gecko-dev/gfx/layers/Layers.h
Brian Birtles 6bc9caf270 Bug 1010067 part 2 - Rename nsStyleAnimation.{h,cpp} to StyleAnimationValue.{h,cpp}; r=dbaron
--HG--
rename : layout/style/nsStyleAnimation.cpp => layout/style/StyleAnimationValue.cpp
rename : layout/style/nsStyleAnimation.h => layout/style/StyleAnimationValue.h
2014-06-24 15:29:54 +09:00

2183 lines
74 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_LAYERS_H
#define GFX_LAYERS_H
#include <stdint.h> // for uint32_t, uint64_t, uint8_t
#include <stdio.h> // for FILE
#include <sys/types.h> // for int32_t, int64_t
#include "FrameMetrics.h" // for FrameMetrics
#include "Units.h" // for LayerMargin, LayerPoint
#include "gfxContext.h" // for GraphicsOperator
#include "gfxTypes.h"
#include "gfxColor.h" // for gfxRGBA
#include "gfxMatrix.h" // for gfxMatrix
#include "GraphicsFilter.h" // for GraphicsFilter
#include "gfxPoint.h" // for gfxPoint
#include "gfxRect.h" // for gfxRect
#include "gfx2DGlue.h"
#include "mozilla/Assertions.h" // for MOZ_ASSERT_HELPER2, etc
#include "mozilla/DebugOnly.h" // for DebugOnly
#include "mozilla/EventForwards.h" // for nsPaintEvent
#include "mozilla/RefPtr.h" // for TemporaryRef
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
#include "mozilla/TimeStamp.h" // for TimeStamp, TimeDuration
#include "mozilla/gfx/BaseMargin.h" // for BaseMargin
#include "mozilla/gfx/BasePoint.h" // for BasePoint
#include "mozilla/gfx/Point.h" // for IntSize
#include "mozilla/gfx/Types.h" // for SurfaceFormat
#include "mozilla/gfx/UserData.h" // for UserData, etc
#include "mozilla/layers/LayersTypes.h"
#include "mozilla/mozalloc.h" // for operator delete, etc
#include "nsAutoPtr.h" // for nsAutoPtr, nsRefPtr, etc
#include "nsCOMPtr.h" // for already_AddRefed
#include "nsCSSProperty.h" // for nsCSSProperty
#include "nsDebug.h" // for NS_ASSERTION
#include "nsISupportsImpl.h" // for Layer::Release, etc
#include "nsRect.h" // for nsIntRect
#include "nsRegion.h" // for nsIntRegion
#include "nsSize.h" // for nsIntSize
#include "nsString.h" // for nsCString
#include "nsTArray.h" // for nsTArray
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
#include "nscore.h" // for nsACString, nsAString
#include "prlog.h" // for PRLogModuleInfo
#include "gfx2DGlue.h"
class gfxContext;
extern uint8_t gLayerManagerLayerBuilder;
namespace mozilla {
class FrameLayerBuilder;
class StyleAnimationValue;
class WebGLContext;
namespace gl {
class GLContext;
}
namespace gfx {
class DrawTarget;
class SurfaceStream;
}
namespace css {
class ComputedTimingFunction;
}
namespace dom {
class OverfillCallback;
}
namespace layers {
class Animation;
class AnimationData;
class AsyncPanZoomController;
class ClientLayerManager;
class CommonLayerAttributes;
class Layer;
class ThebesLayer;
class ContainerLayer;
class ImageLayer;
class ColorLayer;
class ImageContainer;
class CanvasLayer;
class ReadbackLayer;
class ReadbackProcessor;
class RefLayer;
class LayerComposite;
class ShadowableLayer;
class ShadowLayerForwarder;
class LayerManagerComposite;
class SpecificLayerAttributes;
class SurfaceDescriptor;
class Compositor;
struct TextureFactoryIdentifier;
struct EffectMask;
#define MOZ_LAYER_DECL_NAME(n, e) \
virtual const char* Name() const { return n; } \
virtual LayerType GetType() const { return e; }
/**
* Base class for userdata objects attached to layers and layer managers.
*/
class LayerUserData {
public:
virtual ~LayerUserData() {}
};
/*
* Motivation: For truly smooth animation and video playback, we need to
* be able to compose frames and render them on a dedicated thread (i.e.
* off the main thread where DOM manipulation, script execution and layout
* induce difficult-to-bound latency). This requires Gecko to construct
* some kind of persistent scene structure (graph or tree) that can be
* safely transmitted across threads. We have other scenarios (e.g. mobile
* browsing) where retaining some rendered data between paints is desired
* for performance, so again we need a retained scene structure.
*
* Our retained scene structure is a layer tree. Each layer represents
* content which can be composited onto a destination surface; the root
* layer is usually composited into a window, and non-root layers are
* composited into their parent layers. Layers have attributes (e.g.
* opacity and clipping) that influence their compositing.
*
* We want to support a variety of layer implementations, including
* a simple "immediate mode" implementation that doesn't retain any
* rendered data between paints (i.e. uses cairo in just the way that
* Gecko used it before layers were introduced). But we also don't want
* to have bifurcated "layers"/"non-layers" rendering paths in Gecko.
* Therefore the layers API is carefully designed to permit maximally
* efficient implementation in an "immediate mode" style. See the
* BasicLayerManager for such an implementation.
*/
static void LayerManagerUserDataDestroy(void *data)
{
delete static_cast<LayerUserData*>(data);
}
/**
* A LayerManager controls a tree of layers. All layers in the tree
* must use the same LayerManager.
*
* All modifications to a layer tree must happen inside a transaction.
* Only the state of the layer tree at the end of a transaction is
* rendered. Transactions cannot be nested
*
* Each transaction has two phases:
* 1) Construction: layers are created, inserted, removed and have
* properties set on them in this phase.
* BeginTransaction and BeginTransactionWithTarget start a transaction in
* the Construction phase. When the client has finished constructing the layer
* tree, it should call EndConstruction() to enter the drawing phase.
* 2) Drawing: ThebesLayers are rendered into in this phase, in tree
* order. When the client has finished drawing into the ThebesLayers, it should
* call EndTransaction to complete the transaction.
*
* All layer API calls happen on the main thread.
*
* Layers are refcounted. The layer manager holds a reference to the
* root layer, and each container layer holds a reference to its children.
*/
class LayerManager {
NS_INLINE_DECL_REFCOUNTING(LayerManager)
protected:
typedef mozilla::gfx::DrawTarget DrawTarget;
typedef mozilla::gfx::IntSize IntSize;
typedef mozilla::gfx::SurfaceFormat SurfaceFormat;
public:
LayerManager()
: mDestroyed(false)
, mSnapEffectiveTransforms(true)
, mId(0)
, mInTransaction(false)
{
InitLog();
}
/**
* Release layers and resources held by this layer manager, and mark
* it as destroyed. Should do any cleanup necessary in preparation
* for its widget going away. After this call, only user data calls
* are valid on the layer manager.
*/
virtual void Destroy()
{
mDestroyed = true;
mUserData.Destroy();
mRoot = nullptr;
}
bool IsDestroyed() { return mDestroyed; }
virtual ShadowLayerForwarder* AsShadowForwarder()
{ return nullptr; }
virtual LayerManagerComposite* AsLayerManagerComposite()
{ return nullptr; }
virtual ClientLayerManager* AsClientLayerManager()
{ return nullptr; }
/**
* Returns true if this LayerManager is owned by an nsIWidget,
* and is used for drawing into the widget.
*/
virtual bool IsWidgetLayerManager() { return true; }
/**
* Start a new transaction. Nested transactions are not allowed so
* there must be no transaction currently in progress.
* This transaction will update the state of the window from which
* this LayerManager was obtained.
*/
virtual void BeginTransaction() = 0;
/**
* Start a new transaction. Nested transactions are not allowed so
* there must be no transaction currently in progress.
* This transaction will render the contents of the layer tree to
* the given target context. The rendering will be complete when
* EndTransaction returns.
*/
virtual void BeginTransactionWithTarget(gfxContext* aTarget) = 0;
enum EndTransactionFlags {
END_DEFAULT = 0,
END_NO_IMMEDIATE_REDRAW = 1 << 0, // Do not perform the drawing phase
END_NO_COMPOSITE = 1 << 1, // Do not composite after drawing thebes layer contents.
END_NO_REMOTE_COMPOSITE = 1 << 2 // Do not schedule a composition with a remote Compositor, if one exists.
};
FrameLayerBuilder* GetLayerBuilder() {
return reinterpret_cast<FrameLayerBuilder*>(GetUserData(&gLayerManagerLayerBuilder));
}
/**
* Attempts to end an "empty transaction". There must have been no
* changes to the layer tree since the BeginTransaction().
* It's possible for this to fail; ThebesLayers may need to be updated
* due to VRAM data being lost, for example. In such cases this method
* returns false, and the caller must proceed with a normal layer tree
* update and EndTransaction.
*/
virtual bool EndEmptyTransaction(EndTransactionFlags aFlags = END_DEFAULT) = 0;
/**
* Function called to draw the contents of each ThebesLayer.
* aRegionToDraw contains the region that needs to be drawn.
* This would normally be a subregion of the visible region.
* The callee must draw all of aRegionToDraw. Drawing outside
* aRegionToDraw will be clipped out or ignored.
* The callee must draw all of aRegionToDraw.
* This region is relative to 0,0 in the ThebesLayer.
*
* aRegionToInvalidate contains a region whose contents have been
* changed by the layer manager and which must therefore be invalidated.
* For example, this could be non-empty if a retained layer internally
* switches from RGBA to RGB or back ... we might want to repaint it to
* consistently use subpixel-AA or not.
* This region is relative to 0,0 in the ThebesLayer.
* aRegionToInvalidate may contain areas that are outside
* aRegionToDraw; the callee must ensure that these areas are repainted
* in the current layer manager transaction or in a later layer
* manager transaction.
*
* aContext must not be used after the call has returned.
* We guarantee that buffered contents in the visible
* region are valid once drawing is complete.
*
* The origin of aContext is 0,0 in the ThebesLayer.
*/
typedef void (* DrawThebesLayerCallback)(ThebesLayer* aLayer,
gfxContext* aContext,
const nsIntRegion& aRegionToDraw,
DrawRegionClip aClip,
const nsIntRegion& aRegionToInvalidate,
void* aCallbackData);
/**
* Finish the construction phase of the transaction, perform the
* drawing phase, and end the transaction.
* During the drawing phase, all ThebesLayers in the tree are
* drawn in tree order, exactly once each, except for those layers
* where it is known that the visible region is empty.
*/
virtual void EndTransaction(DrawThebesLayerCallback aCallback,
void* aCallbackData,
EndTransactionFlags aFlags = END_DEFAULT) = 0;
/**
* Schedule a composition with the remote Compositor, if one exists
* for this LayerManager. Useful in conjunction with the END_NO_REMOTE_COMPOSITE
* flag to EndTransaction.
*/
virtual void Composite() {}
virtual bool HasShadowManagerInternal() const { return false; }
bool HasShadowManager() const { return HasShadowManagerInternal(); }
bool IsSnappingEffectiveTransforms() { return mSnapEffectiveTransforms; }
/**
* Returns true if this LayerManager can properly support layers with
* SurfaceMode::SURFACE_COMPONENT_ALPHA. This can include disabling component
* alpha if required.
*/
virtual bool AreComponentAlphaLayersEnabled() { return true; }
/**
* CONSTRUCTION PHASE ONLY
* Set the root layer. The root layer is initially null. If there is
* no root layer, EndTransaction won't draw anything.
*/
virtual void SetRoot(Layer* aLayer) = 0;
/**
* Can be called anytime
*/
Layer* GetRoot() { return mRoot; }
/**
* Does a breadth-first search from the root layer to find the first
* scrollable layer.
* Can be called any time.
*/
Layer* GetPrimaryScrollableLayer();
/**
* Returns a list of all descendant layers for which
* GetFrameMetrics().IsScrollable() is true.
*/
void GetScrollableLayers(nsTArray<Layer*>& aArray);
/**
* CONSTRUCTION PHASE ONLY
* Called when a managee has mutated.
* Subclasses overriding this method must first call their
* superclass's impl
*/
#ifdef DEBUG
// In debug builds, we check some properties of |aLayer|.
virtual void Mutated(Layer* aLayer);
#else
virtual void Mutated(Layer* aLayer) { }
#endif
/**
* Hints that can be used during Thebes layer creation to influence the type
* or properties of the layer created.
*
* NONE: No hint.
* SCROLLABLE: This layer may represent scrollable content.
*/
enum ThebesLayerCreationHint {
NONE, SCROLLABLE
};
/**
* Returns true if aLayer is optimized for the given ThebesLayerCreationHint.
*/
virtual bool IsOptimizedFor(ThebesLayer* aLayer,
ThebesLayerCreationHint aCreationHint)
{ return true; }
/**
* CONSTRUCTION PHASE ONLY
* Create a ThebesLayer for this manager's layer tree.
*/
virtual already_AddRefed<ThebesLayer> CreateThebesLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a ThebesLayer for this manager's layer tree, with a creation hint
* parameter to help optimise the type of layer created.
*/
virtual already_AddRefed<ThebesLayer> CreateThebesLayerWithHint(ThebesLayerCreationHint) {
return CreateThebesLayer();
}
/**
* CONSTRUCTION PHASE ONLY
* Create a ContainerLayer for this manager's layer tree.
*/
virtual already_AddRefed<ContainerLayer> CreateContainerLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create an ImageLayer for this manager's layer tree.
*/
virtual already_AddRefed<ImageLayer> CreateImageLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a ColorLayer for this manager's layer tree.
*/
virtual already_AddRefed<ColorLayer> CreateColorLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a CanvasLayer for this manager's layer tree.
*/
virtual already_AddRefed<CanvasLayer> CreateCanvasLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a ReadbackLayer for this manager's layer tree.
*/
virtual already_AddRefed<ReadbackLayer> CreateReadbackLayer() { return nullptr; }
/**
* CONSTRUCTION PHASE ONLY
* Create a RefLayer for this manager's layer tree.
*/
virtual already_AddRefed<RefLayer> CreateRefLayer() { return nullptr; }
/**
* Can be called anytime, from any thread.
*
* Creates an Image container which forwards its images to the compositor within
* layer transactions on the main thread.
*/
static already_AddRefed<ImageContainer> CreateImageContainer();
/**
* Can be called anytime, from any thread.
*
* Tries to create an Image container which forwards its images to the compositor
* asynchronously using the ImageBridge IPDL protocol. If the protocol is not
* available, the returned ImageContainer will forward images within layer
* transactions, just like if it was created with CreateImageContainer().
*/
static already_AddRefed<ImageContainer> CreateAsynchronousImageContainer();
/**
* Type of layer manager his is. This is to be used sparsely in order to
* avoid a lot of Layers backend specific code. It should be used only when
* Layers backend specific functionality is necessary.
*/
virtual LayersBackend GetBackendType() = 0;
/**
* Type of layers backend that will be used to composite this layer tree.
* When compositing is done remotely, then this returns the layers type
* of the compositor.
*/
virtual LayersBackend GetCompositorBackendType() { return GetBackendType(); }
/**
* Creates a DrawTarget which is optimized for inter-operating with this
* layer manager.
*/
virtual TemporaryRef<DrawTarget>
CreateOptimalDrawTarget(const IntSize &aSize,
SurfaceFormat imageFormat);
/**
* Creates a DrawTarget for alpha masks which is optimized for inter-
* operating with this layer manager. In contrast to CreateOptimalDrawTarget,
* this surface is optimised for drawing alpha only and we assume that
* drawing the mask is fairly simple.
*/
virtual TemporaryRef<DrawTarget>
CreateOptimalMaskDrawTarget(const IntSize &aSize);
/**
* Creates a DrawTarget for use with canvas which is optimized for
* inter-operating with this layermanager.
*/
virtual TemporaryRef<mozilla::gfx::DrawTarget>
CreateDrawTarget(const mozilla::gfx::IntSize &aSize,
mozilla::gfx::SurfaceFormat aFormat);
virtual bool CanUseCanvasLayerForSize(const gfx::IntSize &aSize) { return true; }
/**
* returns the maximum texture size on this layer backend, or INT32_MAX
* if there is no maximum
*/
virtual int32_t GetMaxTextureSize() const = 0;
/**
* Return the name of the layer manager's backend.
*/
virtual void GetBackendName(nsAString& aName) = 0;
/**
* This setter can be used anytime. The user data for all keys is
* initially null. Ownership pases to the layer manager.
*/
void SetUserData(void* aKey, LayerUserData* aData)
{
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerManagerUserDataDestroy);
}
/**
* This can be used anytime. Ownership passes to the caller!
*/
nsAutoPtr<LayerUserData> RemoveUserData(void* aKey)
{
nsAutoPtr<LayerUserData> d(static_cast<LayerUserData*>(mUserData.Remove(static_cast<gfx::UserDataKey*>(aKey))));
return d;
}
/**
* This getter can be used anytime.
*/
bool HasUserData(void* aKey)
{
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
}
/**
* This getter can be used anytime. Ownership is retained by the layer
* manager.
*/
LayerUserData* GetUserData(void* aKey) const
{
return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
}
/**
* Must be called outside of a layers transaction.
*
* For the subtree rooted at |aSubtree|, this attempts to free up
* any free-able resources like retained buffers, but may do nothing
* at all. After this call, the layer tree is left in an undefined
* state; the layers in |aSubtree|'s subtree may no longer have
* buffers with valid content and may no longer be able to draw
* their visible and valid regions.
*
* In general, a painting or forwarding transaction on |this| must
* complete on the tree before it returns to a valid state.
*
* Resource freeing begins from |aSubtree| or |mRoot| if |aSubtree|
* is null. |aSubtree|'s manager must be this.
*/
virtual void ClearCachedResources(Layer* aSubtree = nullptr) {}
/**
* Flag the next paint as the first for a document.
*/
virtual void SetIsFirstPaint() {}
/**
* Make sure that the previous transaction has been entirely
* completed.
*
* Note: This may sychronously wait on a remote compositor
* to complete rendering.
*/
virtual void FlushRendering() { }
/**
* Checks if we need to invalidate the OS widget to trigger
* painting when updating this layer manager.
*/
virtual bool NeedsWidgetInvalidation() { return true; }
virtual const char* Name() const { return "???"; }
/**
* Dump information about this layer manager and its managed tree to
* aStream.
*/
void Dump(std::stringstream& aStream, const char* aPrefix="", bool aDumpHtml=false);
/**
* Dump information about just this layer manager itself to aStream
*/
void DumpSelf(std::stringstream& aStream, const char* aPrefix="");
void Dump() {
std::stringstream ss;
Dump(ss);
printf_stderr("%s", ss.str().c_str());
}
/**
* Log information about this layer manager and its managed tree to
* the NSPR log (if enabled for "Layers").
*/
void Log(const char* aPrefix="");
/**
* Log information about just this layer manager itself to the NSPR
* log (if enabled for "Layers").
*/
void LogSelf(const char* aPrefix="");
/**
* Record (and return) frame-intervals and paint-times for frames which were presented
* between calling StartFrameTimeRecording and StopFrameTimeRecording.
*
* - Uses a cyclic buffer and serves concurrent consumers, so if Stop is called too late
* (elements were overwritten since Start), result is considered invalid and hence empty.
* - Buffer is capable of holding 10 seconds @ 60fps (or more if frames were less frequent).
* Can be changed (up to 1 hour) via pref: toolkit.framesRecording.bufferSize.
* - Note: the first frame-interval may be longer than expected because last frame
* might have been presented some time before calling StartFrameTimeRecording.
*/
/**
* Returns a handle which represents current recording start position.
*/
virtual uint32_t StartFrameTimeRecording(int32_t aBufferSize);
/**
* Clears, then populates aFrameIntervals with the recorded frame timing
* data. The array will be empty if data was overwritten since
* aStartIndex was obtained.
*/
virtual void StopFrameTimeRecording(uint32_t aStartIndex,
nsTArray<float>& aFrameIntervals);
void RecordFrame();
void PostPresent();
void BeginTabSwitch();
static bool IsLogEnabled();
static PRLogModuleInfo* GetLog() { return sLog; }
bool IsCompositingCheap(LayersBackend aBackend)
{
// LayersBackend::LAYERS_NONE is an error state, but in that case we should try to
// avoid loading the compositor!
return LayersBackend::LAYERS_BASIC != aBackend && LayersBackend::LAYERS_NONE != aBackend;
}
virtual bool IsCompositingCheap() { return true; }
bool IsInTransaction() const { return mInTransaction; }
virtual bool RequestOverfill(mozilla::dom::OverfillCallback* aCallback) { return true; }
virtual void RunOverfillCallback(const uint32_t aOverfill) { }
virtual void SetRegionToClear(const nsIntRegion& aRegion)
{
mRegionToClear = aRegion;
}
virtual bool SupportsMixBlendModes(EnumSet<gfx::CompositionOp>& aMixBlendModes)
{
return false;
}
bool SupportsMixBlendMode(gfx::CompositionOp aMixBlendMode)
{
EnumSet<gfx::CompositionOp> modes(aMixBlendMode);
return SupportsMixBlendModes(modes);
}
protected:
nsRefPtr<Layer> mRoot;
gfx::UserData mUserData;
bool mDestroyed;
bool mSnapEffectiveTransforms;
nsIntRegion mRegionToClear;
// Protected destructor, to discourage deletion outside of Release():
virtual ~LayerManager() {}
// Print interesting information about this into aStreamo. Internally
// used to implement Dump*() and Log*().
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
static void InitLog();
static PRLogModuleInfo* sLog;
uint64_t mId;
bool mInTransaction;
private:
struct FramesTimingRecording
{
// Stores state and data for frame intervals and paint times recording.
// see LayerManager::StartFrameTimeRecording() at Layers.cpp for more details.
FramesTimingRecording()
: mIsPaused(true)
, mNextIndex(0)
{}
bool mIsPaused;
uint32_t mNextIndex;
TimeStamp mLastFrameTime;
nsTArray<float> mIntervals;
uint32_t mLatestStartIndex;
uint32_t mCurrentRunStartIndex;
};
FramesTimingRecording mRecording;
TimeStamp mTabSwitchStart;
};
typedef InfallibleTArray<Animation> AnimationArray;
struct AnimData {
InfallibleTArray<mozilla::StyleAnimationValue> mStartValues;
InfallibleTArray<mozilla::StyleAnimationValue> mEndValues;
InfallibleTArray<nsAutoPtr<mozilla::css::ComputedTimingFunction> > mFunctions;
};
/**
* A Layer represents anything that can be rendered onto a destination
* surface.
*/
class Layer {
NS_INLINE_DECL_REFCOUNTING(Layer)
public:
// Keep these in alphabetical order
enum LayerType {
TYPE_CANVAS,
TYPE_COLOR,
TYPE_CONTAINER,
TYPE_IMAGE,
TYPE_READBACK,
TYPE_REF,
TYPE_SHADOW,
TYPE_THEBES
};
/**
* Returns the LayerManager this Layer belongs to. Note that the layer
* manager might be in a destroyed state, at which point it's only
* valid to set/get user data from it.
*/
LayerManager* Manager() { return mManager; }
enum {
/**
* If this is set, the caller is promising that by the end of this
* transaction the entire visible region (as specified by
* SetVisibleRegion) will be filled with opaque content.
*/
CONTENT_OPAQUE = 0x01,
/**
* If this is set, the caller is notifying that the contents of this layer
* require per-component alpha for optimal fidelity. However, there is no
* guarantee that component alpha will be supported for this layer at
* paint time.
* This should never be set at the same time as CONTENT_OPAQUE.
*/
CONTENT_COMPONENT_ALPHA = 0x02,
/**
* If this is set then this layer is part of a preserve-3d group, and should
* be sorted with sibling layers that are also part of the same group.
*/
CONTENT_PRESERVE_3D = 0x04,
/**
* This indicates that the transform may be changed on during an empty
* transaction where there is no possibility of redrawing the content, so the
* implementation should be ready for that.
*/
CONTENT_MAY_CHANGE_TRANSFORM = 0x08,
/**
* Disable subpixel AA for this layer. This is used if the display isn't suited
* for subpixel AA like hidpi or rotated content.
*/
CONTENT_DISABLE_SUBPIXEL_AA = 0x10
};
/**
* CONSTRUCTION PHASE ONLY
* This lets layout make some promises about what will be drawn into the
* visible region of the ThebesLayer. This enables internal quality
* and performance optimizations.
*/
void SetContentFlags(uint32_t aFlags)
{
NS_ASSERTION((aFlags & (CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA)) !=
(CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA),
"Can't be opaque and require component alpha");
if (mContentFlags != aFlags) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ContentFlags", this));
mContentFlags = aFlags;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer which region will be visible. The visible region
* is a region which contains all the contents of the layer that can
* actually affect the rendering of the window. It can exclude areas
* that are covered by opaque contents of other layers, and it can
* exclude areas where this layer simply contains no content at all.
* (This can be an overapproximation to the "true" visible region.)
*
* There is no general guarantee that drawing outside the bounds of the
* visible region will be ignored. So if a layer draws outside the bounds
* of its visible region, it needs to ensure that what it draws is valid.
*/
virtual void SetVisibleRegion(const nsIntRegion& aRegion)
{
if (!mVisibleRegion.IsEqual(aRegion)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) VisibleRegion was %s is %s", this,
mVisibleRegion.ToString().get(), aRegion.ToString().get()));
mVisibleRegion = aRegion;
Mutated();
}
}
/*
* Compositor event handling
* =========================
* When a touch-start event (or similar) is sent to the AsyncPanZoomController,
* it needs to decide whether the event should be sent to the main thread.
* Each layer has a list of event handling regions. When the compositor needs
* to determine how to handle a touch event, it scans the layer tree from top
* to bottom in z-order (traversing children before their parents). Points
* outside the clip region for a layer cause that layer (and its subtree)
* to be ignored. If a layer has a mask layer, and that mask layer's alpha
* value is zero at the event point, then the layer and its subtree should
* be ignored.
* For each layer, if the point is outside its hit region, we ignore the layer
* and move onto the next. If the point is inside its hit region but
* outside the dispatch-to-content region, we can initiate a gesture without
* consulting the content thread. Otherwise we must dispatch the event to
* content.
*/
/**
* CONSTRUCTION PHASE ONLY
* Set the event handling region.
*/
void SetEventRegions(const EventRegions& aRegions)
{
if (mEventRegions != aRegions) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) eventregions were %s, now %s", this,
mEventRegions.ToString().get(), aRegions.ToString().get()));
mEventRegions = aRegions;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the opacity which will be applied to this layer as it
* is composited to the destination.
*/
void SetOpacity(float aOpacity)
{
if (mOpacity != aOpacity) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Opacity", this));
mOpacity = aOpacity;
Mutated();
}
}
void SetMixBlendMode(gfx::CompositionOp aMixBlendMode)
{
if (mMixBlendMode != aMixBlendMode) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) MixBlendMode", this));
mMixBlendMode = aMixBlendMode;
Mutated();
}
}
void DeprecatedSetMixBlendMode(gfxContext::GraphicsOperator aMixBlendMode)
{
SetMixBlendMode(gfx::CompositionOpForOp(aMixBlendMode));
}
void SetForceIsolatedGroup(bool aForceIsolatedGroup)
{
if(mForceIsolatedGroup != aForceIsolatedGroup) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ForceIsolatedGroup", this));
mForceIsolatedGroup = aForceIsolatedGroup;
Mutated();
}
}
bool GetForceIsolatedGroup() const
{
return mForceIsolatedGroup;
}
/**
* CONSTRUCTION PHASE ONLY
* Set a clip rect which will be applied to this layer as it is
* composited to the destination. The coordinates are relative to
* the parent layer (i.e. the contents of this layer
* are transformed before this clip rect is applied).
* For the root layer, the coordinates are relative to the widget,
* in device pixels.
* If aRect is null no clipping will be performed.
*/
void SetClipRect(const nsIntRect* aRect)
{
if (mUseClipRect) {
if (!aRect) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is <none>", this,
mClipRect.x, mClipRect.y, mClipRect.width, mClipRect.height));
mUseClipRect = false;
Mutated();
} else {
if (!aRect->IsEqualEdges(mClipRect)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is %d,%d,%d,%d", this,
mClipRect.x, mClipRect.y, mClipRect.width, mClipRect.height,
aRect->x, aRect->y, aRect->width, aRect->height));
mClipRect = *aRect;
Mutated();
}
}
} else {
if (aRect) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was <none> is %d,%d,%d,%d", this,
aRect->x, aRect->y, aRect->width, aRect->height));
mUseClipRect = true;
mClipRect = *aRect;
Mutated();
}
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set a layer to mask this layer.
*
* The mask layer should be applied using its effective transform (after it
* is calculated by ComputeEffectiveTransformForMaskLayer), this should use
* this layer's parent's transform and the mask layer's transform, but not
* this layer's. That is, the mask layer is specified relative to this layer's
* position in it's parent layer's coord space.
* Currently, only 2D translations are supported for the mask layer transform.
*
* Ownership of aMaskLayer passes to this.
* Typical use would be an ImageLayer with an alpha image used for masking.
* See also ContainerState::BuildMaskLayer in FrameLayerBuilder.cpp.
*/
void SetMaskLayer(Layer* aMaskLayer)
{
#ifdef DEBUG
if (aMaskLayer) {
bool maskIs2D = aMaskLayer->GetTransform().CanDraw2D();
NS_ASSERTION(maskIs2D, "Mask layer has invalid transform.");
}
#endif
if (mMaskLayer != aMaskLayer) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) MaskLayer", this));
mMaskLayer = aMaskLayer;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer what its transform should be. The transformation
* is applied when compositing the layer into its parent container.
*/
void SetBaseTransform(const gfx::Matrix4x4& aMatrix)
{
NS_ASSERTION(!aMatrix.IsSingular(),
"Shouldn't be trying to draw with a singular matrix!");
mPendingTransform = nullptr;
if (mTransform == aMatrix) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) BaseTransform", this));
mTransform = aMatrix;
Mutated();
}
/**
* Can be called at any time.
*
* Like SetBaseTransform(), but can be called before the next
* transform (i.e. outside an open transaction). Semantically, this
* method enqueues a new transform value to be set immediately after
* the next transaction is opened.
*/
void SetBaseTransformForNextTransaction(const gfx::Matrix4x4& aMatrix)
{
mPendingTransform = new gfx::Matrix4x4(aMatrix);
}
void SetPostScale(float aXScale, float aYScale)
{
if (mPostXScale == aXScale && mPostYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PostScale", this));
mPostXScale = aXScale;
mPostYScale = aYScale;
Mutated();
}
/**
* CONSTRUCTION PHASE ONLY
* A layer is "fixed position" when it draws content from a content
* (not chrome) document, the topmost content document has a root scrollframe
* with a displayport, but the layer does not move when that displayport scrolls.
*/
void SetIsFixedPosition(bool aFixedPosition)
{
if (mIsFixedPosition != aFixedPosition) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) IsFixedPosition", this));
mIsFixedPosition = aFixedPosition;
Mutated();
}
}
// Call AddAnimation to add a new animation to this layer from layout code.
// Caller must fill in all the properties of the returned animation.
Animation* AddAnimation();
// ClearAnimations clears animations on this layer.
void ClearAnimations();
// This is only called when the layer tree is updated. Do not call this from
// layout code. To add an animation to this layer, use AddAnimation.
void SetAnimations(const AnimationArray& aAnimations);
// These are a parallel to AddAnimation and clearAnimations, except
// they add pending animations that apply only when the next
// transaction is begun. (See also
// SetBaseTransformForNextTransaction.)
Animation* AddAnimationForNextTransaction();
void ClearAnimationsForNextTransaction();
/**
* CONSTRUCTION PHASE ONLY
* If a layer is "fixed position", this determines which point on the layer
* is considered the "anchor" point, that is, the point which remains in the
* same position when compositing the layer tree with a transformation
* (such as when asynchronously scrolling and zooming).
*/
void SetFixedPositionAnchor(const LayerPoint& aAnchor)
{
if (mAnchor != aAnchor) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FixedPositionAnchor", this));
mAnchor = aAnchor;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* If a layer represents a fixed position element or elements that are on
* a document that has had fixed position element margins set on it, these
* will be mirrored here. This allows for asynchronous animation of the
* margins by reconciling the difference between this value and a value that
* is updated more frequently.
* If the left or top margins are negative, it means that the elements this
* layer represents are auto-positioned, and so fixed position margins should
* not have an effect on the corresponding axis.
*/
void SetFixedPositionMargins(const LayerMargin& aMargins)
{
if (mMargins != aMargins) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FixedPositionMargins", this));
mMargins = aMargins;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* If a layer is "sticky position", |aScrollId| holds the scroll identifier
* of the scrollable content that contains it. The difference between the two
* rectangles |aOuter| and |aInner| is treated as two intervals in each
* dimension, with the current scroll position at the origin. For each
* dimension, while that component of the scroll position lies within either
* interval, the layer should not move relative to its scrolling container.
*/
void SetStickyPositionData(FrameMetrics::ViewID aScrollId, LayerRect aOuter,
LayerRect aInner)
{
if (!mStickyPositionData ||
!mStickyPositionData->mOuter.IsEqualEdges(aOuter) ||
!mStickyPositionData->mInner.IsEqualEdges(aInner)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) StickyPositionData", this));
if (!mStickyPositionData) {
mStickyPositionData = new StickyPositionData;
}
mStickyPositionData->mScrollId = aScrollId;
mStickyPositionData->mOuter = aOuter;
mStickyPositionData->mInner = aInner;
Mutated();
}
}
enum ScrollDirection {
NONE,
VERTICAL,
HORIZONTAL
};
/**
* CONSTRUCTION PHASE ONLY
* If a layer is a scrollbar layer, |aScrollId| holds the scroll identifier
* of the scrollable content that the scrollbar is for.
*/
void SetScrollbarData(FrameMetrics::ViewID aScrollId, ScrollDirection aDir)
{
if (mScrollbarTargetId != aScrollId ||
mScrollbarDirection != aDir) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ScrollbarData", this));
mScrollbarTargetId = aScrollId;
mScrollbarDirection = aDir;
Mutated();
}
}
// These getters can be used anytime.
float GetOpacity() { return mOpacity; }
gfx::CompositionOp GetMixBlendMode() const { return mMixBlendMode; }
const nsIntRect* GetClipRect() { return mUseClipRect ? &mClipRect : nullptr; }
uint32_t GetContentFlags() { return mContentFlags; }
const nsIntRegion& GetVisibleRegion() { return mVisibleRegion; }
const EventRegions& GetEventRegions() const { return mEventRegions; }
ContainerLayer* GetParent() { return mParent; }
Layer* GetNextSibling() { return mNextSibling; }
const Layer* GetNextSibling() const { return mNextSibling; }
Layer* GetPrevSibling() { return mPrevSibling; }
const Layer* GetPrevSibling() const { return mPrevSibling; }
virtual Layer* GetFirstChild() const { return nullptr; }
virtual Layer* GetLastChild() const { return nullptr; }
const gfx::Matrix4x4 GetTransform() const;
const gfx::Matrix4x4& GetBaseTransform() const { return mTransform; }
float GetPostXScale() const { return mPostXScale; }
float GetPostYScale() const { return mPostYScale; }
bool GetIsFixedPosition() { return mIsFixedPosition; }
bool GetIsStickyPosition() { return mStickyPositionData; }
LayerPoint GetFixedPositionAnchor() { return mAnchor; }
const LayerMargin& GetFixedPositionMargins() { return mMargins; }
FrameMetrics::ViewID GetStickyScrollContainerId() { return mStickyPositionData->mScrollId; }
const LayerRect& GetStickyScrollRangeOuter() { return mStickyPositionData->mOuter; }
const LayerRect& GetStickyScrollRangeInner() { return mStickyPositionData->mInner; }
FrameMetrics::ViewID GetScrollbarTargetContainerId() { return mScrollbarTargetId; }
ScrollDirection GetScrollbarDirection() { return mScrollbarDirection; }
Layer* GetMaskLayer() const { return mMaskLayer; }
// Note that all lengths in animation data are either in CSS pixels or app
// units and must be converted to device pixels by the compositor.
AnimationArray& GetAnimations() { return mAnimations; }
InfallibleTArray<AnimData>& GetAnimationData() { return mAnimationData; }
uint64_t GetAnimationGeneration() { return mAnimationGeneration; }
void SetAnimationGeneration(uint64_t aCount) { mAnimationGeneration = aCount; }
/**
* Returns the local transform for this layer: either mTransform or,
* for shadow layers, GetShadowTransform()
*/
const gfx::Matrix4x4 GetLocalTransform();
/**
* Returns the local opacity for this layer: either mOpacity or,
* for shadow layers, GetShadowOpacity()
*/
const float GetLocalOpacity();
/**
* DRAWING PHASE ONLY
*
* Apply pending changes to layers before drawing them, if those
* pending changes haven't been overridden by later changes.
*/
void ApplyPendingUpdatesToSubtree();
/**
* DRAWING PHASE ONLY
*
* Write layer-subtype-specific attributes into aAttrs. Used to
* synchronize layer attributes to their shadows'.
*/
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) { }
// Returns true if it's OK to save the contents of aLayer in an
// opaque surface (a surface without an alpha channel).
// If we can use a surface without an alpha channel, we should, because
// it will often make painting of antialiased text faster and higher
// quality.
bool CanUseOpaqueSurface();
SurfaceMode GetSurfaceMode()
{
if (CanUseOpaqueSurface())
return SurfaceMode::SURFACE_OPAQUE;
if (mContentFlags & CONTENT_COMPONENT_ALPHA)
return SurfaceMode::SURFACE_COMPONENT_ALPHA;
return SurfaceMode::SURFACE_SINGLE_CHANNEL_ALPHA;
}
/**
* This setter can be used anytime. The user data for all keys is
* initially null. Ownership pases to the layer manager.
*/
void SetUserData(void* aKey, LayerUserData* aData)
{
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerManagerUserDataDestroy);
}
/**
* This can be used anytime. Ownership passes to the caller!
*/
nsAutoPtr<LayerUserData> RemoveUserData(void* aKey)
{
nsAutoPtr<LayerUserData> d(static_cast<LayerUserData*>(mUserData.Remove(static_cast<gfx::UserDataKey*>(aKey))));
return d;
}
/**
* This getter can be used anytime.
*/
bool HasUserData(void* aKey)
{
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
}
/**
* This getter can be used anytime. Ownership is retained by the layer
* manager.
*/
LayerUserData* GetUserData(void* aKey) const
{
return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
}
/**
* |Disconnect()| is used by layers hooked up over IPC. It may be
* called at any time, and may not be called at all. Using an
* IPC-enabled layer after Destroy() (drawing etc.) results in a
* safe no-op; no crashy or uaf etc.
*
* XXX: this interface is essentially LayerManager::Destroy, but at
* Layer granularity. It might be beneficial to unify them.
*/
virtual void Disconnect() {}
/**
* Dynamic downcast to a Thebes layer. Returns null if this is not
* a ThebesLayer.
*/
virtual ThebesLayer* AsThebesLayer() { return nullptr; }
/**
* Dynamic cast to a ContainerLayer. Returns null if this is not
* a ContainerLayer.
*/
virtual ContainerLayer* AsContainerLayer() { return nullptr; }
virtual const ContainerLayer* AsContainerLayer() const { return nullptr; }
/**
* Dynamic cast to a RefLayer. Returns null if this is not a
* RefLayer.
*/
virtual RefLayer* AsRefLayer() { return nullptr; }
/**
* Dynamic cast to a Color. Returns null if this is not a
* ColorLayer.
*/
virtual ColorLayer* AsColorLayer() { return nullptr; }
/**
* Dynamic cast to a LayerComposite. Return null if this is not a
* LayerComposite. Can be used anytime.
*/
virtual LayerComposite* AsLayerComposite() { return nullptr; }
/**
* Dynamic cast to a ShadowableLayer. Return null if this is not a
* ShadowableLayer. Can be used anytime.
*/
virtual ShadowableLayer* AsShadowableLayer() { return nullptr; }
// These getters can be used anytime. They return the effective
// values that should be used when drawing this layer to screen,
// accounting for this layer possibly being a shadow.
const nsIntRect* GetEffectiveClipRect();
const nsIntRegion& GetEffectiveVisibleRegion();
/**
* Returns the product of the opacities of this layer and all ancestors up
* to and excluding the nearest ancestor that has UseIntermediateSurface() set.
*/
float GetEffectiveOpacity();
/**
* Returns the blendmode of this layer.
*/
gfx::CompositionOp GetEffectiveMixBlendMode();
gfxContext::GraphicsOperator DeprecatedGetEffectiveMixBlendMode();
/**
* This returns the effective transform computed by
* ComputeEffectiveTransforms. Typically this is a transform that transforms
* this layer all the way to some intermediate surface or destination
* surface. For non-BasicLayers this will be a transform to the nearest
* ancestor with UseIntermediateSurface() (or to the root, if there is no
* such ancestor), but for BasicLayers it's different.
*/
const gfx::Matrix4x4& GetEffectiveTransform() const { return mEffectiveTransform; }
/**
* @param aTransformToSurface the composition of the transforms
* from the parent layer (if any) to the destination pixel grid.
*
* Computes mEffectiveTransform for this layer and all its descendants.
* mEffectiveTransform transforms this layer up to the destination
* pixel grid (whatever aTransformToSurface is relative to).
*
* We promise that when this is called on a layer, all ancestor layers
* have already had ComputeEffectiveTransforms called.
*/
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) = 0;
/**
* computes the effective transform for a mask layer, if this layer has one
*/
void ComputeEffectiveTransformForMaskLayer(const gfx::Matrix4x4& aTransformToSurface);
/**
* Calculate the scissor rect required when rendering this layer.
* Returns a rectangle relative to the intermediate surface belonging to the
* nearest ancestor that has an intermediate surface, or relative to the root
* viewport if no ancestor has an intermediate surface, corresponding to the
* clip rect for this layer intersected with aCurrentScissorRect.
* If no ancestor has an intermediate surface, the clip rect is transformed
* by aWorldTransform before being combined with aCurrentScissorRect, if
* aWorldTransform is non-null.
*/
nsIntRect CalculateScissorRect(const nsIntRect& aCurrentScissorRect,
const gfx::Matrix* aWorldTransform);
virtual const char* Name() const =0;
virtual LayerType GetType() const =0;
/**
* Only the implementation should call this. This is per-implementation
* private data. Normally, all layers with a given layer manager
* use the same type of ImplData.
*/
void* ImplData() { return mImplData; }
/**
* Only the implementation should use these methods.
*/
void SetParent(ContainerLayer* aParent) { mParent = aParent; }
void SetNextSibling(Layer* aSibling) { mNextSibling = aSibling; }
void SetPrevSibling(Layer* aSibling) { mPrevSibling = aSibling; }
/**
* Dump information about this layer manager and its managed tree to
* aStream.
*/
void Dump(std::stringstream& aStream, const char* aPrefix="", bool aDumpHtml=false);
/**
* Dump information about just this layer manager itself to aStream.
*/
void DumpSelf(std::stringstream& aStream, const char* aPrefix="");
/**
* Log information about this layer manager and its managed tree to
* the NSPR log (if enabled for "Layers").
*/
void Log(const char* aPrefix="");
/**
* Log information about just this layer manager itself to the NSPR
* log (if enabled for "Layers").
*/
void LogSelf(const char* aPrefix="");
// Print interesting information about this into aStream. Internally
// used to implement Dump*() and Log*(). If subclasses have
// additional interesting properties, they should override this with
// an implementation that first calls the base implementation then
// appends additional info to aTo.
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
static bool IsLogEnabled() { return LayerManager::IsLogEnabled(); }
/**
* Returns the current area of the layer (in layer-space coordinates)
* marked as needed to be recomposited.
*/
const nsIntRegion& GetInvalidRegion() { return mInvalidRegion; }
const void SetInvalidRegion(const nsIntRegion& aRect) { mInvalidRegion = aRect; }
/**
* Mark the entirety of the layer's visible region as being invalid.
*/
void SetInvalidRectToVisibleRegion() { mInvalidRegion = GetVisibleRegion(); }
/**
* Adds to the current invalid rect.
*/
void AddInvalidRect(const nsIntRect& aRect) { mInvalidRegion.Or(mInvalidRegion, aRect); }
/**
* Clear the invalid rect, marking the layer as being identical to what is currently
* composited.
*/
void ClearInvalidRect() { mInvalidRegion.SetEmpty(); }
void ApplyPendingUpdatesForThisTransaction();
#ifdef DEBUG
void SetDebugColorIndex(uint32_t aIndex) { mDebugColorIndex = aIndex; }
uint32_t GetDebugColorIndex() { return mDebugColorIndex; }
#endif
virtual LayerRenderState GetRenderState() { return LayerRenderState(); }
void Mutated()
{
mManager->Mutated(this);
}
protected:
Layer(LayerManager* aManager, void* aImplData);
// Protected destructor, to discourage deletion outside of Release():
virtual ~Layer();
/**
* We can snap layer transforms for two reasons:
* 1) To avoid unnecessary resampling when a transform is a translation
* by a non-integer number of pixels.
* Snapping the translation to an integer number of pixels avoids
* blurring the layer and can be faster to composite.
* 2) When a layer is used to render a rectangular object, we need to
* emulate the rendering of rectangular inactive content and snap the
* edges of the rectangle to pixel boundaries. This is both to ensure
* layer rendering is consistent with inactive content rendering, and to
* avoid seams.
* This function implements type 1 snapping. If aTransform is a 2D
* translation, and this layer's layer manager has enabled snapping
* (which is the default), return aTransform with the translation snapped
* to nearest pixels. Otherwise just return aTransform. Call this when the
* layer does not correspond to a single rectangular content object.
* This function does not try to snap if aTransform has a scale, because in
* that case resampling is inevitable and there's no point in trying to
* avoid it. In fact snapping can cause problems because pixel edges in the
* layer's content can be rendered unpredictably (jiggling) as the scale
* interacts with the snapping of the translation, especially with animated
* transforms.
* @param aResidualTransform a transform to apply before the result transform
* in order to get the results to completely match aTransform.
*/
gfx::Matrix4x4 SnapTransformTranslation(const gfx::Matrix4x4& aTransform,
gfx::Matrix* aResidualTransform);
/**
* See comment for SnapTransformTranslation.
* This function implements type 2 snapping. If aTransform is a translation
* and/or scale, transform aSnapRect by aTransform, snap to pixel boundaries,
* and return the transform that maps aSnapRect to that rect. Otherwise
* just return aTransform.
* @param aSnapRect a rectangle whose edges should be snapped to pixel
* boundaries in the destination surface.
* @param aResidualTransform a transform to apply before the result transform
* in order to get the results to completely match aTransform.
*/
gfx::Matrix4x4 SnapTransform(const gfx::Matrix4x4& aTransform,
const gfxRect& aSnapRect,
gfx::Matrix* aResidualTransform);
/**
* Returns true if this layer's effective transform is not just
* a translation by integers, or if this layer or some ancestor layer
* is marked as having a transform that may change without a full layer
* transaction.
*/
bool MayResample();
LayerManager* mManager;
ContainerLayer* mParent;
Layer* mNextSibling;
Layer* mPrevSibling;
void* mImplData;
nsRefPtr<Layer> mMaskLayer;
gfx::UserData mUserData;
nsIntRegion mVisibleRegion;
EventRegions mEventRegions;
gfx::Matrix4x4 mTransform;
// A mutation of |mTransform| that we've queued to be applied at the
// end of the next transaction (if nothing else overrides it in the
// meantime).
nsAutoPtr<gfx::Matrix4x4> mPendingTransform;
float mPostXScale;
float mPostYScale;
gfx::Matrix4x4 mEffectiveTransform;
AnimationArray mAnimations;
// See mPendingTransform above.
nsAutoPtr<AnimationArray> mPendingAnimations;
InfallibleTArray<AnimData> mAnimationData;
float mOpacity;
gfx::CompositionOp mMixBlendMode;
bool mForceIsolatedGroup;
nsIntRect mClipRect;
nsIntRect mTileSourceRect;
nsIntRegion mInvalidRegion;
uint32_t mContentFlags;
bool mUseClipRect;
bool mUseTileSourceRect;
bool mIsFixedPosition;
LayerPoint mAnchor;
LayerMargin mMargins;
struct StickyPositionData {
FrameMetrics::ViewID mScrollId;
LayerRect mOuter;
LayerRect mInner;
};
nsAutoPtr<StickyPositionData> mStickyPositionData;
FrameMetrics::ViewID mScrollbarTargetId;
ScrollDirection mScrollbarDirection;
DebugOnly<uint32_t> mDebugColorIndex;
// If this layer is used for OMTA, then this counter is used to ensure we
// stay in sync with the animation manager
uint64_t mAnimationGeneration;
};
/**
* A Layer which we can draw into using Thebes. It is a conceptually
* infinite surface, but each ThebesLayer has an associated "valid region"
* of contents that it is currently storing, which is finite. ThebesLayer
* implementations can store content between paints.
*
* ThebesLayers are rendered into during the drawing phase of a transaction.
*
* Currently the contents of a ThebesLayer are in the device output color
* space.
*/
class ThebesLayer : public Layer {
public:
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer that the content in some region has changed and
* will need to be repainted. This area is removed from the valid
* region.
*/
virtual void InvalidateRegion(const nsIntRegion& aRegion) = 0;
/**
* CONSTRUCTION PHASE ONLY
* Set whether ComputeEffectiveTransforms should compute the
* "residual translation" --- the translation that should be applied *before*
* mEffectiveTransform to get the ideal transform for this ThebesLayer.
* When this is true, ComputeEffectiveTransforms will compute the residual
* and ensure that the layer is invalidated whenever the residual changes.
* When it's false, a change in the residual will not trigger invalidation
* and GetResidualTranslation will return 0,0.
* So when the residual is to be ignored, set this to false for better
* performance.
*/
void SetAllowResidualTranslation(bool aAllow) { mAllowResidualTranslation = aAllow; }
/**
* Can be used anytime
*/
const nsIntRegion& GetValidRegion() const { return mValidRegion; }
virtual ThebesLayer* AsThebesLayer() { return this; }
MOZ_LAYER_DECL_NAME("ThebesLayer", TYPE_THEBES)
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface)
{
gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
gfx::Matrix residual;
mEffectiveTransform = SnapTransformTranslation(idealTransform,
mAllowResidualTranslation ? &residual : nullptr);
// The residual can only be a translation because SnapTransformTranslation
// only changes the transform if it's a translation
NS_ASSERTION(residual.IsTranslation(),
"Residual transform can only be a translation");
if (!gfx::ThebesPoint(residual.GetTranslation()).WithinEpsilonOf(mResidualTranslation, 1e-3f)) {
mResidualTranslation = gfx::ThebesPoint(residual.GetTranslation());
NS_ASSERTION(-0.5 <= mResidualTranslation.x && mResidualTranslation.x < 0.5 &&
-0.5 <= mResidualTranslation.y && mResidualTranslation.y < 0.5,
"Residual translation out of range");
mValidRegion.SetEmpty();
}
ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
}
LayerManager::ThebesLayerCreationHint GetCreationHint() const { return mCreationHint; }
bool UsedForReadback() { return mUsedForReadback; }
void SetUsedForReadback(bool aUsed) { mUsedForReadback = aUsed; }
/**
* Returns the residual translation. Apply this translation when drawing
* into the ThebesLayer so that when mEffectiveTransform is applied afterwards
* by layer compositing, the results exactly match the "ideal transform"
* (the product of the transform of this layer and its ancestors).
* Returns 0,0 unless SetAllowResidualTranslation(true) has been called.
* The residual translation components are always in the range [-0.5, 0.5).
*/
gfxPoint GetResidualTranslation() const { return mResidualTranslation; }
protected:
ThebesLayer(LayerManager* aManager, void* aImplData,
LayerManager::ThebesLayerCreationHint aCreationHint = LayerManager::NONE)
: Layer(aManager, aImplData)
, mValidRegion()
, mCreationHint(aCreationHint)
, mUsedForReadback(false)
, mAllowResidualTranslation(false)
{
mContentFlags = 0; // Clear NO_TEXT, NO_TEXT_OVER_TRANSPARENT
}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
/**
* ComputeEffectiveTransforms snaps the ideal transform to get mEffectiveTransform.
* mResidualTranslation is the translation that should be applied *before*
* mEffectiveTransform to get the ideal transform.
*/
gfxPoint mResidualTranslation;
nsIntRegion mValidRegion;
/**
* The creation hint that was used when constructing this layer.
*/
const LayerManager::ThebesLayerCreationHint mCreationHint;
/**
* Set when this ThebesLayer is participating in readback, i.e. some
* ReadbackLayer (may) be getting its background from this layer.
*/
bool mUsedForReadback;
/**
* True when
*/
bool mAllowResidualTranslation;
};
/**
* A Layer which other layers render into. It holds references to its
* children.
*/
class ContainerLayer : public Layer {
public:
~ContainerLayer();
/**
* CONSTRUCTION PHASE ONLY
* Insert aChild into the child list of this container. aChild must
* not be currently in any child list or the root for the layer manager.
* If aAfter is non-null, it must be a child of this container and
* we insert after that layer. If it's null we insert at the start.
*/
virtual bool InsertAfter(Layer* aChild, Layer* aAfter);
/**
* CONSTRUCTION PHASE ONLY
* Remove aChild from the child list of this container. aChild must
* be a child of this container.
*/
virtual bool RemoveChild(Layer* aChild);
/**
* CONSTRUCTION PHASE ONLY
* Reposition aChild from the child list of this container. aChild must
* be a child of this container.
* If aAfter is non-null, it must be a child of this container and we
* reposition after that layer. If it's null, we reposition at the start.
*/
virtual bool RepositionChild(Layer* aChild, Layer* aAfter);
/**
* CONSTRUCTION PHASE ONLY
* Set the (sub)document metrics used to render the Layer subtree
* rooted at this.
*/
void SetFrameMetrics(const FrameMetrics& aFrameMetrics)
{
if (mFrameMetrics != aFrameMetrics) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FrameMetrics", this));
mFrameMetrics = aFrameMetrics;
Mutated();
}
}
// These functions allow attaching an AsyncPanZoomController to this layer,
// and can be used anytime.
// A container layer has an APZC only-if GetFrameMetrics().IsScrollable()
void SetAsyncPanZoomController(AsyncPanZoomController *controller);
AsyncPanZoomController* GetAsyncPanZoomController() const;
/**
* CONSTRUCTION PHASE ONLY
* Set the ViewID of the ContainerLayer to which overscroll should be handed
* off. A value of NULL_SCROLL_ID means that the default handoff-parent-finding
* behaviour should be used (i.e. walk up the layer tree to find the next
* scrollable ancestor layer).
*/
void SetScrollHandoffParentId(FrameMetrics::ViewID aScrollParentId)
{
if (mScrollHandoffParentId != aScrollParentId) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ScrollHandoffParentId", this));
mScrollHandoffParentId = aScrollParentId;
Mutated();
}
}
void SetPreScale(float aXScale, float aYScale)
{
if (mPreXScale == aXScale && mPreYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PreScale", this));
mPreXScale = aXScale;
mPreYScale = aYScale;
Mutated();
}
void SetInheritedScale(float aXScale, float aYScale)
{
if (mInheritedXScale == aXScale && mInheritedYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) InheritedScale", this));
mInheritedXScale = aXScale;
mInheritedYScale = aYScale;
Mutated();
}
void SetBackgroundColor(const gfxRGBA& aColor)
{
if (mBackgroundColor == aColor) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) BackgroundColor", this));
mBackgroundColor = aColor;
Mutated();
}
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs);
void SortChildrenBy3DZOrder(nsTArray<Layer*>& aArray);
// These getters can be used anytime.
virtual ContainerLayer* AsContainerLayer() { return this; }
virtual const ContainerLayer* AsContainerLayer() const { return this; }
virtual Layer* GetFirstChild() const { return mFirstChild; }
virtual Layer* GetLastChild() const { return mLastChild; }
const FrameMetrics& GetFrameMetrics() const { return mFrameMetrics; }
FrameMetrics::ViewID GetScrollHandoffParentId() const { return mScrollHandoffParentId; }
float GetPreXScale() const { return mPreXScale; }
float GetPreYScale() const { return mPreYScale; }
float GetInheritedXScale() const { return mInheritedXScale; }
float GetInheritedYScale() const { return mInheritedYScale; }
gfxRGBA GetBackgroundColor() const { return mBackgroundColor; }
MOZ_LAYER_DECL_NAME("ContainerLayer", TYPE_CONTAINER)
/**
* ContainerLayer backends need to override ComputeEffectiveTransforms
* since the decision about whether to use a temporary surface for the
* container is backend-specific. ComputeEffectiveTransforms must also set
* mUseIntermediateSurface.
*/
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) = 0;
/**
* Call this only after ComputeEffectiveTransforms has been invoked
* on this layer.
* Returns true if this will use an intermediate surface. This is largely
* backend-dependent, but it affects the operation of GetEffectiveOpacity().
*/
bool UseIntermediateSurface() { return mUseIntermediateSurface; }
/**
* Returns the rectangle covered by the intermediate surface,
* in this layer's coordinate system
*/
nsIntRect GetIntermediateSurfaceRect()
{
NS_ASSERTION(mUseIntermediateSurface, "Must have intermediate surface");
return mVisibleRegion.GetBounds();
}
/**
* Returns true if this container has more than one non-empty child
*/
bool HasMultipleChildren();
/**
* Returns true if this container supports children with component alpha.
* Should only be called while painting a child of this layer.
*/
bool SupportsComponentAlphaChildren() { return mSupportsComponentAlphaChildren; }
/**
* Returns true if aLayer or any layer in its parent chain has the opaque
* content flag set.
*/
static bool HasOpaqueAncestorLayer(Layer* aLayer);
protected:
friend class ReadbackProcessor;
void DidInsertChild(Layer* aLayer);
void DidRemoveChild(Layer* aLayer);
ContainerLayer(LayerManager* aManager, void* aImplData);
/**
* A default implementation of ComputeEffectiveTransforms for use by OpenGL
* and D3D.
*/
void DefaultComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface);
/**
* A default implementation to compute and set the value for SupportsComponentAlphaChildren().
*
* If aNeedsSurfaceCopy is provided, then it is set to true if the caller needs to copy the background
* up into the intermediate surface created, false otherwise.
*/
void DefaultComputeSupportsComponentAlphaChildren(bool* aNeedsSurfaceCopy = nullptr);
/**
* Loops over the children calling ComputeEffectiveTransforms on them.
*/
void ComputeEffectiveTransformsForChildren(const gfx::Matrix4x4& aTransformToSurface);
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
Layer* mFirstChild;
Layer* mLastChild;
FrameMetrics mFrameMetrics;
nsRefPtr<AsyncPanZoomController> mAPZC;
FrameMetrics::ViewID mScrollHandoffParentId;
float mPreXScale;
float mPreYScale;
// The resolution scale inherited from the parent layer. This will already
// be part of mTransform.
float mInheritedXScale;
float mInheritedYScale;
// This is currently set and used only for scrollable container layers.
// When multi-layer-apz (bug 967844) is implemented, this is likely to move
// elsewhere (e.g. to Layer).
gfxRGBA mBackgroundColor;
bool mUseIntermediateSurface;
bool mSupportsComponentAlphaChildren;
bool mMayHaveReadbackChild;
};
/**
* A Layer which just renders a solid color in its visible region. It actually
* can fill any area that contains the visible region, so if you need to
* restrict the area filled, set a clip region on this layer.
*/
class ColorLayer : public Layer {
public:
virtual ColorLayer* AsColorLayer() { return this; }
/**
* CONSTRUCTION PHASE ONLY
* Set the color of the layer.
*/
virtual void SetColor(const gfxRGBA& aColor)
{
if (mColor != aColor) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Color", this));
mColor = aColor;
Mutated();
}
}
void SetBounds(const nsIntRect& aBounds)
{
if (!mBounds.IsEqualEdges(aBounds)) {
mBounds = aBounds;
Mutated();
}
}
const nsIntRect& GetBounds()
{
return mBounds;
}
// This getter can be used anytime.
virtual const gfxRGBA& GetColor() { return mColor; }
MOZ_LAYER_DECL_NAME("ColorLayer", TYPE_COLOR)
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface)
{
gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
mEffectiveTransform = SnapTransformTranslation(idealTransform, nullptr);
ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
}
protected:
ColorLayer(LayerManager* aManager, void* aImplData)
: Layer(aManager, aImplData),
mColor(0.0, 0.0, 0.0, 0.0)
{}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
nsIntRect mBounds;
gfxRGBA mColor;
};
/**
* A Layer for HTML Canvas elements. It's backed by either a
* gfxASurface or a GLContext (for WebGL layers), and has some control
* for intelligent updating from the source if necessary (for example,
* if hardware compositing is not available, for reading from the GL
* buffer into an image surface that we can layer composite.)
*
* After Initialize is called, the underlying canvas Surface/GLContext
* must not be modified during a layer transaction.
*/
class CanvasLayer : public Layer {
public:
struct Data {
Data()
: mDrawTarget(nullptr)
, mGLContext(nullptr)
, mStream(nullptr)
, mTexID(0)
, mSize(0,0)
, mHasAlpha(false)
, mIsGLAlphaPremult(true)
{ }
// One of these two must be specified for Canvas2D, but never both
mozilla::gfx::DrawTarget* mDrawTarget; // a DrawTarget for the canvas contents
mozilla::gl::GLContext* mGLContext; // or this, for GL.
// Canvas/SkiaGL uses this
mozilla::gfx::SurfaceStream* mStream;
// ID of the texture backing the canvas layer (defaults to 0)
uint32_t mTexID;
// The size of the canvas content
nsIntSize mSize;
// Whether the canvas drawingbuffer has an alpha channel.
bool mHasAlpha;
// Whether mGLContext contains data that is alpha-premultiplied.
bool mIsGLAlphaPremult;
};
/**
* CONSTRUCTION PHASE ONLY
* Initialize this CanvasLayer with the given data. The data must
* have either mSurface or mGLContext initialized (but not both), as
* well as mSize.
*
* This must only be called once.
*/
virtual void Initialize(const Data& aData) = 0;
/**
* Check the data is owned by this layer is still valid for rendering
*/
virtual bool IsDataValid(const Data& aData) { return true; }
/**
* Notify this CanvasLayer that the canvas surface contents have
* changed (or will change) before the next transaction.
*/
void Updated() { mDirty = true; SetInvalidRectToVisibleRegion(); }
/**
* Notify this CanvasLayer that the canvas surface contents have
* been painted since the last change.
*/
void Painted() { mDirty = false; }
/**
* Returns true if the canvas surface contents have changed since the
* last paint.
*/
bool IsDirty()
{
// We can only tell if we are dirty if we're part of the
// widget's retained layer tree.
if (!mManager || !mManager->IsWidgetLayerManager()) {
return true;
}
return mDirty;
}
/**
* Register a callback to be called at the start of each transaction.
*/
typedef void PreTransactionCallback(void* closureData);
void SetPreTransactionCallback(PreTransactionCallback* callback, void* closureData)
{
mPreTransCallback = callback;
mPreTransCallbackData = closureData;
}
protected:
void FirePreTransactionCallback()
{
if (mPreTransCallback) {
mPreTransCallback(mPreTransCallbackData);
}
}
public:
/**
* Register a callback to be called at the end of each transaction.
*/
typedef void (* DidTransactionCallback)(void* aClosureData);
void SetDidTransactionCallback(DidTransactionCallback aCallback, void* aClosureData)
{
mPostTransCallback = aCallback;
mPostTransCallbackData = aClosureData;
}
/**
* CONSTRUCTION PHASE ONLY
* Set the filter used to resample this image (if necessary).
*/
void SetFilter(GraphicsFilter aFilter)
{
if (mFilter != aFilter) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Filter", this));
mFilter = aFilter;
Mutated();
}
}
GraphicsFilter GetFilter() const { return mFilter; }
MOZ_LAYER_DECL_NAME("CanvasLayer", TYPE_CANVAS)
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface)
{
// Snap our local transform first, and snap the inherited transform as well.
// This makes our snapping equivalent to what would happen if our content
// was drawn into a ThebesLayer (gfxContext would snap using the local
// transform, then we'd snap again when compositing the ThebesLayer).
mEffectiveTransform =
SnapTransform(GetLocalTransform(), gfxRect(0, 0, mBounds.width, mBounds.height),
nullptr)*
SnapTransformTranslation(aTransformToSurface, nullptr);
ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
}
protected:
CanvasLayer(LayerManager* aManager, void* aImplData)
: Layer(aManager, aImplData)
, mPreTransCallback(nullptr)
, mPreTransCallbackData(nullptr)
, mPostTransCallback(nullptr)
, mPostTransCallbackData(nullptr)
, mFilter(GraphicsFilter::FILTER_GOOD)
, mDirty(false)
{}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
void FireDidTransactionCallback()
{
if (mPostTransCallback) {
mPostTransCallback(mPostTransCallbackData);
}
}
/**
* 0, 0, canvaswidth, canvasheight
*/
nsIntRect mBounds;
PreTransactionCallback* mPreTransCallback;
void* mPreTransCallbackData;
DidTransactionCallback mPostTransCallback;
void* mPostTransCallbackData;
GraphicsFilter mFilter;
private:
/**
* Set to true in Updated(), cleared during a transaction.
*/
bool mDirty;
};
/**
* ContainerLayer that refers to a "foreign" layer tree, through an
* ID. Usage of RefLayer looks like
*
* Construction phase:
* allocate ID for layer subtree
* create RefLayer, SetReferentId(ID)
*
* Composition:
* look up subtree for GetReferentId()
* ConnectReferentLayer(subtree)
* compose
* ClearReferentLayer()
*
* Clients will usually want to Connect/Clear() on each transaction to
* avoid difficulties managing memory across multiple layer subtrees.
*/
class RefLayer : public ContainerLayer {
friend class LayerManager;
private:
virtual bool InsertAfter(Layer* aChild, Layer* aAfter) MOZ_OVERRIDE
{ MOZ_CRASH(); return false; }
virtual bool RemoveChild(Layer* aChild)
{ MOZ_CRASH(); return false; }
virtual bool RepositionChild(Layer* aChild, Layer* aAfter)
{ MOZ_CRASH(); return false; }
using ContainerLayer::SetFrameMetrics;
public:
/**
* CONSTRUCTION PHASE ONLY
* Set the ID of the layer's referent.
*/
void SetReferentId(uint64_t aId)
{
MOZ_ASSERT(aId != 0);
if (mId != aId) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ReferentId", this));
mId = aId;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Connect this ref layer to its referent, temporarily.
* ClearReferentLayer() must be called after composition.
*/
void ConnectReferentLayer(Layer* aLayer)
{
MOZ_ASSERT(!mFirstChild && !mLastChild);
MOZ_ASSERT(!aLayer->GetParent());
MOZ_ASSERT(aLayer->Manager() == Manager());
mFirstChild = mLastChild = aLayer;
aLayer->SetParent(this);
}
/**
* DRAWING PHASE ONLY
* |aLayer| is the same as the argument to ConnectReferentLayer().
*/
void DetachReferentLayer(Layer* aLayer)
{
MOZ_ASSERT(aLayer == mFirstChild && mFirstChild == mLastChild);
MOZ_ASSERT(aLayer->GetParent() == this);
mFirstChild = mLastChild = nullptr;
aLayer->SetParent(nullptr);
}
// These getters can be used anytime.
virtual RefLayer* AsRefLayer() { return this; }
virtual int64_t GetReferentId() { return mId; }
/**
* DRAWING PHASE ONLY
*/
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs);
MOZ_LAYER_DECL_NAME("RefLayer", TYPE_REF)
protected:
RefLayer(LayerManager* aManager, void* aImplData)
: ContainerLayer(aManager, aImplData) , mId(0)
{}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
Layer* mTempReferent;
// 0 is a special value that means "no ID".
uint64_t mId;
};
void SetAntialiasingFlags(Layer* aLayer, gfxContext* aTarget);
void SetAntialiasingFlags(Layer* aLayer, gfx::DrawTarget* aTarget);
#ifdef MOZ_DUMP_PAINTING
void WriteSnapshotToDumpFile(Layer* aLayer, gfx::DataSourceSurface* aSurf);
void WriteSnapshotToDumpFile(LayerManager* aManager, gfx::DataSourceSurface* aSurf);
void WriteSnapshotToDumpFile(Compositor* aCompositor, gfx::DrawTarget* aTarget);
#endif
}
}
#endif /* GFX_LAYERS_H */