aData);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
static void Increment(const char* aName) {
|
|
StaticMutexAutoLock countLock(sChannelCountMutex);
|
|
if (!sChannelCounts) {
|
|
sChannelCounts = new CountTable;
|
|
}
|
|
sChannelCounts->GetOrInsert(aName).Inc();
|
|
}
|
|
|
|
static void Decrement(const char* aName) {
|
|
StaticMutexAutoLock countLock(sChannelCountMutex);
|
|
MOZ_ASSERT(sChannelCounts);
|
|
sChannelCounts->GetOrInsert(aName).Dec();
|
|
}
|
|
};
|
|
|
|
StaticMutex ChannelCountReporter::sChannelCountMutex;
|
|
ChannelCountReporter::CountTable* ChannelCountReporter::sChannelCounts;
|
|
|
|
NS_IMPL_ISUPPORTS(ChannelCountReporter, nsIMemoryReporter)
|
|
|
|
// In child processes, the first MessageChannel is created before
|
|
// XPCOM is initialized enough to construct the memory reporter
|
|
// manager. This retries every time a MessageChannel is constructed,
|
|
// which is good enough in practice.
|
|
template <class Reporter>
|
|
static void TryRegisterStrongMemoryReporter() {
|
|
static Atomic<bool> registered;
|
|
if (registered.compareExchange(false, true)) {
|
|
RefPtr<Reporter> reporter = new Reporter();
|
|
if (NS_FAILED(RegisterStrongMemoryReporter(reporter))) {
|
|
registered = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
Atomic<size_t> MessageChannel::gUnresolvedResponses;
|
|
|
|
MessageChannel::MessageChannel(const char* aName, IToplevelProtocol* aListener)
|
|
: mName(aName),
|
|
mListener(aListener),
|
|
mChannelState(ChannelClosed),
|
|
mSide(UnknownSide),
|
|
mIsCrossProcess(false),
|
|
mChannelErrorTask(nullptr),
|
|
mTimeoutMs(kNoTimeout),
|
|
mInTimeoutSecondHalf(false),
|
|
mNextSeqno(0),
|
|
mLastSendError(SyncSendError::SendSuccess),
|
|
mDispatchingAsyncMessage(false),
|
|
mDispatchingAsyncMessageNestedLevel(0),
|
|
mTransactionStack(nullptr),
|
|
mTimedOutMessageSeqno(0),
|
|
mTimedOutMessageNestedLevel(0),
|
|
mMaybeDeferredPendingCount(0),
|
|
mRemoteStackDepthGuess(0),
|
|
mSawInterruptOutMsg(false),
|
|
mIsWaitingForIncoming(false),
|
|
mAbortOnError(false),
|
|
mNotifiedChannelDone(false),
|
|
mFlags(REQUIRE_DEFAULT),
|
|
mPeerPidSet(false),
|
|
mPeerPid(-1),
|
|
mIsPostponingSends(false),
|
|
mBuildIDsConfirmedMatch(false),
|
|
mIsSameThreadChannel(false) {
|
|
MOZ_COUNT_CTOR(ipc::MessageChannel);
|
|
|
|
#ifdef OS_WIN
|
|
mTopFrame = nullptr;
|
|
mIsSyncWaitingOnNonMainThread = false;
|
|
#endif
|
|
|
|
mOnChannelConnectedTask = NewNonOwningCancelableRunnableMethod(
|
|
"ipc::MessageChannel::DispatchOnChannelConnected", this,
|
|
&MessageChannel::DispatchOnChannelConnected);
|
|
|
|
#ifdef OS_WIN
|
|
mEvent = CreateEventW(nullptr, TRUE, FALSE, nullptr);
|
|
MOZ_RELEASE_ASSERT(mEvent, "CreateEvent failed! Nothing is going to work!");
|
|
#endif
|
|
|
|
TryRegisterStrongMemoryReporter<PendingResponseReporter>();
|
|
TryRegisterStrongMemoryReporter<ChannelCountReporter>();
|
|
}
|
|
|
|
MessageChannel::~MessageChannel() {
|
|
MOZ_COUNT_DTOR(ipc::MessageChannel);
|
|
IPC_ASSERT(mCxxStackFrames.empty(), "mismatched CxxStackFrame ctor/dtors");
|
|
#ifdef OS_WIN
|
|
if (mEvent) {
|
|
BOOL ok = CloseHandle(mEvent);
|
|
mEvent = nullptr;
|
|
|
|
if (!ok) {
|
|
gfxDevCrash(mozilla::gfx::LogReason::MessageChannelCloseFailure)
|
|
<< "MessageChannel failed to close. GetLastError: " << GetLastError();
|
|
}
|
|
MOZ_RELEASE_ASSERT(ok);
|
|
} else {
|
|
gfxDevCrash(mozilla::gfx::LogReason::MessageChannelCloseFailure)
|
|
<< "MessageChannel destructor ran without an mEvent Handle";
|
|
}
|
|
#endif
|
|
Clear();
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void MessageChannel::AssertMaybeDeferredCountCorrect() {
|
|
size_t count = 0;
|
|
for (MessageTask* task : mPending) {
|
|
if (!IsAlwaysDeferred(task->Msg())) {
|
|
count++;
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(count == mMaybeDeferredPendingCount);
|
|
}
|
|
#endif
|
|
|
|
// This function returns the current transaction ID. Since the notion of a
|
|
// "current transaction" can be hard to define when messages race with each
|
|
// other and one gets canceled and the other doesn't, we require that this
|
|
// function is only called when the current transaction is known to be for a
|
|
// NESTED_INSIDE_SYNC message. In that case, we know for sure what the caller is
|
|
// looking for.
|
|
int32_t MessageChannel::CurrentNestedInsideSyncTransaction() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
if (!mTransactionStack) {
|
|
return 0;
|
|
}
|
|
MOZ_RELEASE_ASSERT(mTransactionStack->NestedLevel() ==
|
|
IPC::Message::NESTED_INSIDE_SYNC);
|
|
return mTransactionStack->TransactionID();
|
|
}
|
|
|
|
bool MessageChannel::AwaitingSyncReply() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mTransactionStack ? mTransactionStack->AwaitingSyncReply() : false;
|
|
}
|
|
|
|
int MessageChannel::AwaitingSyncReplyNestedLevel() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mTransactionStack ? mTransactionStack->AwaitingSyncReplyNestedLevel()
|
|
: 0;
|
|
}
|
|
|
|
bool MessageChannel::DispatchingSyncMessage() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mTransactionStack ? mTransactionStack->DispatchingSyncMessage()
|
|
: false;
|
|
}
|
|
|
|
int MessageChannel::DispatchingSyncMessageNestedLevel() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mTransactionStack
|
|
? mTransactionStack->DispatchingSyncMessageNestedLevel()
|
|
: 0;
|
|
}
|
|
|
|
static void PrintErrorMessage(Side side, const char* channelName,
|
|
const char* msg) {
|
|
const char* from = (side == ChildSide)
|
|
? "Child"
|
|
: ((side == ParentSide) ? "Parent" : "Unknown");
|
|
printf_stderr("\n###!!! [%s][%s] Error: %s\n\n", from, channelName, msg);
|
|
}
|
|
|
|
bool MessageChannel::Connected() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
// The transport layer allows us to send messages before
|
|
// receiving the "connected" ack from the remote side.
|
|
return (ChannelOpening == mChannelState || ChannelConnected == mChannelState);
|
|
}
|
|
|
|
bool MessageChannel::CanSend() const {
|
|
if (!mMonitor) {
|
|
return false;
|
|
}
|
|
MonitorAutoLock lock(*mMonitor);
|
|
return Connected();
|
|
}
|
|
|
|
void MessageChannel::Clear() {
|
|
// Don't clear mWorkerThread; we use it in AssertLinkThread() and
|
|
// AssertWorkerThread().
|
|
//
|
|
// Also don't clear mListener. If we clear it, then sending a message
|
|
// through this channel after it's Clear()'ed can cause this process to
|
|
// crash.
|
|
//
|
|
// In practice, mListener owns the channel, so the channel gets deleted
|
|
// before mListener. But just to be safe, mListener is a weak pointer.
|
|
|
|
#if !defined(ANDROID)
|
|
if (!Unsound_IsClosed()) {
|
|
CrashReporter::AnnotateCrashReport(
|
|
CrashReporter::Annotation::IPCFatalErrorProtocol,
|
|
nsDependentCString(mName));
|
|
switch (mChannelState) {
|
|
case ChannelOpening:
|
|
MOZ_CRASH(
|
|
"MessageChannel destroyed without being closed "
|
|
"(mChannelState == ChannelOpening).");
|
|
break;
|
|
case ChannelConnected:
|
|
MOZ_CRASH(
|
|
"MessageChannel destroyed without being closed "
|
|
"(mChannelState == ChannelConnected).");
|
|
break;
|
|
case ChannelTimeout:
|
|
MOZ_CRASH(
|
|
"MessageChannel destroyed without being closed "
|
|
"(mChannelState == ChannelTimeout).");
|
|
break;
|
|
case ChannelClosing:
|
|
MOZ_CRASH(
|
|
"MessageChannel destroyed without being closed "
|
|
"(mChannelState == ChannelClosing).");
|
|
break;
|
|
case ChannelError:
|
|
MOZ_CRASH(
|
|
"MessageChannel destroyed without being closed "
|
|
"(mChannelState == ChannelError).");
|
|
break;
|
|
default:
|
|
MOZ_CRASH("MessageChannel destroyed without being closed.");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (gParentProcessBlocker == this) {
|
|
gParentProcessBlocker = nullptr;
|
|
}
|
|
|
|
gUnresolvedResponses -= mPendingResponses.size();
|
|
for (auto& pair : mPendingResponses) {
|
|
pair.second.get()->Reject(ResponseRejectReason::ChannelClosed);
|
|
}
|
|
mPendingResponses.clear();
|
|
|
|
if (mLink != nullptr && mIsCrossProcess) {
|
|
ChannelCountReporter::Decrement(mName);
|
|
}
|
|
|
|
if (mLink) {
|
|
mLink->PrepareToDestroy();
|
|
mLink = nullptr;
|
|
}
|
|
|
|
mOnChannelConnectedTask->Cancel();
|
|
|
|
if (mChannelErrorTask) {
|
|
mChannelErrorTask->Cancel();
|
|
mChannelErrorTask = nullptr;
|
|
}
|
|
|
|
// Free up any memory used by pending messages.
|
|
for (MessageTask* task : mPending) {
|
|
task->Clear();
|
|
}
|
|
mPending.clear();
|
|
|
|
mMaybeDeferredPendingCount = 0;
|
|
|
|
mOutOfTurnReplies.clear();
|
|
while (!mDeferred.empty()) {
|
|
mDeferred.pop();
|
|
}
|
|
}
|
|
|
|
bool MessageChannel::Open(mozilla::UniquePtr<Transport> aTransport,
|
|
MessageLoop* aIOLoop, Side aSide) {
|
|
MOZ_ASSERT(!mLink, "Open() called > once");
|
|
|
|
mMonitor = new RefCountedMonitor();
|
|
mWorkerThread = GetCurrentSerialEventTarget();
|
|
MOZ_ASSERT(mWorkerThread, "We should always be on a nsISerialEventTarget");
|
|
mListener->OnIPCChannelOpened();
|
|
|
|
auto link = MakeUnique<ProcessLink>(this);
|
|
link->Open(std::move(aTransport), aIOLoop,
|
|
aSide); // :TODO: n.b.: sets mChild
|
|
mLink = std::move(link);
|
|
mIsCrossProcess = true;
|
|
ChannelCountReporter::Increment(mName);
|
|
return true;
|
|
}
|
|
|
|
bool MessageChannel::Open(MessageChannel* aTargetChan,
|
|
nsISerialEventTarget* aEventTarget, Side aSide) {
|
|
// Opens a connection to another thread in the same process.
|
|
|
|
// This handshake proceeds as follows:
|
|
// - Let A be the thread initiating the process (either child or parent)
|
|
// and B be the other thread.
|
|
// - A spawns thread for B, obtaining B's message loop
|
|
// - A creates ProtocolChild and ProtocolParent instances.
|
|
// Let PA be the one appropriate to A and PB the side for B.
|
|
// - A invokes PA->Open(PB, ...):
|
|
// - set state to mChannelOpening
|
|
// - this will place a work item in B's worker loop (see next bullet)
|
|
// and then spins until PB->mChannelState becomes mChannelConnected
|
|
// - meanwhile, on PB's worker loop, the work item is removed and:
|
|
// - invokes PB->OpenAsOtherThread(PA, ...):
|
|
// - sets its state and that of PA to Connected
|
|
MOZ_ASSERT(aTargetChan, "Need a target channel");
|
|
MOZ_ASSERT(ChannelClosed == mChannelState, "Not currently closed");
|
|
|
|
CommonThreadOpenInit(aTargetChan, GetCurrentSerialEventTarget(), aSide);
|
|
|
|
Side oppSide = UnknownSide;
|
|
switch (aSide) {
|
|
case ChildSide:
|
|
oppSide = ParentSide;
|
|
break;
|
|
case ParentSide:
|
|
oppSide = ChildSide;
|
|
break;
|
|
case UnknownSide:
|
|
break;
|
|
}
|
|
|
|
mMonitor = new RefCountedMonitor();
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
mChannelState = ChannelOpening;
|
|
MOZ_ALWAYS_SUCCEEDS(aEventTarget->Dispatch(
|
|
NewNonOwningRunnableMethod<MessageChannel*, nsISerialEventTarget*, Side>(
|
|
"ipc::MessageChannel::OpenAsOtherThread", aTargetChan,
|
|
&MessageChannel::OpenAsOtherThread, this, aEventTarget, oppSide)));
|
|
|
|
while (ChannelOpening == mChannelState) mMonitor->Wait();
|
|
MOZ_RELEASE_ASSERT(ChannelConnected == mChannelState,
|
|
"not connected when awoken");
|
|
return (ChannelConnected == mChannelState);
|
|
}
|
|
|
|
void MessageChannel::OpenAsOtherThread(MessageChannel* aTargetChan,
|
|
nsISerialEventTarget* aThread,
|
|
Side aSide) {
|
|
// Invoked when the other side has begun the open.
|
|
MOZ_ASSERT(ChannelClosed == mChannelState, "Not currently closed");
|
|
MOZ_ASSERT(ChannelOpening == aTargetChan->mChannelState,
|
|
"Target channel not in the process of opening");
|
|
|
|
CommonThreadOpenInit(aTargetChan, aThread, aSide);
|
|
mMonitor = aTargetChan->mMonitor;
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
MOZ_RELEASE_ASSERT(ChannelOpening == aTargetChan->mChannelState,
|
|
"Target channel not in the process of opening");
|
|
mChannelState = ChannelConnected;
|
|
aTargetChan->mChannelState = ChannelConnected;
|
|
aTargetChan->mMonitor->Notify();
|
|
}
|
|
|
|
void MessageChannel::CommonThreadOpenInit(MessageChannel* aTargetChan,
|
|
nsISerialEventTarget* aThread,
|
|
Side aSide) {
|
|
MOZ_ASSERT(aThread);
|
|
mWorkerThread = aThread;
|
|
mListener->OnIPCChannelOpened();
|
|
|
|
mLink = MakeUnique<ThreadLink>(this, aTargetChan);
|
|
mSide = aSide;
|
|
}
|
|
|
|
bool MessageChannel::OpenOnSameThread(MessageChannel* aTargetChan,
|
|
mozilla::ipc::Side aSide) {
|
|
nsCOMPtr<nsISerialEventTarget> currentThread = GetCurrentSerialEventTarget();
|
|
CommonThreadOpenInit(aTargetChan, currentThread, aSide);
|
|
|
|
Side oppSide = UnknownSide;
|
|
switch (aSide) {
|
|
case ChildSide:
|
|
oppSide = ParentSide;
|
|
break;
|
|
case ParentSide:
|
|
oppSide = ChildSide;
|
|
break;
|
|
case UnknownSide:
|
|
break;
|
|
}
|
|
mIsSameThreadChannel = true;
|
|
|
|
// XXX(nika): Avoid setting up a monitor for same thread channels? We
|
|
// shouldn't need it.
|
|
mMonitor = new RefCountedMonitor();
|
|
|
|
mChannelState = ChannelOpening;
|
|
aTargetChan->CommonThreadOpenInit(this, currentThread, oppSide);
|
|
|
|
aTargetChan->mIsSameThreadChannel = true;
|
|
aTargetChan->mMonitor = mMonitor;
|
|
|
|
mChannelState = ChannelConnected;
|
|
aTargetChan->mChannelState = ChannelConnected;
|
|
return true;
|
|
}
|
|
|
|
bool MessageChannel::Send(UniquePtr<Message> aMsg) {
|
|
if (aMsg->size() >= kMinTelemetryMessageSize) {
|
|
Telemetry::Accumulate(Telemetry::IPC_MESSAGE_SIZE2, aMsg->size());
|
|
}
|
|
|
|
// If the message was created by the IPC bindings, the create time will be
|
|
// recorded. Use this information to report the
|
|
// IPC_WRITE_MAIN_THREAD_LATENCY_MS (time from message creation to it being
|
|
// sent).
|
|
if (NS_IsMainThread() && aMsg->create_time()) {
|
|
uint32_t latencyMs = round(
|
|
(mozilla::TimeStamp::Now() - aMsg->create_time()).ToMilliseconds());
|
|
if (latencyMs >= kMinTelemetryIPCWriteLatencyMs) {
|
|
mozilla::Telemetry::Accumulate(
|
|
mozilla::Telemetry::IPC_WRITE_MAIN_THREAD_LATENCY_MS,
|
|
nsDependentCString(aMsg->name()), latencyMs);
|
|
}
|
|
}
|
|
|
|
MOZ_RELEASE_ASSERT(!aMsg->is_sync());
|
|
MOZ_RELEASE_ASSERT(aMsg->nested_level() != IPC::Message::NESTED_INSIDE_SYNC);
|
|
|
|
CxxStackFrame frame(*this, OUT_MESSAGE, aMsg.get());
|
|
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
if (MSG_ROUTING_NONE == aMsg->routing_id()) {
|
|
ReportMessageRouteError("MessageChannel::Send");
|
|
return false;
|
|
}
|
|
|
|
if (aMsg->seqno() == 0) {
|
|
aMsg->set_seqno(NextSeqno());
|
|
}
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel", aMsg.get());
|
|
return false;
|
|
}
|
|
|
|
AddProfilerMarker(*aMsg, MessageDirection::eSending);
|
|
SendMessageToLink(std::move(aMsg));
|
|
return true;
|
|
}
|
|
|
|
void MessageChannel::SendMessageToLink(UniquePtr<Message> aMsg) {
|
|
if (mIsPostponingSends) {
|
|
mPostponedSends.push_back(std::move(aMsg));
|
|
return;
|
|
}
|
|
mLink->SendMessage(std::move(aMsg));
|
|
}
|
|
|
|
void MessageChannel::BeginPostponingSends() {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
{
|
|
MOZ_ASSERT(!mIsPostponingSends);
|
|
mIsPostponingSends = true;
|
|
}
|
|
}
|
|
|
|
void MessageChannel::StopPostponingSends() {
|
|
// Note: this can be called from any thread.
|
|
MonitorAutoLock lock(*mMonitor);
|
|
|
|
MOZ_ASSERT(mIsPostponingSends);
|
|
|
|
for (UniquePtr<Message>& iter : mPostponedSends) {
|
|
mLink->SendMessage(std::move(iter));
|
|
}
|
|
|
|
// We unset this after SendMessage so we can make correct thread
|
|
// assertions in MessageLink.
|
|
mIsPostponingSends = false;
|
|
mPostponedSends.clear();
|
|
}
|
|
|
|
UniquePtr<MessageChannel::UntypedCallbackHolder> MessageChannel::PopCallback(
|
|
const Message& aMsg) {
|
|
auto iter = mPendingResponses.find(aMsg.seqno());
|
|
if (iter != mPendingResponses.end()) {
|
|
UniquePtr<MessageChannel::UntypedCallbackHolder> ret =
|
|
std::move(iter->second);
|
|
mPendingResponses.erase(iter);
|
|
gUnresolvedResponses--;
|
|
return ret;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void MessageChannel::RejectPendingResponsesForActor(ActorIdType aActorId) {
|
|
auto itr = mPendingResponses.begin();
|
|
while (itr != mPendingResponses.end()) {
|
|
if (itr->second.get()->mActorId != aActorId) {
|
|
++itr;
|
|
continue;
|
|
}
|
|
itr->second.get()->Reject(ResponseRejectReason::ActorDestroyed);
|
|
// Take special care of advancing the iterator since we are
|
|
// removing it while iterating.
|
|
itr = mPendingResponses.erase(itr);
|
|
gUnresolvedResponses--;
|
|
}
|
|
}
|
|
|
|
class BuildIDsMatchMessage : public IPC::Message {
|
|
public:
|
|
BuildIDsMatchMessage()
|
|
: IPC::Message(MSG_ROUTING_NONE, BUILD_IDS_MATCH_MESSAGE_TYPE) {}
|
|
void Log(const std::string& aPrefix, FILE* aOutf) const {
|
|
fputs("(special `Build IDs match' message)", aOutf);
|
|
}
|
|
};
|
|
|
|
// Send the parent a special async message to confirm when the parent and child
|
|
// are of the same buildID. Skips sending the message and returns false if the
|
|
// buildIDs don't match. This is a minor variation on
|
|
// MessageChannel::Send(Message* aMsg).
|
|
bool MessageChannel::SendBuildIDsMatchMessage(const char* aParentBuildID) {
|
|
MOZ_ASSERT(!XRE_IsParentProcess());
|
|
|
|
nsCString parentBuildID(aParentBuildID);
|
|
nsCString childBuildID(mozilla::PlatformBuildID());
|
|
|
|
if (parentBuildID != childBuildID) {
|
|
// The build IDs didn't match, usually because an update occurred in the
|
|
// background.
|
|
return false;
|
|
}
|
|
|
|
auto msg = MakeUnique<BuildIDsMatchMessage>();
|
|
|
|
MOZ_RELEASE_ASSERT(!msg->is_sync());
|
|
MOZ_RELEASE_ASSERT(msg->nested_level() != IPC::Message::NESTED_INSIDE_SYNC);
|
|
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
// Don't check for MSG_ROUTING_NONE.
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel", msg.get());
|
|
return false;
|
|
}
|
|
mLink->SendMessage(std::move(msg));
|
|
return true;
|
|
}
|
|
|
|
class CancelMessage : public IPC::Message {
|
|
public:
|
|
explicit CancelMessage(int transaction)
|
|
: IPC::Message(MSG_ROUTING_NONE, CANCEL_MESSAGE_TYPE) {
|
|
set_transaction_id(transaction);
|
|
}
|
|
static bool Read(const Message* msg) { return true; }
|
|
void Log(const std::string& aPrefix, FILE* aOutf) const {
|
|
fputs("(special `Cancel' message)", aOutf);
|
|
}
|
|
};
|
|
|
|
bool MessageChannel::MaybeInterceptSpecialIOMessage(const Message& aMsg) {
|
|
AssertLinkThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (MSG_ROUTING_NONE == aMsg.routing_id()) {
|
|
if (GOODBYE_MESSAGE_TYPE == aMsg.type()) {
|
|
// :TODO: Sort out Close() on this side racing with Close() on the
|
|
// other side
|
|
mChannelState = ChannelClosing;
|
|
if (LoggingEnabled()) {
|
|
printf("NOTE: %s process received `Goodbye', closing down\n",
|
|
(mSide == ChildSide) ? "child" : "parent");
|
|
}
|
|
return true;
|
|
} else if (CANCEL_MESSAGE_TYPE == aMsg.type()) {
|
|
IPC_LOG("Cancel from message");
|
|
CancelTransaction(aMsg.transaction_id());
|
|
NotifyWorkerThread();
|
|
return true;
|
|
} else if (BUILD_IDS_MATCH_MESSAGE_TYPE == aMsg.type()) {
|
|
IPC_LOG("Build IDs match message");
|
|
mBuildIDsConfirmedMatch = true;
|
|
return true;
|
|
} else if (IMPENDING_SHUTDOWN_MESSAGE_TYPE == aMsg.type()) {
|
|
IPC_LOG("Impending Shutdown received");
|
|
ProcessChild::NotifyImpendingShutdown();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* static */
|
|
bool MessageChannel::IsAlwaysDeferred(const Message& aMsg) {
|
|
// If a message is not NESTED_INSIDE_CPOW and not sync, then we always defer
|
|
// it.
|
|
return aMsg.nested_level() != IPC::Message::NESTED_INSIDE_CPOW &&
|
|
!aMsg.is_sync();
|
|
}
|
|
|
|
bool MessageChannel::ShouldDeferMessage(const Message& aMsg) {
|
|
// Never defer messages that have the highest nested level, even async
|
|
// ones. This is safe because only the child can send these messages, so
|
|
// they can never nest.
|
|
if (aMsg.nested_level() == IPC::Message::NESTED_INSIDE_CPOW) {
|
|
MOZ_ASSERT(!IsAlwaysDeferred(aMsg));
|
|
return false;
|
|
}
|
|
|
|
// Unless they're NESTED_INSIDE_CPOW, we always defer async messages.
|
|
// Note that we never send an async NESTED_INSIDE_SYNC message.
|
|
if (!aMsg.is_sync()) {
|
|
MOZ_RELEASE_ASSERT(aMsg.nested_level() == IPC::Message::NOT_NESTED);
|
|
MOZ_ASSERT(IsAlwaysDeferred(aMsg));
|
|
return true;
|
|
}
|
|
|
|
MOZ_ASSERT(!IsAlwaysDeferred(aMsg));
|
|
|
|
int msgNestedLevel = aMsg.nested_level();
|
|
int waitingNestedLevel = AwaitingSyncReplyNestedLevel();
|
|
|
|
// Always defer if the nested level of the incoming message is less than the
|
|
// nested level of the message we're awaiting.
|
|
if (msgNestedLevel < waitingNestedLevel) return true;
|
|
|
|
// Never defer if the message has strictly greater nested level.
|
|
if (msgNestedLevel > waitingNestedLevel) return false;
|
|
|
|
// When both sides send sync messages of the same nested level, we resolve the
|
|
// race by dispatching in the child and deferring the incoming message in
|
|
// the parent. However, the parent still needs to dispatch nested sync
|
|
// messages.
|
|
//
|
|
// Deferring in the parent only sort of breaks message ordering. When the
|
|
// child's message comes in, we can pretend the child hasn't quite
|
|
// finished sending it yet. Since the message is sync, we know that the
|
|
// child hasn't moved on yet.
|
|
return mSide == ParentSide &&
|
|
aMsg.transaction_id() != CurrentNestedInsideSyncTransaction();
|
|
}
|
|
|
|
void MessageChannel::OnMessageReceivedFromLink(Message&& aMsg) {
|
|
AssertLinkThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (MaybeInterceptSpecialIOMessage(aMsg)) return;
|
|
|
|
mListener->OnChannelReceivedMessage(aMsg);
|
|
|
|
// Regardless of the Interrupt stack, if we're awaiting a sync reply,
|
|
// we know that it needs to be immediately handled to unblock us.
|
|
if (aMsg.is_sync() && aMsg.is_reply()) {
|
|
IPC_LOG("Received reply seqno=%d xid=%d", aMsg.seqno(),
|
|
aMsg.transaction_id());
|
|
|
|
if (aMsg.seqno() == mTimedOutMessageSeqno) {
|
|
// Drop the message, but allow future sync messages to be sent.
|
|
IPC_LOG("Received reply to timedout message; igoring; xid=%d",
|
|
mTimedOutMessageSeqno);
|
|
EndTimeout();
|
|
return;
|
|
}
|
|
|
|
MOZ_RELEASE_ASSERT(AwaitingSyncReply());
|
|
MOZ_RELEASE_ASSERT(!mTimedOutMessageSeqno);
|
|
|
|
mTransactionStack->HandleReply(std::move(aMsg));
|
|
NotifyWorkerThread();
|
|
return;
|
|
}
|
|
|
|
// Nested messages cannot be compressed.
|
|
MOZ_RELEASE_ASSERT(aMsg.compress_type() == IPC::Message::COMPRESSION_NONE ||
|
|
aMsg.nested_level() == IPC::Message::NOT_NESTED);
|
|
|
|
bool reuseTask = false;
|
|
if (aMsg.compress_type() == IPC::Message::COMPRESSION_ENABLED) {
|
|
bool compress =
|
|
(!mPending.isEmpty() &&
|
|
mPending.getLast()->Msg().type() == aMsg.type() &&
|
|
mPending.getLast()->Msg().routing_id() == aMsg.routing_id());
|
|
if (compress) {
|
|
// This message type has compression enabled, and the back of the
|
|
// queue was the same message type and routed to the same destination.
|
|
// Replace it with the newer message.
|
|
MOZ_RELEASE_ASSERT(mPending.getLast()->Msg().compress_type() ==
|
|
IPC::Message::COMPRESSION_ENABLED);
|
|
mPending.getLast()->Msg() = std::move(aMsg);
|
|
|
|
reuseTask = true;
|
|
}
|
|
} else if (aMsg.compress_type() == IPC::Message::COMPRESSION_ALL &&
|
|
!mPending.isEmpty()) {
|
|
for (MessageTask* p = mPending.getLast(); p; p = p->getPrevious()) {
|
|
if (p->Msg().type() == aMsg.type() &&
|
|
p->Msg().routing_id() == aMsg.routing_id()) {
|
|
// This message type has compression enabled, and the queue
|
|
// holds a message with the same message type and routed to the
|
|
// same destination. Erase it. Note that, since we always
|
|
// compress these redundancies, There Can Be Only One.
|
|
MOZ_RELEASE_ASSERT(p->Msg().compress_type() ==
|
|
IPC::Message::COMPRESSION_ALL);
|
|
MOZ_RELEASE_ASSERT(IsAlwaysDeferred(p->Msg()));
|
|
p->remove();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool alwaysDeferred = IsAlwaysDeferred(aMsg);
|
|
|
|
bool wakeUpSyncSend = AwaitingSyncReply() && !ShouldDeferMessage(aMsg);
|
|
|
|
bool shouldWakeUp =
|
|
AwaitingInterruptReply() || wakeUpSyncSend || AwaitingIncomingMessage();
|
|
|
|
// Although we usually don't need to post a message task if
|
|
// shouldWakeUp is true, it's easier to post anyway than to have to
|
|
// guarantee that every Send call processes everything it's supposed to
|
|
// before returning.
|
|
bool shouldPostTask = !shouldWakeUp || wakeUpSyncSend;
|
|
|
|
IPC_LOG("Receive on link thread; seqno=%d, xid=%d, shouldWakeUp=%d",
|
|
aMsg.seqno(), aMsg.transaction_id(), shouldWakeUp);
|
|
|
|
if (reuseTask) {
|
|
return;
|
|
}
|
|
|
|
// There are three cases we're concerned about, relating to the state of the
|
|
// main thread:
|
|
//
|
|
// (1) We are waiting on a sync reply - main thread is blocked on the
|
|
// IPC monitor.
|
|
// - If the message is NESTED_INSIDE_SYNC, we wake up the main thread to
|
|
// deliver the message depending on ShouldDeferMessage. Otherwise, we
|
|
// leave it in the mPending queue, posting a task to the main event
|
|
// loop, where it will be processed once the synchronous reply has been
|
|
// received.
|
|
//
|
|
// (2) We are waiting on an Interrupt reply - main thread is blocked on the
|
|
// IPC monitor.
|
|
// - Always notify and wake up the main thread.
|
|
//
|
|
// (3) We are not waiting on a reply.
|
|
// - We post a task to the main event loop.
|
|
//
|
|
// Note that, we may notify the main thread even though the monitor is not
|
|
// blocked. This is okay, since we always check for pending events before
|
|
// blocking again.
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
aMsg.TaskTracerDispatch();
|
|
#endif
|
|
RefPtr<MessageTask> task = new MessageTask(this, std::move(aMsg));
|
|
mPending.insertBack(task);
|
|
|
|
if (!alwaysDeferred) {
|
|
mMaybeDeferredPendingCount++;
|
|
}
|
|
|
|
if (shouldWakeUp) {
|
|
NotifyWorkerThread();
|
|
}
|
|
|
|
if (shouldPostTask) {
|
|
task->Post();
|
|
}
|
|
}
|
|
|
|
void MessageChannel::PeekMessages(
|
|
const std::function<bool(const Message& aMsg)>& aInvoke) {
|
|
// FIXME: We shouldn't be holding the lock for aInvoke!
|
|
MonitorAutoLock lock(*mMonitor);
|
|
|
|
for (MessageTask* it : mPending) {
|
|
const Message& msg = it->Msg();
|
|
if (!aInvoke(msg)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MessageChannel::ProcessPendingRequests(
|
|
AutoEnterTransaction& aTransaction) {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
AssertMaybeDeferredCountCorrect();
|
|
if (mMaybeDeferredPendingCount == 0) {
|
|
return;
|
|
}
|
|
|
|
IPC_LOG("ProcessPendingRequests for seqno=%d, xid=%d",
|
|
aTransaction.SequenceNumber(), aTransaction.TransactionID());
|
|
|
|
// Loop until there aren't any more nested messages to process.
|
|
for (;;) {
|
|
// If we canceled during ProcessPendingRequest, then we need to leave
|
|
// immediately because the results of ShouldDeferMessage will be
|
|
// operating with weird state (as if no Send is in progress). That could
|
|
// cause even NOT_NESTED sync messages to be processed (but not
|
|
// NOT_NESTED async messages), which would break message ordering.
|
|
if (aTransaction.IsCanceled()) {
|
|
return;
|
|
}
|
|
|
|
mozilla::Vector<Message> toProcess;
|
|
|
|
for (MessageTask* p = mPending.getFirst(); p;) {
|
|
Message& msg = p->Msg();
|
|
|
|
MOZ_RELEASE_ASSERT(!aTransaction.IsCanceled(),
|
|
"Calling ShouldDeferMessage when cancelled");
|
|
bool defer = ShouldDeferMessage(msg);
|
|
|
|
// Only log the interesting messages.
|
|
if (msg.is_sync() ||
|
|
msg.nested_level() == IPC::Message::NESTED_INSIDE_CPOW) {
|
|
IPC_LOG("ShouldDeferMessage(seqno=%d) = %d", msg.seqno(), defer);
|
|
}
|
|
|
|
if (!defer) {
|
|
MOZ_ASSERT(!IsAlwaysDeferred(msg));
|
|
|
|
if (!toProcess.append(std::move(msg))) MOZ_CRASH();
|
|
|
|
mMaybeDeferredPendingCount--;
|
|
|
|
p = p->removeAndGetNext();
|
|
continue;
|
|
}
|
|
p = p->getNext();
|
|
}
|
|
|
|
if (toProcess.empty()) {
|
|
break;
|
|
}
|
|
|
|
// Processing these messages could result in more messages, so we
|
|
// loop around to check for more afterwards.
|
|
|
|
for (auto it = toProcess.begin(); it != toProcess.end(); it++) {
|
|
ProcessPendingRequest(std::move(*it));
|
|
}
|
|
}
|
|
|
|
AssertMaybeDeferredCountCorrect();
|
|
}
|
|
|
|
bool MessageChannel::Send(UniquePtr<Message> aMsg, Message* aReply) {
|
|
mozilla::TimeStamp start = TimeStamp::Now();
|
|
if (aMsg->size() >= kMinTelemetryMessageSize) {
|
|
Telemetry::Accumulate(Telemetry::IPC_MESSAGE_SIZE2, aMsg->size());
|
|
}
|
|
|
|
// Sanity checks.
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
|
|
"sync send over same-thread channel will deadlock!");
|
|
|
|
#ifdef OS_WIN
|
|
SyncStackFrame frame(this, false);
|
|
NeuteredWindowRegion neuteredRgn(mFlags &
|
|
REQUIRE_DEFERRED_MESSAGE_PROTECTION);
|
|
#endif
|
|
#ifdef MOZ_TASK_TRACER
|
|
AutoScopedLabel autolabel("sync message %s", aMsg->name());
|
|
#endif
|
|
|
|
CxxStackFrame f(*this, OUT_MESSAGE, aMsg.get());
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
|
|
if (mTimedOutMessageSeqno) {
|
|
// Don't bother sending another sync message if a previous one timed out
|
|
// and we haven't received a reply for it. Once the original timed-out
|
|
// message receives a reply, we'll be able to send more sync messages
|
|
// again.
|
|
IPC_LOG("Send() failed due to previous timeout");
|
|
mLastSendError = SyncSendError::PreviousTimeout;
|
|
return false;
|
|
}
|
|
|
|
if (DispatchingSyncMessageNestedLevel() == IPC::Message::NOT_NESTED &&
|
|
aMsg->nested_level() > IPC::Message::NOT_NESTED) {
|
|
// Don't allow sending CPOWs while we're dispatching a sync message.
|
|
IPC_LOG("Nested level forbids send");
|
|
mLastSendError = SyncSendError::SendingCPOWWhileDispatchingSync;
|
|
return false;
|
|
}
|
|
|
|
if (DispatchingSyncMessageNestedLevel() == IPC::Message::NESTED_INSIDE_CPOW ||
|
|
DispatchingAsyncMessageNestedLevel() ==
|
|
IPC::Message::NESTED_INSIDE_CPOW) {
|
|
// Generally only the parent dispatches urgent messages. And the only
|
|
// sync messages it can send are NESTED_INSIDE_SYNC. Mainly we want to
|
|
// ensure here that we don't return false for non-CPOW messages.
|
|
MOZ_RELEASE_ASSERT(aMsg->nested_level() ==
|
|
IPC::Message::NESTED_INSIDE_SYNC);
|
|
IPC_LOG("Sending while dispatching urgent message");
|
|
mLastSendError = SyncSendError::SendingCPOWWhileDispatchingUrgent;
|
|
return false;
|
|
}
|
|
|
|
if (aMsg->nested_level() < DispatchingSyncMessageNestedLevel() ||
|
|
aMsg->nested_level() < AwaitingSyncReplyNestedLevel()) {
|
|
MOZ_RELEASE_ASSERT(DispatchingSyncMessage() || DispatchingAsyncMessage());
|
|
MOZ_RELEASE_ASSERT(!mIsPostponingSends);
|
|
IPC_LOG("Cancel from Send");
|
|
auto cancel =
|
|
MakeUnique<CancelMessage>(CurrentNestedInsideSyncTransaction());
|
|
CancelTransaction(CurrentNestedInsideSyncTransaction());
|
|
mLink->SendMessage(std::move(cancel));
|
|
}
|
|
|
|
IPC_ASSERT(aMsg->is_sync(), "can only Send() sync messages here");
|
|
|
|
IPC_ASSERT(aMsg->nested_level() >= DispatchingSyncMessageNestedLevel(),
|
|
"can't send sync message of a lesser nested level than what's "
|
|
"being dispatched");
|
|
IPC_ASSERT(AwaitingSyncReplyNestedLevel() <= aMsg->nested_level(),
|
|
"nested sync message sends must be of increasing nested level");
|
|
IPC_ASSERT(
|
|
DispatchingSyncMessageNestedLevel() != IPC::Message::NESTED_INSIDE_CPOW,
|
|
"not allowed to send messages while dispatching urgent messages");
|
|
|
|
IPC_ASSERT(
|
|
DispatchingAsyncMessageNestedLevel() != IPC::Message::NESTED_INSIDE_CPOW,
|
|
"not allowed to send messages while dispatching urgent messages");
|
|
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::SendAndWait", aMsg.get());
|
|
mLastSendError = SyncSendError::NotConnectedBeforeSend;
|
|
return false;
|
|
}
|
|
|
|
aMsg->set_seqno(NextSeqno());
|
|
|
|
int32_t seqno = aMsg->seqno();
|
|
int nestedLevel = aMsg->nested_level();
|
|
msgid_t replyType = aMsg->type() + 1;
|
|
|
|
AutoEnterTransaction* stackTop = mTransactionStack;
|
|
|
|
// If the most recent message on the stack is NESTED_INSIDE_SYNC, then our
|
|
// message should nest inside that and we use the same transaction
|
|
// ID. Otherwise we need a new transaction ID (so we use the seqno of the
|
|
// message we're sending).
|
|
bool nest =
|
|
stackTop && stackTop->NestedLevel() == IPC::Message::NESTED_INSIDE_SYNC;
|
|
int32_t transaction = nest ? stackTop->TransactionID() : seqno;
|
|
aMsg->set_transaction_id(transaction);
|
|
|
|
bool handleWindowsMessages = mListener->HandleWindowsMessages(*aMsg.get());
|
|
AutoEnterTransaction transact(this, seqno, transaction, nestedLevel);
|
|
|
|
IPC_LOG("Send seqno=%d, xid=%d", seqno, transaction);
|
|
|
|
// aMsg will be destroyed soon, but name() is not owned by aMsg.
|
|
const char* msgName = aMsg->name();
|
|
|
|
AddProfilerMarker(*aMsg, MessageDirection::eSending);
|
|
SendMessageToLink(std::move(aMsg));
|
|
|
|
while (true) {
|
|
MOZ_RELEASE_ASSERT(!transact.IsCanceled());
|
|
ProcessPendingRequests(transact);
|
|
if (transact.IsComplete()) {
|
|
break;
|
|
}
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::Send");
|
|
mLastSendError = SyncSendError::DisconnectedDuringSend;
|
|
return false;
|
|
}
|
|
|
|
MOZ_RELEASE_ASSERT(!mTimedOutMessageSeqno);
|
|
MOZ_RELEASE_ASSERT(!transact.IsComplete());
|
|
MOZ_RELEASE_ASSERT(mTransactionStack == &transact);
|
|
|
|
bool maybeTimedOut = !WaitForSyncNotify(handleWindowsMessages);
|
|
|
|
if (mListener->NeedArtificialSleep()) {
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
mListener->ArtificialSleep();
|
|
}
|
|
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::SendAndWait");
|
|
mLastSendError = SyncSendError::DisconnectedDuringSend;
|
|
return false;
|
|
}
|
|
|
|
if (transact.IsCanceled()) {
|
|
break;
|
|
}
|
|
|
|
MOZ_RELEASE_ASSERT(mTransactionStack == &transact);
|
|
|
|
// We only time out a message if it initiated a new transaction (i.e.,
|
|
// if neither side has any other message Sends on the stack).
|
|
bool canTimeOut = transact.IsBottom();
|
|
if (maybeTimedOut && canTimeOut && !ShouldContinueFromTimeout()) {
|
|
// Since ShouldContinueFromTimeout drops the lock, we need to
|
|
// re-check all our conditions here. We shouldn't time out if any of
|
|
// these things happen because there won't be a reply to the timed
|
|
// out message in these cases.
|
|
if (transact.IsComplete()) {
|
|
break;
|
|
}
|
|
|
|
IPC_LOG("Timing out Send: xid=%d", transaction);
|
|
|
|
mTimedOutMessageSeqno = seqno;
|
|
mTimedOutMessageNestedLevel = nestedLevel;
|
|
mLastSendError = SyncSendError::TimedOut;
|
|
return false;
|
|
}
|
|
|
|
if (transact.IsCanceled()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (transact.IsCanceled()) {
|
|
IPC_LOG("Other side canceled seqno=%d, xid=%d", seqno, transaction);
|
|
mLastSendError = SyncSendError::CancelledAfterSend;
|
|
return false;
|
|
}
|
|
|
|
if (transact.IsError()) {
|
|
IPC_LOG("Error: seqno=%d, xid=%d", seqno, transaction);
|
|
mLastSendError = SyncSendError::ReplyError;
|
|
return false;
|
|
}
|
|
|
|
uint32_t latencyMs = round((TimeStamp::Now() - start).ToMilliseconds());
|
|
IPC_LOG("Got reply: seqno=%d, xid=%d, msgName=%s, latency=%ums", seqno,
|
|
transaction, msgName, latencyMs);
|
|
|
|
UniquePtr<Message> reply = transact.GetReply();
|
|
|
|
MOZ_RELEASE_ASSERT(reply);
|
|
MOZ_RELEASE_ASSERT(reply->is_reply(), "expected reply");
|
|
MOZ_RELEASE_ASSERT(!reply->is_reply_error());
|
|
MOZ_RELEASE_ASSERT(reply->seqno() == seqno);
|
|
MOZ_RELEASE_ASSERT(reply->type() == replyType, "wrong reply type");
|
|
MOZ_RELEASE_ASSERT(reply->is_sync());
|
|
|
|
AddProfilerMarker(*reply, MessageDirection::eReceiving);
|
|
|
|
*aReply = std::move(*reply);
|
|
if (aReply->size() >= kMinTelemetryMessageSize) {
|
|
Telemetry::Accumulate(Telemetry::IPC_REPLY_SIZE,
|
|
nsDependentCString(msgName), aReply->size());
|
|
}
|
|
|
|
// NOTE: Only collect IPC_SYNC_MAIN_LATENCY_MS on the main thread (bug
|
|
// 1343729)
|
|
if (NS_IsMainThread() && latencyMs >= kMinTelemetrySyncIPCLatencyMs) {
|
|
Telemetry::Accumulate(Telemetry::IPC_SYNC_MAIN_LATENCY_MS,
|
|
nsDependentCString(msgName), latencyMs);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool MessageChannel::Call(UniquePtr<Message> aMsg, Message* aReply) {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
|
|
"intr call send over same-thread channel will deadlock!");
|
|
|
|
#ifdef OS_WIN
|
|
SyncStackFrame frame(this, true);
|
|
#endif
|
|
#ifdef MOZ_TASK_TRACER
|
|
AutoScopedLabel autolabel("sync message %s", aMsg->name());
|
|
#endif
|
|
|
|
// This must come before MonitorAutoLock, as its destructor acquires the
|
|
// monitor lock.
|
|
CxxStackFrame cxxframe(*this, OUT_MESSAGE, aMsg.get());
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::Call", aMsg.get());
|
|
return false;
|
|
}
|
|
|
|
// Sanity checks.
|
|
IPC_ASSERT(!AwaitingSyncReply(),
|
|
"cannot issue Interrupt call while blocked on sync request");
|
|
IPC_ASSERT(!DispatchingSyncMessage(), "violation of sync handler invariant");
|
|
IPC_ASSERT(aMsg->is_interrupt(), "can only Call() Interrupt messages here");
|
|
IPC_ASSERT(!mIsPostponingSends, "not postponing sends");
|
|
|
|
aMsg->set_seqno(NextSeqno());
|
|
aMsg->set_interrupt_remote_stack_depth_guess(mRemoteStackDepthGuess);
|
|
aMsg->set_interrupt_local_stack_depth(1 + InterruptStackDepth());
|
|
mInterruptStack.push(MessageInfo(*aMsg));
|
|
|
|
AddProfilerMarker(*aMsg, MessageDirection::eSending);
|
|
|
|
mLink->SendMessage(std::move(aMsg));
|
|
|
|
while (true) {
|
|
// if a handler invoked by *Dispatch*() spun a nested event
|
|
// loop, and the connection was broken during that loop, we
|
|
// might have already processed the OnError event. if so,
|
|
// trying another loop iteration will be futile because
|
|
// channel state will have been cleared
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::Call");
|
|
return false;
|
|
}
|
|
|
|
#ifdef OS_WIN
|
|
// We need to limit the scoped of neuteredRgn to this spot in the code.
|
|
// Window neutering can't be enabled during some plugin calls because
|
|
// we then risk the neutered window procedure being subclassed by a
|
|
// plugin.
|
|
{
|
|
NeuteredWindowRegion neuteredRgn(mFlags &
|
|
REQUIRE_DEFERRED_MESSAGE_PROTECTION);
|
|
/* We should pump messages at this point to ensure that the IPC
|
|
peer does not become deadlocked on a pending inter-thread
|
|
SendMessage() */
|
|
neuteredRgn.PumpOnce();
|
|
}
|
|
#endif
|
|
|
|
// Now might be the time to process a message deferred because of race
|
|
// resolution.
|
|
MaybeUndeferIncall();
|
|
|
|
// Wait for an event to occur.
|
|
while (!InterruptEventOccurred()) {
|
|
bool maybeTimedOut = !WaitForInterruptNotify();
|
|
|
|
// We might have received a "subtly deferred" message in a nested
|
|
// loop that it's now time to process.
|
|
if (InterruptEventOccurred() ||
|
|
(!maybeTimedOut &&
|
|
(!mDeferred.empty() || !mOutOfTurnReplies.empty()))) {
|
|
break;
|
|
}
|
|
|
|
if (maybeTimedOut && !ShouldContinueFromTimeout()) return false;
|
|
}
|
|
|
|
Message recvd;
|
|
MessageMap::iterator it;
|
|
|
|
if ((it = mOutOfTurnReplies.find(mInterruptStack.top().seqno())) !=
|
|
mOutOfTurnReplies.end()) {
|
|
recvd = std::move(it->second);
|
|
mOutOfTurnReplies.erase(it);
|
|
} else if (!mPending.isEmpty()) {
|
|
RefPtr<MessageTask> task = mPending.popFirst();
|
|
recvd = std::move(task->Msg());
|
|
if (!IsAlwaysDeferred(recvd)) {
|
|
mMaybeDeferredPendingCount--;
|
|
}
|
|
} else {
|
|
// because of subtleties with nested event loops, it's possible
|
|
// that we got here and nothing happened. or, we might have a
|
|
// deferred in-call that needs to be processed. either way, we
|
|
// won't break the inner while loop again until something new
|
|
// happens.
|
|
continue;
|
|
}
|
|
|
|
// If the message is not Interrupt, we can dispatch it as normal.
|
|
if (!recvd.is_interrupt()) {
|
|
DispatchMessage(std::move(recvd));
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::DispatchMessage");
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If the message is an Interrupt reply, either process it as a reply to our
|
|
// call, or add it to the list of out-of-turn replies we've received.
|
|
if (recvd.is_reply()) {
|
|
IPC_ASSERT(!mInterruptStack.empty(), "invalid Interrupt stack");
|
|
|
|
// If this is not a reply the call we've initiated, add it to our
|
|
// out-of-turn replies and keep polling for events.
|
|
{
|
|
const MessageInfo& outcall = mInterruptStack.top();
|
|
|
|
// Note, In the parent, sequence numbers increase from 0, and
|
|
// in the child, they decrease from 0.
|
|
if ((mSide == ChildSide && recvd.seqno() > outcall.seqno()) ||
|
|
(mSide != ChildSide && recvd.seqno() < outcall.seqno())) {
|
|
mOutOfTurnReplies[recvd.seqno()] = std::move(recvd);
|
|
continue;
|
|
}
|
|
|
|
IPC_ASSERT(
|
|
recvd.is_reply_error() || (recvd.type() == (outcall.type() + 1) &&
|
|
recvd.seqno() == outcall.seqno()),
|
|
"somebody's misbehavin'", true);
|
|
}
|
|
|
|
// We received a reply to our most recent outstanding call. Pop
|
|
// this frame and return the reply.
|
|
mInterruptStack.pop();
|
|
|
|
AddProfilerMarker(recvd, MessageDirection::eReceiving);
|
|
|
|
bool is_reply_error = recvd.is_reply_error();
|
|
if (!is_reply_error) {
|
|
*aReply = std::move(recvd);
|
|
}
|
|
|
|
// If we have no more pending out calls waiting on replies, then
|
|
// the reply queue should be empty.
|
|
IPC_ASSERT(!mInterruptStack.empty() || mOutOfTurnReplies.empty(),
|
|
"still have pending replies with no pending out-calls", true);
|
|
|
|
return !is_reply_error;
|
|
}
|
|
|
|
// Dispatch an Interrupt in-call. Snapshot the current stack depth while we
|
|
// own the monitor.
|
|
size_t stackDepth = InterruptStackDepth();
|
|
{
|
|
#ifdef MOZ_TASK_TRACER
|
|
Message::AutoTaskTracerRun tasktracerRun(recvd);
|
|
#endif
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
|
|
CxxStackFrame frame(*this, IN_MESSAGE, &recvd);
|
|
RefPtr<ActorLifecycleProxy> listenerProxy =
|
|
mListener->GetLifecycleProxy();
|
|
DispatchInterruptMessage(listenerProxy, std::move(recvd), stackDepth);
|
|
}
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::DispatchInterruptMessage");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MessageChannel::WaitForIncomingMessage() {
|
|
#ifdef OS_WIN
|
|
SyncStackFrame frame(this, true);
|
|
NeuteredWindowRegion neuteredRgn(mFlags &
|
|
REQUIRE_DEFERRED_MESSAGE_PROTECTION);
|
|
#endif
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
AutoEnterWaitForIncoming waitingForIncoming(*this);
|
|
if (mChannelState != ChannelConnected) {
|
|
return false;
|
|
}
|
|
if (!HasPendingEvents()) {
|
|
return WaitForInterruptNotify();
|
|
}
|
|
|
|
MOZ_RELEASE_ASSERT(!mPending.isEmpty());
|
|
RefPtr<MessageTask> task = mPending.getFirst();
|
|
RunMessage(*task);
|
|
return true;
|
|
}
|
|
|
|
bool MessageChannel::HasPendingEvents() {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return Connected() && !mPending.isEmpty();
|
|
}
|
|
|
|
bool MessageChannel::InterruptEventOccurred() {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
IPC_ASSERT(InterruptStackDepth() > 0, "not in wait loop");
|
|
|
|
return (!Connected() || !mPending.isEmpty() ||
|
|
(!mOutOfTurnReplies.empty() &&
|
|
mOutOfTurnReplies.find(mInterruptStack.top().seqno()) !=
|
|
mOutOfTurnReplies.end()));
|
|
}
|
|
|
|
bool MessageChannel::ProcessPendingRequest(Message&& aUrgent) {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
IPC_LOG("Process pending: seqno=%d, xid=%d", aUrgent.seqno(),
|
|
aUrgent.transaction_id());
|
|
|
|
DispatchMessage(std::move(aUrgent));
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::ProcessPendingRequest");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MessageChannel::ShouldRunMessage(const Message& aMsg) {
|
|
if (!mTimedOutMessageSeqno) {
|
|
return true;
|
|
}
|
|
|
|
// If we've timed out a message and we're awaiting the reply to the timed
|
|
// out message, we have to be careful what messages we process. Here's what
|
|
// can go wrong:
|
|
// 1. child sends a NOT_NESTED sync message S
|
|
// 2. parent sends a NESTED_INSIDE_SYNC sync message H at the same time
|
|
// 3. parent times out H
|
|
// 4. child starts processing H and sends a NESTED_INSIDE_SYNC message H'
|
|
// nested within the same transaction
|
|
// 5. parent dispatches S and sends reply
|
|
// 6. child asserts because it instead expected a reply to H'.
|
|
//
|
|
// To solve this, we refuse to process S in the parent until we get a reply
|
|
// to H. More generally, let the timed out message be M. We don't process a
|
|
// message unless the child would need the response to that message in order
|
|
// to process M. Those messages are the ones that have a higher nested level
|
|
// than M or that are part of the same transaction as M.
|
|
if (aMsg.nested_level() < mTimedOutMessageNestedLevel ||
|
|
(aMsg.nested_level() == mTimedOutMessageNestedLevel &&
|
|
aMsg.transaction_id() != mTimedOutMessageSeqno)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void MessageChannel::RunMessage(MessageTask& aTask) {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
Message& msg = aTask.Msg();
|
|
|
|
if (!Connected()) {
|
|
ReportConnectionError("RunMessage");
|
|
return;
|
|
}
|
|
|
|
// Check that we're going to run the first message that's valid to run.
|
|
#if 0
|
|
# ifdef DEBUG
|
|
nsCOMPtr<nsIEventTarget> messageTarget =
|
|
mListener->GetMessageEventTarget(msg);
|
|
|
|
for (MessageTask* task : mPending) {
|
|
if (task == &aTask) {
|
|
break;
|
|
}
|
|
|
|
nsCOMPtr<nsIEventTarget> taskTarget =
|
|
mListener->GetMessageEventTarget(task->Msg());
|
|
|
|
MOZ_ASSERT(!ShouldRunMessage(task->Msg()) ||
|
|
taskTarget != messageTarget ||
|
|
aTask.Msg().priority() != task->Msg().priority());
|
|
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
if (!mDeferred.empty()) {
|
|
MaybeUndeferIncall();
|
|
}
|
|
|
|
if (!ShouldRunMessage(msg)) {
|
|
return;
|
|
}
|
|
|
|
MOZ_RELEASE_ASSERT(aTask.isInList());
|
|
aTask.remove();
|
|
|
|
if (!IsAlwaysDeferred(msg)) {
|
|
mMaybeDeferredPendingCount--;
|
|
}
|
|
|
|
if (IsOnCxxStack() && msg.is_interrupt() && msg.is_reply()) {
|
|
// We probably just received a reply in a nested loop for an
|
|
// Interrupt call sent before entering that loop.
|
|
mOutOfTurnReplies[msg.seqno()] = std::move(msg);
|
|
return;
|
|
}
|
|
|
|
DispatchMessage(std::move(msg));
|
|
}
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(MessageChannel::MessageTask, CancelableRunnable,
|
|
nsIRunnablePriority, nsIRunnableIPCMessageType)
|
|
|
|
MessageChannel::MessageTask::MessageTask(MessageChannel* aChannel,
|
|
Message&& aMessage)
|
|
: CancelableRunnable(aMessage.name()),
|
|
mChannel(aChannel),
|
|
mMessage(std::move(aMessage)),
|
|
mScheduled(false) {}
|
|
|
|
nsresult MessageChannel::MessageTask::Run() {
|
|
if (!mChannel) {
|
|
return NS_OK;
|
|
}
|
|
|
|
mChannel->AssertWorkerThread();
|
|
mChannel->mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
MonitorAutoLock lock(*mChannel->mMonitor);
|
|
|
|
// In case we choose not to run this message, we may need to be able to Post
|
|
// it again.
|
|
mScheduled = false;
|
|
|
|
if (!isInList()) {
|
|
return NS_OK;
|
|
}
|
|
|
|
mChannel->RunMessage(*this);
|
|
return NS_OK;
|
|
}
|
|
|
|
// Warning: This method removes the receiver from whatever list it might be in.
|
|
nsresult MessageChannel::MessageTask::Cancel() {
|
|
if (!mChannel) {
|
|
return NS_OK;
|
|
}
|
|
|
|
mChannel->AssertWorkerThread();
|
|
mChannel->mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
MonitorAutoLock lock(*mChannel->mMonitor);
|
|
|
|
if (!isInList()) {
|
|
return NS_OK;
|
|
}
|
|
remove();
|
|
|
|
if (!IsAlwaysDeferred(Msg())) {
|
|
mChannel->mMaybeDeferredPendingCount--;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void MessageChannel::MessageTask::Post() {
|
|
MOZ_RELEASE_ASSERT(!mScheduled);
|
|
MOZ_RELEASE_ASSERT(isInList());
|
|
|
|
mScheduled = true;
|
|
|
|
RefPtr<MessageTask> self = this;
|
|
nsCOMPtr<nsISerialEventTarget> eventTarget =
|
|
mChannel->mListener->GetMessageEventTarget(mMessage);
|
|
|
|
if (eventTarget) {
|
|
eventTarget->Dispatch(self.forget(), NS_DISPATCH_NORMAL);
|
|
} else {
|
|
mChannel->mWorkerThread->Dispatch(self.forget());
|
|
}
|
|
}
|
|
|
|
void MessageChannel::MessageTask::Clear() {
|
|
mChannel->AssertWorkerThread();
|
|
|
|
mChannel = nullptr;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
MessageChannel::MessageTask::GetPriority(uint32_t* aPriority) {
|
|
switch (mMessage.priority()) {
|
|
case Message::NORMAL_PRIORITY:
|
|
*aPriority = PRIORITY_NORMAL;
|
|
break;
|
|
case Message::INPUT_PRIORITY:
|
|
*aPriority = PRIORITY_INPUT_HIGH;
|
|
break;
|
|
case Message::HIGH_PRIORITY:
|
|
*aPriority = PRIORITY_HIGH;
|
|
break;
|
|
case Message::MEDIUMHIGH_PRIORITY:
|
|
*aPriority = PRIORITY_MEDIUMHIGH;
|
|
break;
|
|
default:
|
|
MOZ_ASSERT(false);
|
|
break;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
MessageChannel::MessageTask::GetType(uint32_t* aType) {
|
|
if (!Msg().is_valid()) {
|
|
// If mMessage has been moved already elsewhere, we can't know what the type
|
|
// has been.
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
*aType = Msg().type();
|
|
return NS_OK;
|
|
}
|
|
|
|
void MessageChannel::DispatchMessage(Message&& aMsg) {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
RefPtr<ActorLifecycleProxy> listenerProxy = mListener->GetLifecycleProxy();
|
|
|
|
Maybe<AutoNoJSAPI> nojsapi;
|
|
if (NS_IsMainThread() && CycleCollectedJSContext::Get()) {
|
|
nojsapi.emplace();
|
|
}
|
|
|
|
UniquePtr<Message> reply;
|
|
|
|
IPC_LOG("DispatchMessage: seqno=%d, xid=%d", aMsg.seqno(),
|
|
aMsg.transaction_id());
|
|
AddProfilerMarker(aMsg, MessageDirection::eReceiving);
|
|
|
|
{
|
|
AutoEnterTransaction transaction(this, aMsg);
|
|
|
|
int id = aMsg.transaction_id();
|
|
MOZ_RELEASE_ASSERT(!aMsg.is_sync() || id == transaction.TransactionID());
|
|
|
|
{
|
|
#ifdef MOZ_TASK_TRACER
|
|
Message::AutoTaskTracerRun tasktracerRun(aMsg);
|
|
#endif
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
CxxStackFrame frame(*this, IN_MESSAGE, &aMsg);
|
|
|
|
mListener->ArtificialSleep();
|
|
|
|
if (aMsg.is_sync()) {
|
|
DispatchSyncMessage(listenerProxy, aMsg, *getter_Transfers(reply));
|
|
} else if (aMsg.is_interrupt()) {
|
|
DispatchInterruptMessage(listenerProxy, std::move(aMsg), 0);
|
|
} else {
|
|
DispatchAsyncMessage(listenerProxy, aMsg);
|
|
}
|
|
|
|
mListener->ArtificialSleep();
|
|
}
|
|
|
|
if (reply && transaction.IsCanceled()) {
|
|
// The transaction has been canceled. Don't send a reply.
|
|
IPC_LOG("Nulling out reply due to cancellation, seqno=%d, xid=%d",
|
|
aMsg.seqno(), id);
|
|
reply = nullptr;
|
|
}
|
|
}
|
|
|
|
if (reply && ChannelConnected == mChannelState) {
|
|
IPC_LOG("Sending reply seqno=%d, xid=%d", aMsg.seqno(),
|
|
aMsg.transaction_id());
|
|
AddProfilerMarker(*reply, MessageDirection::eSending);
|
|
|
|
mLink->SendMessage(std::move(reply));
|
|
}
|
|
}
|
|
|
|
void MessageChannel::DispatchSyncMessage(ActorLifecycleProxy* aProxy,
|
|
const Message& aMsg,
|
|
Message*& aReply) {
|
|
AssertWorkerThread();
|
|
|
|
mozilla::TimeStamp start = TimeStamp::Now();
|
|
|
|
int nestedLevel = aMsg.nested_level();
|
|
|
|
MOZ_RELEASE_ASSERT(nestedLevel == IPC::Message::NOT_NESTED ||
|
|
NS_IsMainThread());
|
|
#ifdef MOZ_TASK_TRACER
|
|
AutoScopedLabel autolabel("sync message %s", aMsg.name());
|
|
#endif
|
|
|
|
MessageChannel* dummy;
|
|
MessageChannel*& blockingVar =
|
|
mSide == ChildSide && NS_IsMainThread() ? gParentProcessBlocker : dummy;
|
|
|
|
Result rv;
|
|
{
|
|
AutoSetValue<MessageChannel*> blocked(blockingVar, this);
|
|
rv = aProxy->Get()->OnMessageReceived(aMsg, aReply);
|
|
}
|
|
|
|
uint32_t latencyMs = round((TimeStamp::Now() - start).ToMilliseconds());
|
|
if (latencyMs >= kMinTelemetrySyncIPCLatencyMs) {
|
|
Telemetry::Accumulate(Telemetry::IPC_SYNC_RECEIVE_MS,
|
|
nsDependentCString(aMsg.name()), latencyMs);
|
|
}
|
|
|
|
if (!MaybeHandleError(rv, aMsg, "DispatchSyncMessage")) {
|
|
aReply = Message::ForSyncDispatchError(aMsg.nested_level());
|
|
}
|
|
aReply->set_seqno(aMsg.seqno());
|
|
aReply->set_transaction_id(aMsg.transaction_id());
|
|
}
|
|
|
|
void MessageChannel::DispatchAsyncMessage(ActorLifecycleProxy* aProxy,
|
|
const Message& aMsg) {
|
|
AssertWorkerThread();
|
|
MOZ_RELEASE_ASSERT(!aMsg.is_interrupt() && !aMsg.is_sync());
|
|
|
|
if (aMsg.routing_id() == MSG_ROUTING_NONE) {
|
|
MOZ_CRASH("unhandled special message!");
|
|
}
|
|
|
|
Result rv;
|
|
{
|
|
int nestedLevel = aMsg.nested_level();
|
|
AutoSetValue<bool> async(mDispatchingAsyncMessage, true);
|
|
AutoSetValue<int> nestedLevelSet(mDispatchingAsyncMessageNestedLevel,
|
|
nestedLevel);
|
|
rv = aProxy->Get()->OnMessageReceived(aMsg);
|
|
}
|
|
MaybeHandleError(rv, aMsg, "DispatchAsyncMessage");
|
|
}
|
|
|
|
void MessageChannel::DispatchInterruptMessage(ActorLifecycleProxy* aProxy,
|
|
Message&& aMsg,
|
|
size_t stackDepth) {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");
|
|
|
|
if (ShouldDeferInterruptMessage(aMsg, stackDepth)) {
|
|
// We now know the other side's stack has one more frame
|
|
// than we thought.
|
|
++mRemoteStackDepthGuess; // decremented in MaybeProcessDeferred()
|
|
mDeferred.push(std::move(aMsg));
|
|
return;
|
|
}
|
|
|
|
// If we "lost" a race and need to process the other side's in-call, we
|
|
// don't need to fix up the mRemoteStackDepthGuess here, because we're just
|
|
// about to increment it, which will make it correct again.
|
|
|
|
#ifdef OS_WIN
|
|
SyncStackFrame frame(this, true);
|
|
#endif
|
|
|
|
UniquePtr<Message> reply;
|
|
|
|
++mRemoteStackDepthGuess;
|
|
Result rv = aProxy->Get()->OnCallReceived(aMsg, *getter_Transfers(reply));
|
|
--mRemoteStackDepthGuess;
|
|
|
|
if (!MaybeHandleError(rv, aMsg, "DispatchInterruptMessage")) {
|
|
reply = WrapUnique(Message::ForInterruptDispatchError());
|
|
}
|
|
reply->set_seqno(aMsg.seqno());
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (ChannelConnected == mChannelState) {
|
|
AddProfilerMarker(*reply, MessageDirection::eSending);
|
|
mLink->SendMessage(std::move(reply));
|
|
}
|
|
}
|
|
|
|
bool MessageChannel::ShouldDeferInterruptMessage(const Message& aMsg,
|
|
size_t aStackDepth) {
|
|
AssertWorkerThread();
|
|
|
|
// We may or may not own the lock in this function, so don't access any
|
|
// channel state.
|
|
|
|
IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");
|
|
|
|
// Race detection: see the long comment near mRemoteStackDepthGuess in
|
|
// MessageChannel.h. "Remote" stack depth means our side, and "local" means
|
|
// the other side.
|
|
if (aMsg.interrupt_remote_stack_depth_guess() ==
|
|
RemoteViewOfStackDepth(aStackDepth)) {
|
|
return false;
|
|
}
|
|
|
|
// Interrupt in-calls have raced. The winner, if there is one, gets to defer
|
|
// processing of the other side's in-call.
|
|
bool defer;
|
|
const char* winner;
|
|
const MessageInfo parentMsgInfo =
|
|
(mSide == ChildSide) ? MessageInfo(aMsg) : mInterruptStack.top();
|
|
const MessageInfo childMsgInfo =
|
|
(mSide == ChildSide) ? mInterruptStack.top() : MessageInfo(aMsg);
|
|
switch (mListener->MediateInterruptRace(parentMsgInfo, childMsgInfo)) {
|
|
case RIPChildWins:
|
|
winner = "child";
|
|
defer = (mSide == ChildSide);
|
|
break;
|
|
case RIPParentWins:
|
|
winner = "parent";
|
|
defer = (mSide != ChildSide);
|
|
break;
|
|
case RIPError:
|
|
MOZ_CRASH("NYI: 'Error' Interrupt race policy");
|
|
default:
|
|
MOZ_CRASH("not reached");
|
|
}
|
|
|
|
IPC_LOG("race in %s: %s won", (mSide == ChildSide) ? "child" : "parent",
|
|
winner);
|
|
|
|
return defer;
|
|
}
|
|
|
|
void MessageChannel::MaybeUndeferIncall() {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (mDeferred.empty()) return;
|
|
|
|
size_t stackDepth = InterruptStackDepth();
|
|
|
|
Message& deferred = mDeferred.top();
|
|
|
|
// the other side can only *under*-estimate our actual stack depth
|
|
IPC_ASSERT(deferred.interrupt_remote_stack_depth_guess() <= stackDepth,
|
|
"fatal logic error");
|
|
|
|
if (ShouldDeferInterruptMessage(deferred, stackDepth)) {
|
|
return;
|
|
}
|
|
|
|
// maybe time to process this message
|
|
Message call(std::move(deferred));
|
|
mDeferred.pop();
|
|
|
|
// fix up fudge factor we added to account for race
|
|
IPC_ASSERT(0 < mRemoteStackDepthGuess, "fatal logic error");
|
|
--mRemoteStackDepthGuess;
|
|
|
|
MOZ_RELEASE_ASSERT(call.nested_level() == IPC::Message::NOT_NESTED);
|
|
RefPtr<MessageTask> task = new MessageTask(this, std::move(call));
|
|
mPending.insertBack(task);
|
|
MOZ_ASSERT(IsAlwaysDeferred(task->Msg()));
|
|
task->Post();
|
|
}
|
|
|
|
void MessageChannel::EnteredCxxStack() { mListener->EnteredCxxStack(); }
|
|
|
|
void MessageChannel::ExitedCxxStack() {
|
|
mListener->ExitedCxxStack();
|
|
if (mSawInterruptOutMsg) {
|
|
MonitorAutoLock lock(*mMonitor);
|
|
// see long comment in OnMaybeDequeueOne()
|
|
EnqueuePendingMessages();
|
|
mSawInterruptOutMsg = false;
|
|
}
|
|
}
|
|
|
|
void MessageChannel::EnteredCall() { mListener->EnteredCall(); }
|
|
|
|
void MessageChannel::ExitedCall() { mListener->ExitedCall(); }
|
|
|
|
void MessageChannel::EnteredSyncSend() { mListener->OnEnteredSyncSend(); }
|
|
|
|
void MessageChannel::ExitedSyncSend() { mListener->OnExitedSyncSend(); }
|
|
|
|
void MessageChannel::EnqueuePendingMessages() {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
MaybeUndeferIncall();
|
|
|
|
// XXX performance tuning knob: could process all or k pending
|
|
// messages here, rather than enqueuing for later processing
|
|
|
|
RepostAllMessages();
|
|
}
|
|
|
|
bool MessageChannel::WaitResponse(bool aWaitTimedOut) {
|
|
if (aWaitTimedOut) {
|
|
if (mInTimeoutSecondHalf) {
|
|
// We've really timed out this time.
|
|
return false;
|
|
}
|
|
// Try a second time.
|
|
mInTimeoutSecondHalf = true;
|
|
} else {
|
|
mInTimeoutSecondHalf = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#ifndef OS_WIN
|
|
bool MessageChannel::WaitForSyncNotify(bool /* aHandleWindowsMessages */) {
|
|
# ifdef DEBUG
|
|
// WARNING: We don't release the lock here. We can't because the link thread
|
|
// could signal at this time and we would miss it. Instead we require
|
|
// ArtificialTimeout() to be extremely simple.
|
|
if (mListener->ArtificialTimeout()) {
|
|
return false;
|
|
}
|
|
# endif
|
|
|
|
MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
|
|
"Wait on same-thread channel will deadlock!");
|
|
|
|
TimeDuration timeout = (kNoTimeout == mTimeoutMs)
|
|
? TimeDuration::Forever()
|
|
: TimeDuration::FromMilliseconds(mTimeoutMs);
|
|
CVStatus status = mMonitor->Wait(timeout);
|
|
|
|
// If the timeout didn't expire, we know we received an event. The
|
|
// converse is not true.
|
|
return WaitResponse(status == CVStatus::Timeout);
|
|
}
|
|
|
|
bool MessageChannel::WaitForInterruptNotify() {
|
|
return WaitForSyncNotify(true);
|
|
}
|
|
|
|
void MessageChannel::NotifyWorkerThread() { mMonitor->Notify(); }
|
|
#endif
|
|
|
|
bool MessageChannel::ShouldContinueFromTimeout() {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
bool cont;
|
|
{
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
cont = mListener->ShouldContinueFromReplyTimeout();
|
|
mListener->ArtificialSleep();
|
|
}
|
|
|
|
static enum {
|
|
UNKNOWN,
|
|
NOT_DEBUGGING,
|
|
DEBUGGING
|
|
} sDebuggingChildren = UNKNOWN;
|
|
|
|
if (sDebuggingChildren == UNKNOWN) {
|
|
sDebuggingChildren =
|
|
getenv("MOZ_DEBUG_CHILD_PROCESS") || getenv("MOZ_DEBUG_CHILD_PAUSE")
|
|
? DEBUGGING
|
|
: NOT_DEBUGGING;
|
|
}
|
|
if (sDebuggingChildren == DEBUGGING) {
|
|
return true;
|
|
}
|
|
|
|
return cont;
|
|
}
|
|
|
|
void MessageChannel::SetReplyTimeoutMs(int32_t aTimeoutMs) {
|
|
// Set channel timeout value. Since this is broken up into
|
|
// two period, the minimum timeout value is 2ms.
|
|
AssertWorkerThread();
|
|
mTimeoutMs =
|
|
(aTimeoutMs <= 0) ? kNoTimeout : (int32_t)ceil((double)aTimeoutMs / 2.0);
|
|
}
|
|
|
|
void MessageChannel::OnChannelConnected(int32_t peer_id) {
|
|
MOZ_RELEASE_ASSERT(!mPeerPidSet);
|
|
mPeerPidSet = true;
|
|
mPeerPid = peer_id;
|
|
RefPtr<CancelableRunnable> task = mOnChannelConnectedTask;
|
|
mWorkerThread->Dispatch(task.forget());
|
|
}
|
|
|
|
void MessageChannel::DispatchOnChannelConnected() {
|
|
AssertWorkerThread();
|
|
MOZ_RELEASE_ASSERT(mPeerPidSet);
|
|
mListener->OnChannelConnected(mPeerPid);
|
|
}
|
|
|
|
void MessageChannel::ReportMessageRouteError(const char* channelName) const {
|
|
PrintErrorMessage(mSide, channelName, "Need a route");
|
|
mListener->ProcessingError(MsgRouteError, "MsgRouteError");
|
|
}
|
|
|
|
void MessageChannel::ReportConnectionError(const char* aChannelName,
|
|
Message* aMsg) const {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
const char* errorMsg = nullptr;
|
|
switch (mChannelState) {
|
|
case ChannelClosed:
|
|
errorMsg = "Closed channel: cannot send/recv";
|
|
break;
|
|
case ChannelOpening:
|
|
errorMsg = "Opening channel: not yet ready for send/recv";
|
|
break;
|
|
case ChannelTimeout:
|
|
errorMsg = "Channel timeout: cannot send/recv";
|
|
break;
|
|
case ChannelClosing:
|
|
errorMsg =
|
|
"Channel closing: too late to send/recv, messages will be lost";
|
|
break;
|
|
case ChannelError:
|
|
errorMsg = "Channel error: cannot send/recv";
|
|
break;
|
|
|
|
default:
|
|
MOZ_CRASH("unreached");
|
|
}
|
|
|
|
if (aMsg) {
|
|
char reason[512];
|
|
SprintfLiteral(reason, "(msgtype=0x%X,name=%s) %s", aMsg->type(),
|
|
aMsg->name(), errorMsg);
|
|
|
|
PrintErrorMessage(mSide, aChannelName, reason);
|
|
} else {
|
|
PrintErrorMessage(mSide, aChannelName, errorMsg);
|
|
}
|
|
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
mListener->ProcessingError(MsgDropped, errorMsg);
|
|
}
|
|
|
|
bool MessageChannel::MaybeHandleError(Result code, const Message& aMsg,
|
|
const char* channelName) {
|
|
if (MsgProcessed == code) return true;
|
|
|
|
const char* errorMsg = nullptr;
|
|
switch (code) {
|
|
case MsgNotKnown:
|
|
errorMsg = "Unknown message: not processed";
|
|
break;
|
|
case MsgNotAllowed:
|
|
errorMsg = "Message not allowed: cannot be sent/recvd in this state";
|
|
break;
|
|
case MsgPayloadError:
|
|
errorMsg = "Payload error: message could not be deserialized";
|
|
break;
|
|
case MsgProcessingError:
|
|
errorMsg =
|
|
"Processing error: message was deserialized, but the handler "
|
|
"returned false (indicating failure)";
|
|
break;
|
|
case MsgRouteError:
|
|
errorMsg = "Route error: message sent to unknown actor ID";
|
|
break;
|
|
case MsgValueError:
|
|
errorMsg =
|
|
"Value error: message was deserialized, but contained an illegal "
|
|
"value";
|
|
break;
|
|
|
|
default:
|
|
MOZ_CRASH("unknown Result code");
|
|
return false;
|
|
}
|
|
|
|
char reason[512];
|
|
const char* msgname = aMsg.name();
|
|
if (msgname[0] == '?') {
|
|
SprintfLiteral(reason, "(msgtype=0x%X) %s", aMsg.type(), errorMsg);
|
|
} else {
|
|
SprintfLiteral(reason, "%s %s", msgname, errorMsg);
|
|
}
|
|
|
|
PrintErrorMessage(mSide, channelName, reason);
|
|
|
|
// Error handled in mozilla::ipc::IPCResult.
|
|
if (code == MsgProcessingError) {
|
|
return false;
|
|
}
|
|
|
|
mListener->ProcessingError(code, reason);
|
|
|
|
return false;
|
|
}
|
|
|
|
void MessageChannel::OnChannelErrorFromLink() {
|
|
AssertLinkThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
IPC_LOG("OnChannelErrorFromLink");
|
|
|
|
if (InterruptStackDepth() > 0) NotifyWorkerThread();
|
|
|
|
if (AwaitingSyncReply() || AwaitingIncomingMessage()) NotifyWorkerThread();
|
|
|
|
if (ChannelClosing != mChannelState) {
|
|
if (mAbortOnError) {
|
|
// mAbortOnError is set by main actors (e.g., ContentChild) to ensure
|
|
// that the process terminates even if normal shutdown is prevented.
|
|
// A MOZ_CRASH() here is not helpful because crash reporting relies
|
|
// on the parent process which we know is dead or otherwise unusable.
|
|
//
|
|
// Additionally, the parent process can (and often is) killed on Android
|
|
// when apps are backgrounded. We don't need to report a crash for
|
|
// normal behavior in that case.
|
|
printf_stderr("Exiting due to channel error.\n");
|
|
ProcessChild::QuickExit();
|
|
}
|
|
mChannelState = ChannelError;
|
|
mMonitor->Notify();
|
|
}
|
|
|
|
PostErrorNotifyTask();
|
|
}
|
|
|
|
void MessageChannel::NotifyMaybeChannelError() {
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
// TODO sort out Close() on this side racing with Close() on the other side
|
|
if (ChannelClosing == mChannelState) {
|
|
// the channel closed, but we received a "Goodbye" message warning us
|
|
// about it. no worries
|
|
mChannelState = ChannelClosed;
|
|
NotifyChannelClosed();
|
|
return;
|
|
}
|
|
|
|
Clear();
|
|
|
|
// Oops, error! Let the listener know about it.
|
|
mChannelState = ChannelError;
|
|
|
|
// IPDL assumes these notifications do not fire twice, so we do not let
|
|
// that happen.
|
|
if (mNotifiedChannelDone) {
|
|
return;
|
|
}
|
|
mNotifiedChannelDone = true;
|
|
|
|
// After this, the channel may be deleted. Based on the premise that
|
|
// mListener owns this channel, any calls back to this class that may
|
|
// work with mListener should still work on living objects.
|
|
mListener->OnChannelError();
|
|
}
|
|
|
|
void MessageChannel::OnNotifyMaybeChannelError() {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
mChannelErrorTask = nullptr;
|
|
|
|
// OnChannelError holds mMonitor when it posts this task and this
|
|
// task cannot be allowed to run until OnChannelError has
|
|
// exited. We enforce that order by grabbing the mutex here which
|
|
// should only continue once OnChannelError has completed.
|
|
{
|
|
MonitorAutoLock lock(*mMonitor);
|
|
// nothing to do here
|
|
}
|
|
|
|
if (IsOnCxxStack()) {
|
|
mChannelErrorTask = NewNonOwningCancelableRunnableMethod(
|
|
"ipc::MessageChannel::OnNotifyMaybeChannelError", this,
|
|
&MessageChannel::OnNotifyMaybeChannelError);
|
|
RefPtr<Runnable> task = mChannelErrorTask;
|
|
// This used to post a 10ms delayed patch; however not all
|
|
// nsISerialEventTarget implementations support delayed dispatch.
|
|
// The delay being completely arbitrary, we may not as well have any.
|
|
mWorkerThread->Dispatch(task.forget());
|
|
return;
|
|
}
|
|
|
|
NotifyMaybeChannelError();
|
|
}
|
|
|
|
void MessageChannel::PostErrorNotifyTask() {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (mChannelErrorTask) return;
|
|
|
|
// This must be the last code that runs on this thread!
|
|
mChannelErrorTask = NewNonOwningCancelableRunnableMethod(
|
|
"ipc::MessageChannel::OnNotifyMaybeChannelError", this,
|
|
&MessageChannel::OnNotifyMaybeChannelError);
|
|
RefPtr<Runnable> task = mChannelErrorTask;
|
|
mWorkerThread->Dispatch(task.forget());
|
|
}
|
|
|
|
// Special async message.
|
|
class GoodbyeMessage : public IPC::Message {
|
|
public:
|
|
GoodbyeMessage() : IPC::Message(MSG_ROUTING_NONE, GOODBYE_MESSAGE_TYPE) {}
|
|
static bool Read(const Message* msg) { return true; }
|
|
void Log(const std::string& aPrefix, FILE* aOutf) const {
|
|
fputs("(special `Goodbye' message)", aOutf);
|
|
}
|
|
};
|
|
|
|
void MessageChannel::SynchronouslyClose() {
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
mLink->SendClose();
|
|
|
|
MOZ_RELEASE_ASSERT(!mIsSameThreadChannel || ChannelClosed == mChannelState,
|
|
"same-thread channel failed to synchronously close?");
|
|
|
|
while (ChannelClosed != mChannelState) mMonitor->Wait();
|
|
}
|
|
|
|
void MessageChannel::CloseWithError() {
|
|
AssertWorkerThread();
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (ChannelConnected != mChannelState) {
|
|
return;
|
|
}
|
|
SynchronouslyClose();
|
|
mChannelState = ChannelError;
|
|
PostErrorNotifyTask();
|
|
}
|
|
|
|
void MessageChannel::CloseWithTimeout() {
|
|
AssertWorkerThread();
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (ChannelConnected != mChannelState) {
|
|
return;
|
|
}
|
|
SynchronouslyClose();
|
|
mChannelState = ChannelTimeout;
|
|
}
|
|
|
|
void MessageChannel::NotifyImpendingShutdown() {
|
|
UniquePtr<Message> msg =
|
|
MakeUnique<Message>(MSG_ROUTING_NONE, IMPENDING_SHUTDOWN_MESSAGE_TYPE);
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (Connected()) {
|
|
MOZ_DIAGNOSTIC_ASSERT(mIsCrossProcess);
|
|
mLink->SendMessage(std::move(msg));
|
|
}
|
|
}
|
|
|
|
void MessageChannel::Close() {
|
|
AssertWorkerThread();
|
|
|
|
{
|
|
// We don't use MonitorAutoLock here as that causes some sort of
|
|
// deadlock in the error/timeout-with-a-listener state below when
|
|
// compiling an optimized msvc build.
|
|
mMonitor->Lock();
|
|
|
|
// Instead just use a ScopeExit to manage the unlock.
|
|
RefPtr<RefCountedMonitor> monitor(mMonitor);
|
|
auto exit = MakeScopeExit([m = std::move(monitor)]() { m->Unlock(); });
|
|
|
|
if (ChannelError == mChannelState || ChannelTimeout == mChannelState) {
|
|
// See bug 538586: if the listener gets deleted while the
|
|
// IO thread's NotifyChannelError event is still enqueued
|
|
// and subsequently deletes us, then the error event will
|
|
// also be deleted and the listener will never be notified
|
|
// of the channel error.
|
|
if (mListener) {
|
|
exit.release(); // Explicitly unlocking, clear scope exit.
|
|
mMonitor->Unlock();
|
|
NotifyMaybeChannelError();
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ChannelOpening == mChannelState) {
|
|
// SynchronouslyClose() waits for an ack from the other side, so
|
|
// the opening sequence should complete before this returns.
|
|
SynchronouslyClose();
|
|
mChannelState = ChannelError;
|
|
NotifyMaybeChannelError();
|
|
return;
|
|
}
|
|
|
|
if (ChannelClosed == mChannelState) {
|
|
// Slightly unexpected but harmless; ignore. See bug 1554244.
|
|
return;
|
|
}
|
|
|
|
// Notify the other side that we're about to close our socket. If we've
|
|
// already received a Goodbye from the other side (and our state is
|
|
// ChannelClosing), there's no reason to send one.
|
|
if (ChannelConnected == mChannelState) {
|
|
mLink->SendMessage(MakeUnique<GoodbyeMessage>());
|
|
}
|
|
SynchronouslyClose();
|
|
}
|
|
|
|
NotifyChannelClosed();
|
|
}
|
|
|
|
void MessageChannel::NotifyChannelClosed() {
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
if (ChannelClosed != mChannelState)
|
|
MOZ_CRASH("channel should have been closed!");
|
|
|
|
Clear();
|
|
|
|
// IPDL assumes these notifications do not fire twice, so we do not let
|
|
// that happen.
|
|
if (mNotifiedChannelDone) {
|
|
return;
|
|
}
|
|
mNotifiedChannelDone = true;
|
|
|
|
// OK, the IO thread just closed the channel normally. Let the
|
|
// listener know about it. After this point the channel may be
|
|
// deleted.
|
|
mListener->OnChannelClose();
|
|
}
|
|
|
|
void MessageChannel::DebugAbort(const char* file, int line, const char* cond,
|
|
const char* why, bool reply) {
|
|
printf_stderr(
|
|
"###!!! [MessageChannel][%s][%s:%d] "
|
|
"Assertion (%s) failed. %s %s\n",
|
|
mSide == ChildSide ? "Child" : "Parent", file, line, cond, why,
|
|
reply ? "(reply)" : "");
|
|
// technically we need the mutex for this, but we're dying anyway
|
|
DumpInterruptStack(" ");
|
|
printf_stderr(" remote Interrupt stack guess: %zu\n",
|
|
mRemoteStackDepthGuess);
|
|
printf_stderr(" deferred stack size: %zu\n", mDeferred.size());
|
|
printf_stderr(" out-of-turn Interrupt replies stack size: %zu\n",
|
|
mOutOfTurnReplies.size());
|
|
|
|
MessageQueue pending = std::move(mPending);
|
|
while (!pending.isEmpty()) {
|
|
printf_stderr(
|
|
" [ %s%s ]\n",
|
|
pending.getFirst()->Msg().is_interrupt()
|
|
? "intr"
|
|
: (pending.getFirst()->Msg().is_sync() ? "sync" : "async"),
|
|
pending.getFirst()->Msg().is_reply() ? "reply" : "");
|
|
pending.popFirst();
|
|
}
|
|
|
|
MOZ_CRASH_UNSAFE(why);
|
|
}
|
|
|
|
void MessageChannel::DumpInterruptStack(const char* const pfx) const {
|
|
NS_WARNING_ASSERTION(!mWorkerThread->IsOnCurrentThread(),
|
|
"The worker thread had better be paused in a debugger!");
|
|
|
|
printf_stderr("%sMessageChannel 'backtrace':\n", pfx);
|
|
|
|
// print a python-style backtrace, first frame to last
|
|
for (uint32_t i = 0; i < mCxxStackFrames.length(); ++i) {
|
|
int32_t id;
|
|
const char* dir;
|
|
const char* sems;
|
|
const char* name;
|
|
mCxxStackFrames[i].Describe(&id, &dir, &sems, &name);
|
|
|
|
printf_stderr("%s[(%u) %s %s %s(actor=%d) ]\n", pfx, i, dir, sems, name,
|
|
id);
|
|
}
|
|
}
|
|
|
|
void MessageChannel::AddProfilerMarker(const IPC::Message& aMessage,
|
|
MessageDirection aDirection) {
|
|
#ifdef MOZ_GECKO_PROFILER
|
|
if (profiler_feature_active(ProfilerFeature::IPCMessages)) {
|
|
// If mPeerPid is -1, messages are being sent to the current process.
|
|
int32_t pid = mPeerPid == -1 ? base::GetCurrentProcId() : mPeerPid;
|
|
PROFILER_ADD_MARKER_WITH_PAYLOAD(
|
|
"IPC", IPC, IPCMarkerPayload,
|
|
(pid, aMessage.seqno(), aMessage.type(), mSide, aDirection,
|
|
MessagePhase::Endpoint, aMessage.is_sync(), TimeStamp::NowUnfuzzed()));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int32_t MessageChannel::GetTopmostMessageRoutingId() const {
|
|
AssertWorkerThread();
|
|
|
|
if (mCxxStackFrames.empty()) {
|
|
return MSG_ROUTING_NONE;
|
|
}
|
|
const InterruptFrame& frame = mCxxStackFrames.back();
|
|
return frame.GetRoutingId();
|
|
}
|
|
|
|
void MessageChannel::EndTimeout() {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
IPC_LOG("Ending timeout of seqno=%d", mTimedOutMessageSeqno);
|
|
mTimedOutMessageSeqno = 0;
|
|
mTimedOutMessageNestedLevel = 0;
|
|
|
|
RepostAllMessages();
|
|
}
|
|
|
|
void MessageChannel::RepostAllMessages() {
|
|
bool needRepost = false;
|
|
for (MessageTask* task : mPending) {
|
|
if (!task->IsScheduled()) {
|
|
needRepost = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!needRepost) {
|
|
// If everything is already scheduled to run, do nothing.
|
|
return;
|
|
}
|
|
|
|
// In some cases we may have deferred dispatch of some messages in the
|
|
// queue. Now we want to run them again. However, we can't just re-post
|
|
// those messages since the messages after them in mPending would then be
|
|
// before them in the event queue. So instead we cancel everything and
|
|
// re-post all messages in the correct order.
|
|
MessageQueue queue = std::move(mPending);
|
|
while (RefPtr<MessageTask> task = queue.popFirst()) {
|
|
RefPtr<MessageTask> newTask = new MessageTask(this, std::move(task->Msg()));
|
|
mPending.insertBack(newTask);
|
|
newTask->Post();
|
|
}
|
|
|
|
AssertMaybeDeferredCountCorrect();
|
|
}
|
|
|
|
void MessageChannel::CancelTransaction(int transaction) {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
// When we cancel a transaction, we need to behave as if there's no longer
|
|
// any IPC on the stack. Anything we were dispatching or sending will get
|
|
// canceled. Consequently, we have to update the state variables below.
|
|
//
|
|
// We also need to ensure that when any IPC functions on the stack return,
|
|
// they don't reset these values using an RAII class like AutoSetValue. To
|
|
// avoid that, these RAII classes check if the variable they set has been
|
|
// tampered with (by us). If so, they don't reset the variable to the old
|
|
// value.
|
|
|
|
IPC_LOG("CancelTransaction: xid=%d", transaction);
|
|
|
|
// An unusual case: We timed out a transaction which the other side then
|
|
// cancelled. In this case we just leave the timedout state and try to
|
|
// forget this ever happened.
|
|
if (transaction == mTimedOutMessageSeqno) {
|
|
IPC_LOG("Cancelled timed out message %d", mTimedOutMessageSeqno);
|
|
EndTimeout();
|
|
|
|
// Normally mCurrentTransaction == 0 here. But it can be non-zero if:
|
|
// 1. Parent sends NESTED_INSIDE_SYNC message H.
|
|
// 2. Parent times out H.
|
|
// 3. Child dispatches H and sends nested message H' (same transaction).
|
|
// 4. Parent dispatches H' and cancels.
|
|
MOZ_RELEASE_ASSERT(!mTransactionStack ||
|
|
mTransactionStack->TransactionID() == transaction);
|
|
if (mTransactionStack) {
|
|
mTransactionStack->Cancel();
|
|
}
|
|
} else {
|
|
MOZ_RELEASE_ASSERT(mTransactionStack->TransactionID() == transaction);
|
|
mTransactionStack->Cancel();
|
|
}
|
|
|
|
bool foundSync = false;
|
|
for (MessageTask* p = mPending.getFirst(); p;) {
|
|
Message& msg = p->Msg();
|
|
|
|
// If there was a race between the parent and the child, then we may
|
|
// have a queued sync message. We want to drop this message from the
|
|
// queue since if will get cancelled along with the transaction being
|
|
// cancelled. This happens if the message in the queue is
|
|
// NESTED_INSIDE_SYNC.
|
|
if (msg.is_sync() && msg.nested_level() != IPC::Message::NOT_NESTED) {
|
|
MOZ_RELEASE_ASSERT(!foundSync);
|
|
MOZ_RELEASE_ASSERT(msg.transaction_id() != transaction);
|
|
IPC_LOG("Removing msg from queue seqno=%d xid=%d", msg.seqno(),
|
|
msg.transaction_id());
|
|
foundSync = true;
|
|
if (!IsAlwaysDeferred(msg)) {
|
|
mMaybeDeferredPendingCount--;
|
|
}
|
|
p = p->removeAndGetNext();
|
|
continue;
|
|
}
|
|
|
|
p = p->getNext();
|
|
}
|
|
|
|
AssertMaybeDeferredCountCorrect();
|
|
}
|
|
|
|
void MessageChannel::CancelCurrentTransaction() {
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (DispatchingSyncMessageNestedLevel() >= IPC::Message::NESTED_INSIDE_SYNC) {
|
|
if (DispatchingSyncMessageNestedLevel() ==
|
|
IPC::Message::NESTED_INSIDE_CPOW ||
|
|
DispatchingAsyncMessageNestedLevel() ==
|
|
IPC::Message::NESTED_INSIDE_CPOW) {
|
|
mListener->IntentionalCrash();
|
|
}
|
|
|
|
IPC_LOG("Cancel requested: current xid=%d",
|
|
CurrentNestedInsideSyncTransaction());
|
|
MOZ_RELEASE_ASSERT(DispatchingSyncMessage());
|
|
auto cancel =
|
|
MakeUnique<CancelMessage>(CurrentNestedInsideSyncTransaction());
|
|
CancelTransaction(CurrentNestedInsideSyncTransaction());
|
|
mLink->SendMessage(std::move(cancel));
|
|
}
|
|
}
|
|
|
|
void CancelCPOWs() {
|
|
if (gParentProcessBlocker) {
|
|
mozilla::Telemetry::Accumulate(mozilla::Telemetry::IPC_TRANSACTION_CANCEL,
|
|
true);
|
|
gParentProcessBlocker->CancelCurrentTransaction();
|
|
}
|
|
}
|
|
|
|
} // namespace ipc
|
|
} // namespace mozilla
|