mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-01 06:35:42 +00:00
3223 lines
100 KiB
C++
3223 lines
100 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* vim: set ts=8 sts=4 et sw=4 tw=99:
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "jsarray.h"
|
|
|
|
#include "mozilla/DebugOnly.h"
|
|
#include "mozilla/FloatingPoint.h"
|
|
#include "mozilla/MathAlgorithms.h"
|
|
#include "mozilla/Util.h"
|
|
|
|
#include "jsapi.h"
|
|
#include "jsatom.h"
|
|
#include "jsautooplen.h"
|
|
#include "jscntxt.h"
|
|
#include "jsfriendapi.h"
|
|
#include "jsfun.h"
|
|
#include "jsiter.h"
|
|
#include "jsnum.h"
|
|
#include "jsobj.h"
|
|
#include "jstypes.h"
|
|
#include "jsutil.h"
|
|
|
|
#include "ds/Sort.h"
|
|
#include "vm/ArgumentsObject.h"
|
|
#include "vm/ForkJoin.h"
|
|
#include "vm/Interpreter.h"
|
|
#include "vm/NumericConversions.h"
|
|
#include "vm/Shape.h"
|
|
#include "vm/StringBuffer.h"
|
|
|
|
#include "jsatominlines.h"
|
|
|
|
#include "vm/ArgumentsObject-inl.h"
|
|
#include "vm/ArrayObject-inl.h"
|
|
#include "vm/Interpreter-inl.h"
|
|
#include "vm/Runtime-inl.h"
|
|
|
|
using namespace js;
|
|
using namespace js::gc;
|
|
using namespace js::types;
|
|
|
|
using mozilla::Abs;
|
|
using mozilla::ArrayLength;
|
|
using mozilla::CeilingLog2;
|
|
using mozilla::DebugOnly;
|
|
using mozilla::IsNaN;
|
|
using mozilla::PointerRangeSize;
|
|
|
|
bool
|
|
js::GetLengthProperty(JSContext *cx, HandleObject obj, uint32_t *lengthp)
|
|
{
|
|
if (obj->is<ArrayObject>()) {
|
|
*lengthp = obj->as<ArrayObject>().length();
|
|
return true;
|
|
}
|
|
|
|
if (obj->is<ArgumentsObject>()) {
|
|
ArgumentsObject &argsobj = obj->as<ArgumentsObject>();
|
|
if (!argsobj.hasOverriddenLength()) {
|
|
*lengthp = argsobj.initialLength();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
RootedValue value(cx);
|
|
if (!JSObject::getProperty(cx, obj, obj, cx->names().length, &value))
|
|
return false;
|
|
|
|
if (value.isInt32()) {
|
|
*lengthp = uint32_t(value.toInt32()); // uint32_t cast does ToUint32
|
|
return true;
|
|
}
|
|
|
|
return ToUint32(cx, value, lengthp);
|
|
}
|
|
|
|
/*
|
|
* Determine if the id represents an array index.
|
|
*
|
|
* An id is an array index according to ECMA by (15.4):
|
|
*
|
|
* "Array objects give special treatment to a certain class of property names.
|
|
* A property name P (in the form of a string value) is an array index if and
|
|
* only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal
|
|
* to 2^32-1."
|
|
*
|
|
* This means the largest allowed index is actually 2^32-2 (4294967294).
|
|
*
|
|
* In our implementation, it would be sufficient to check for JSVAL_IS_INT(id)
|
|
* except that by using signed 31-bit integers we miss the top half of the
|
|
* valid range. This function checks the string representation itself; note
|
|
* that calling a standard conversion routine might allow strings such as
|
|
* "08" or "4.0" as array indices, which they are not.
|
|
*
|
|
*/
|
|
JS_FRIEND_API(bool)
|
|
js::StringIsArrayIndex(JSLinearString *str, uint32_t *indexp)
|
|
{
|
|
const jschar *s = str->chars();
|
|
uint32_t length = str->length();
|
|
const jschar *end = s + length;
|
|
|
|
if (length == 0 || length > (sizeof("4294967294") - 1) || !JS7_ISDEC(*s))
|
|
return false;
|
|
|
|
uint32_t c = 0, previous = 0;
|
|
uint32_t index = JS7_UNDEC(*s++);
|
|
|
|
/* Don't allow leading zeros. */
|
|
if (index == 0 && s != end)
|
|
return false;
|
|
|
|
for (; s < end; s++) {
|
|
if (!JS7_ISDEC(*s))
|
|
return false;
|
|
|
|
previous = index;
|
|
c = JS7_UNDEC(*s);
|
|
index = 10 * index + c;
|
|
}
|
|
|
|
/* Make sure we didn't overflow. */
|
|
if (previous < (MAX_ARRAY_INDEX / 10) || (previous == (MAX_ARRAY_INDEX / 10) &&
|
|
c <= (MAX_ARRAY_INDEX % 10))) {
|
|
JS_ASSERT(index <= MAX_ARRAY_INDEX);
|
|
*indexp = index;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
DoubleIndexToId(JSContext *cx, double index, MutableHandleId id)
|
|
{
|
|
if (index == uint32_t(index))
|
|
return IndexToId(cx, uint32_t(index), id);
|
|
|
|
Value tmp = DoubleValue(index);
|
|
return ValueToId<CanGC>(cx, HandleValue::fromMarkedLocation(&tmp), id);
|
|
}
|
|
|
|
/*
|
|
* If the property at the given index exists, get its value into location
|
|
* pointed by vp and set *hole to false. Otherwise set *hole to true and *vp
|
|
* to JSVAL_VOID. This function assumes that the location pointed by vp is
|
|
* properly rooted and can be used as GC-protected storage for temporaries.
|
|
*/
|
|
static inline bool
|
|
DoGetElement(JSContext *cx, HandleObject obj, double index, bool *hole, MutableHandleValue vp)
|
|
{
|
|
RootedId id(cx);
|
|
|
|
if (!DoubleIndexToId(cx, index, &id))
|
|
return false;
|
|
|
|
RootedObject obj2(cx);
|
|
RootedShape prop(cx);
|
|
if (!JSObject::lookupGeneric(cx, obj, id, &obj2, &prop))
|
|
return false;
|
|
|
|
if (!prop) {
|
|
vp.setUndefined();
|
|
*hole = true;
|
|
} else {
|
|
if (!JSObject::getGeneric(cx, obj, obj, id, vp))
|
|
return false;
|
|
*hole = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline bool
|
|
DoGetElement(JSContext *cx, HandleObject obj, uint32_t index, bool *hole, MutableHandleValue vp)
|
|
{
|
|
bool present;
|
|
if (!JSObject::getElementIfPresent(cx, obj, obj, index, vp, &present))
|
|
return false;
|
|
|
|
*hole = !present;
|
|
if (*hole)
|
|
vp.setUndefined();
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename IndexType>
|
|
static void
|
|
AssertGreaterThanZero(IndexType index)
|
|
{
|
|
JS_ASSERT(index >= 0);
|
|
JS_ASSERT(index == floor(index));
|
|
}
|
|
|
|
template<>
|
|
void
|
|
AssertGreaterThanZero(uint32_t index)
|
|
{
|
|
}
|
|
|
|
template<typename IndexType>
|
|
static bool
|
|
GetElement(JSContext *cx, HandleObject obj, IndexType index, bool *hole, MutableHandleValue vp)
|
|
{
|
|
AssertGreaterThanZero(index);
|
|
if (obj->isNative() && index < obj->getDenseInitializedLength()) {
|
|
vp.set(obj->getDenseElement(uint32_t(index)));
|
|
if (!vp.isMagic(JS_ELEMENTS_HOLE)) {
|
|
*hole = false;
|
|
return true;
|
|
}
|
|
}
|
|
if (obj->is<ArgumentsObject>()) {
|
|
if (obj->as<ArgumentsObject>().maybeGetElement(uint32_t(index), vp)) {
|
|
*hole = false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return DoGetElement(cx, obj, index, hole, vp);
|
|
}
|
|
|
|
static bool
|
|
GetElementsSlow(JSContext *cx, HandleObject aobj, uint32_t length, Value *vp)
|
|
{
|
|
for (uint32_t i = 0; i < length; i++) {
|
|
if (!JSObject::getElement(cx, aobj, aobj, i, MutableHandleValue::fromMarkedLocation(&vp[i])))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
js::GetElements(JSContext *cx, HandleObject aobj, uint32_t length, Value *vp)
|
|
{
|
|
if (aobj->is<ArrayObject>() && length <= aobj->getDenseInitializedLength() &&
|
|
!ObjectMayHaveExtraIndexedProperties(aobj))
|
|
{
|
|
/* No other indexed properties so hole = undefined */
|
|
const Value *srcbeg = aobj->getDenseElements();
|
|
const Value *srcend = srcbeg + length;
|
|
const Value *src = srcbeg;
|
|
for (Value *dst = vp; src < srcend; ++dst, ++src)
|
|
*dst = src->isMagic(JS_ELEMENTS_HOLE) ? UndefinedValue() : *src;
|
|
return true;
|
|
}
|
|
|
|
if (aobj->is<ArgumentsObject>()) {
|
|
ArgumentsObject &argsobj = aobj->as<ArgumentsObject>();
|
|
if (!argsobj.hasOverriddenLength()) {
|
|
if (argsobj.maybeGetElements(0, length, vp))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return GetElementsSlow(cx, aobj, length, vp);
|
|
}
|
|
|
|
/*
|
|
* Set the value of the property at the given index to v assuming v is rooted.
|
|
*/
|
|
static bool
|
|
SetArrayElement(JSContext *cx, HandleObject obj, double index, HandleValue v)
|
|
{
|
|
JS_ASSERT(index >= 0);
|
|
|
|
if (obj->is<ArrayObject>() && !obj->isIndexed()) {
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
/* Predicted/prefetched code should favor the remains-dense case. */
|
|
JSObject::EnsureDenseResult result = JSObject::ED_SPARSE;
|
|
do {
|
|
if (index > uint32_t(-1))
|
|
break;
|
|
uint32_t idx = uint32_t(index);
|
|
if (idx >= arr->length() && !arr->lengthIsWritable()) {
|
|
JS_ReportErrorFlagsAndNumber(cx, JSREPORT_ERROR, js_GetErrorMessage, NULL,
|
|
JSMSG_CANT_REDEFINE_ARRAY_LENGTH);
|
|
return false;
|
|
}
|
|
result = arr->ensureDenseElements(cx, idx, 1);
|
|
if (result != JSObject::ED_OK)
|
|
break;
|
|
if (idx >= arr->length())
|
|
arr->setLengthInt32(idx + 1);
|
|
JSObject::setDenseElementWithType(cx, arr, idx, v);
|
|
return true;
|
|
} while (false);
|
|
|
|
if (result == JSObject::ED_FAILED)
|
|
return false;
|
|
JS_ASSERT(result == JSObject::ED_SPARSE);
|
|
}
|
|
|
|
RootedId id(cx);
|
|
if (!DoubleIndexToId(cx, index, &id))
|
|
return false;
|
|
|
|
RootedValue tmp(cx, v);
|
|
return JSObject::setGeneric(cx, obj, obj, id, &tmp, true);
|
|
}
|
|
|
|
/*
|
|
* Attempt to delete the element |index| from |obj| as if by
|
|
* |obj.[[Delete]](index)|.
|
|
*
|
|
* If an error occurs while attempting to delete the element (that is, the call
|
|
* to [[Delete]] threw), return false.
|
|
*
|
|
* Otherwise set *succeeded to indicate whether the deletion attempt succeeded
|
|
* (that is, whether the call to [[Delete]] returned true or false). (Deletes
|
|
* generally fail only when the property is non-configurable, but proxies may
|
|
* implement different semantics.)
|
|
*/
|
|
static bool
|
|
DeleteArrayElement(JSContext *cx, HandleObject obj, double index, bool *succeeded)
|
|
{
|
|
JS_ASSERT(index >= 0);
|
|
JS_ASSERT(floor(index) == index);
|
|
|
|
if (obj->is<ArrayObject>() && !obj->isIndexed()) {
|
|
if (index <= UINT32_MAX) {
|
|
uint32_t idx = uint32_t(index);
|
|
if (idx < obj->getDenseInitializedLength()) {
|
|
obj->markDenseElementsNotPacked(cx);
|
|
obj->setDenseElement(idx, MagicValue(JS_ELEMENTS_HOLE));
|
|
if (!js_SuppressDeletedElement(cx, obj, idx))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
*succeeded = true;
|
|
return true;
|
|
}
|
|
|
|
if (index <= UINT32_MAX)
|
|
return JSObject::deleteElement(cx, obj, uint32_t(index), succeeded);
|
|
|
|
return JSObject::deleteByValue(cx, obj, DoubleValue(index), succeeded);
|
|
}
|
|
|
|
/* ES6 20130308 draft 9.3.5 */
|
|
static bool
|
|
DeletePropertyOrThrow(JSContext *cx, HandleObject obj, double index)
|
|
{
|
|
bool succeeded;
|
|
if (!DeleteArrayElement(cx, obj, index, &succeeded))
|
|
return false;
|
|
if (succeeded)
|
|
return true;
|
|
|
|
RootedId id(cx);
|
|
RootedValue indexv(cx, NumberValue(index));
|
|
if (!ValueToId<CanGC>(cx, indexv, &id))
|
|
return false;
|
|
return obj->reportNotConfigurable(cx, id, JSREPORT_ERROR);
|
|
}
|
|
|
|
bool
|
|
js::SetLengthProperty(JSContext *cx, HandleObject obj, double length)
|
|
{
|
|
RootedValue v(cx, NumberValue(length));
|
|
return JSObject::setProperty(cx, obj, obj, cx->names().length, &v, true);
|
|
}
|
|
|
|
/*
|
|
* Since SpiderMonkey supports cross-class prototype-based delegation, we have
|
|
* to be careful about the length getter and setter being called on an object
|
|
* not of Array class. For the getter, we search obj's prototype chain for the
|
|
* array that caused this getter to be invoked. In the setter case to overcome
|
|
* the JSPROP_SHARED attribute, we must define a shadowing length property.
|
|
*/
|
|
static bool
|
|
array_length_getter(JSContext *cx, HandleObject obj_, HandleId id, MutableHandleValue vp)
|
|
{
|
|
RootedObject obj(cx, obj_);
|
|
do {
|
|
if (obj->is<ArrayObject>()) {
|
|
vp.setNumber(obj->as<ArrayObject>().length());
|
|
return true;
|
|
}
|
|
if (!JSObject::getProto(cx, obj, &obj))
|
|
return false;
|
|
} while (obj);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
array_length_setter(JSContext *cx, HandleObject obj, HandleId id, bool strict, MutableHandleValue vp)
|
|
{
|
|
if (!obj->is<ArrayObject>()) {
|
|
return JSObject::defineProperty(cx, obj, cx->names().length, vp,
|
|
NULL, NULL, JSPROP_ENUMERATE);
|
|
}
|
|
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
MOZ_ASSERT(arr->lengthIsWritable(),
|
|
"setter shouldn't be called if property is non-writable");
|
|
return ArraySetLength(cx, arr, id, JSPROP_PERMANENT, vp, strict);
|
|
}
|
|
|
|
struct ReverseIndexComparator
|
|
{
|
|
bool operator()(const uint32_t& a, const uint32_t& b, bool *lessOrEqualp) {
|
|
MOZ_ASSERT(a != b, "how'd we get duplicate indexes?");
|
|
*lessOrEqualp = b <= a;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
bool
|
|
js::CanonicalizeArrayLengthValue(JSContext *cx, HandleValue v, uint32_t *newLen)
|
|
{
|
|
if (!ToUint32(cx, v, newLen))
|
|
return false;
|
|
|
|
double d;
|
|
if (!ToNumber(cx, v, &d))
|
|
return false;
|
|
if (d == *newLen)
|
|
return true;
|
|
|
|
if (cx->isJSContext())
|
|
JS_ReportErrorNumber(cx->asJSContext(), js_GetErrorMessage, NULL, JSMSG_BAD_ARRAY_LENGTH);
|
|
return false;
|
|
}
|
|
|
|
/* ES6 20130308 draft 8.4.2.4 ArraySetLength */
|
|
bool
|
|
js::ArraySetLength(JSContext *cx, Handle<ArrayObject*> arr, HandleId id, unsigned attrs,
|
|
HandleValue value, bool setterIsStrict)
|
|
{
|
|
MOZ_ASSERT(id == NameToId(cx->names().length));
|
|
|
|
/* Steps 1-2 are irrelevant in our implementation. */
|
|
|
|
/* Steps 3-5. */
|
|
uint32_t newLen;
|
|
if (!CanonicalizeArrayLengthValue(cx, value, &newLen))
|
|
return false;
|
|
|
|
// Abort if we're being asked to change enumerability or configurability.
|
|
// (The length property of arrays is non-configurable, so such attempts
|
|
// must fail.) This behavior is spread throughout the ArraySetLength spec
|
|
// algorithm, but we only need check it once as our array implementation
|
|
// is internally so different from the spec algorithm. (ES5 and ES6 define
|
|
// behavior by delegating to the default define-own-property algorithm --
|
|
// OrdinaryDefineOwnProperty in ES6, the default [[DefineOwnProperty]] in
|
|
// ES5 -- but we reimplement all the conflict-detection bits ourselves here
|
|
// so that we can use a customized length representation.)
|
|
if (!(attrs & JSPROP_PERMANENT) || (attrs & JSPROP_ENUMERATE)) {
|
|
if (!setterIsStrict)
|
|
return true;
|
|
return Throw(cx, id, JSMSG_CANT_REDEFINE_PROP);
|
|
}
|
|
|
|
/* Steps 6-7. */
|
|
bool lengthIsWritable = arr->lengthIsWritable();
|
|
#ifdef DEBUG
|
|
{
|
|
RootedShape lengthShape(cx, arr->nativeLookup(cx, id));
|
|
MOZ_ASSERT(lengthShape);
|
|
MOZ_ASSERT(lengthShape->writable() == lengthIsWritable);
|
|
}
|
|
#endif
|
|
|
|
uint32_t oldLen = arr->length();
|
|
|
|
/* Steps 8-9 for arrays with non-writable length. */
|
|
if (!lengthIsWritable) {
|
|
if (newLen == oldLen)
|
|
return true;
|
|
|
|
if (!cx->isJSContext())
|
|
return false;
|
|
|
|
if (setterIsStrict) {
|
|
return JS_ReportErrorFlagsAndNumber(cx->asJSContext(),
|
|
JSREPORT_ERROR, js_GetErrorMessage, NULL,
|
|
JSMSG_CANT_REDEFINE_ARRAY_LENGTH);
|
|
}
|
|
|
|
return JSObject::reportReadOnly(cx->asJSContext(), id, JSREPORT_STRICT | JSREPORT_WARNING);
|
|
}
|
|
|
|
/* Step 8. */
|
|
bool succeeded = true;
|
|
do {
|
|
// The initialized length and capacity of an array only need updating
|
|
// when non-hole elements are added or removed, which doesn't happen
|
|
// when array length stays the same or increases.
|
|
if (newLen >= oldLen)
|
|
break;
|
|
|
|
// Attempt to propagate dense-element optimization tricks, if possible,
|
|
// and avoid the generic (and accordingly slow) deletion code below.
|
|
// We can only do this if there are only densely-indexed elements.
|
|
// Once there's a sparse indexed element, there's no good way to know,
|
|
// save by enumerating all the properties to find it. But we *have* to
|
|
// know in case that sparse indexed element is non-configurable, as
|
|
// that element must prevent any deletions below it. Bug 586842 should
|
|
// fix this inefficiency by moving indexed storage to be entirely
|
|
// separate from non-indexed storage.
|
|
if (!arr->isIndexed()) {
|
|
uint32_t oldCapacity = arr->getDenseCapacity();
|
|
uint32_t oldInitializedLength = arr->getDenseInitializedLength();
|
|
MOZ_ASSERT(oldCapacity >= oldInitializedLength);
|
|
if (oldInitializedLength > newLen)
|
|
arr->setDenseInitializedLength(newLen);
|
|
if (oldCapacity > newLen)
|
|
arr->shrinkElements(cx, newLen);
|
|
|
|
// We've done the work of deleting any dense elements needing
|
|
// deletion, and there are no sparse elements. Thus we can skip
|
|
// straight to defining the length.
|
|
break;
|
|
}
|
|
|
|
// Step 15.
|
|
//
|
|
// Attempt to delete all elements above the new length, from greatest
|
|
// to least. If any of these deletions fails, we're supposed to define
|
|
// the length to one greater than the index that couldn't be deleted,
|
|
// *with the property attributes specified*. This might convert the
|
|
// length to be not the value specified, yet non-writable. (You may be
|
|
// forgiven for thinking these are interesting semantics.) Example:
|
|
//
|
|
// var arr =
|
|
// Object.defineProperty([0, 1, 2, 3], 1, { writable: false });
|
|
// Object.defineProperty(arr, "length",
|
|
// { value: 0, writable: false });
|
|
//
|
|
// will convert |arr| to an array of non-writable length two, then
|
|
// throw a TypeError.
|
|
//
|
|
// We implement this behavior, in the relevant lops below, by setting
|
|
// |succeeded| to false. Then we exit the loop, define the length
|
|
// appropriately, and only then throw a TypeError, if necessary.
|
|
uint32_t gap = oldLen - newLen;
|
|
const uint32_t RemoveElementsFastLimit = 1 << 24;
|
|
if (gap < RemoveElementsFastLimit) {
|
|
// If we're removing a relatively small number of elements, just do
|
|
// it exactly by the spec.
|
|
while (newLen < oldLen) {
|
|
/* Step 15a. */
|
|
oldLen--;
|
|
|
|
/* Steps 15b-d. */
|
|
bool deleteSucceeded;
|
|
if (!JSObject::deleteElement(cx, arr, oldLen, &deleteSucceeded))
|
|
return false;
|
|
if (!deleteSucceeded) {
|
|
newLen = oldLen + 1;
|
|
succeeded = false;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// If we're removing a large number of elements from an array
|
|
// that's probably sparse, try a different tack. Get all the own
|
|
// property names, sift out the indexes in the deletion range into
|
|
// a vector, sort the vector greatest to least, then delete the
|
|
// indexes greatest to least using that vector. See bug 322135.
|
|
//
|
|
// This heuristic's kind of a huge guess -- "large number of
|
|
// elements" and "probably sparse" are completely unprincipled
|
|
// predictions. In the long run, bug 586842 will support the right
|
|
// fix: store sparse elements in a sorted data structure that
|
|
// permits fast in-reverse-order traversal and concurrent removals.
|
|
|
|
Vector<uint32_t> indexes(cx);
|
|
{
|
|
AutoIdVector props(cx);
|
|
if (!GetPropertyNames(cx, arr, JSITER_OWNONLY | JSITER_HIDDEN, &props))
|
|
return false;
|
|
|
|
for (size_t i = 0; i < props.length(); i++) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
uint32_t index;
|
|
if (!js_IdIsIndex(props[i], &index))
|
|
continue;
|
|
|
|
if (index >= newLen && index < oldLen) {
|
|
if (!indexes.append(index))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t count = indexes.length();
|
|
{
|
|
// We should use radix sort to be O(n), but this is uncommon
|
|
// enough that we'll punt til someone complains.
|
|
Vector<uint32_t> scratch(cx);
|
|
if (!scratch.resize(count))
|
|
return false;
|
|
MOZ_ALWAYS_TRUE(MergeSort(indexes.begin(), count, scratch.begin(),
|
|
ReverseIndexComparator()));
|
|
}
|
|
|
|
uint32_t index = UINT32_MAX;
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
MOZ_ASSERT(indexes[i] < index, "indexes should never repeat");
|
|
index = indexes[i];
|
|
|
|
/* Steps 15b-d. */
|
|
bool deleteSucceeded;
|
|
if (!JSObject::deleteElement(cx, arr, index, &deleteSucceeded))
|
|
return false;
|
|
if (!deleteSucceeded) {
|
|
newLen = index + 1;
|
|
succeeded = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} while (false);
|
|
|
|
/* Steps 12, 16. */
|
|
|
|
// Yes, we totally drop a non-stub getter/setter from a defineProperty
|
|
// API call on the floor here. Given that getter/setter will go away in
|
|
// the long run, with accessors replacing them both internally and at the
|
|
// API level, just run with this.
|
|
RootedShape lengthShape(cx, arr->nativeLookup(cx, id));
|
|
if (!JSObject::changeProperty(cx, arr, lengthShape, attrs,
|
|
JSPROP_PERMANENT | JSPROP_READONLY | JSPROP_SHARED,
|
|
array_length_getter, array_length_setter))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
RootedValue v(cx, NumberValue(newLen));
|
|
AddTypePropertyId(cx, arr, id, v);
|
|
ArrayObject::setLength(cx, arr, newLen);
|
|
|
|
// All operations past here until the |!succeeded| code must be infallible,
|
|
// so that all element fields remain properly synchronized.
|
|
|
|
// Trim the initialized length, if needed, to preserve the <= length
|
|
// invariant. (Capacity was already reduced during element deletion, if
|
|
// necessary.)
|
|
ObjectElements *header = arr->getElementsHeader();
|
|
header->initializedLength = Min(header->initializedLength, newLen);
|
|
|
|
if (attrs & JSPROP_READONLY) {
|
|
header->setNonwritableArrayLength();
|
|
|
|
// When an array's length becomes non-writable, writes to indexes
|
|
// greater than or equal to the length don't change the array. We
|
|
// handle this with a check for non-writable length in most places.
|
|
// But in JIT code every check counts -- so we piggyback the check on
|
|
// the already-required range check for |index < capacity| by making
|
|
// capacity of arrays with non-writable length never exceed the length.
|
|
if (arr->getDenseCapacity() > newLen) {
|
|
arr->shrinkElements(cx, newLen);
|
|
arr->getElementsHeader()->capacity = newLen;
|
|
}
|
|
}
|
|
|
|
if (setterIsStrict && !succeeded) {
|
|
RootedId elementId(cx);
|
|
if (!IndexToId(cx, newLen - 1, &elementId))
|
|
return false;
|
|
return arr->reportNotConfigurable(cx, elementId);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
js::WouldDefinePastNonwritableLength(ExclusiveContext *cx,
|
|
HandleObject obj, uint32_t index, bool strict,
|
|
bool *definesPast)
|
|
{
|
|
if (!obj->is<ArrayObject>()) {
|
|
*definesPast = false;
|
|
return true;
|
|
}
|
|
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
uint32_t length = arr->length();
|
|
if (index < length) {
|
|
*definesPast = false;
|
|
return true;
|
|
}
|
|
|
|
if (arr->lengthIsWritable()) {
|
|
*definesPast = false;
|
|
return true;
|
|
}
|
|
|
|
*definesPast = true;
|
|
|
|
if (!cx->isJSContext())
|
|
return true;
|
|
|
|
JSContext *ncx = cx->asJSContext();
|
|
|
|
if (!strict && !ncx->hasExtraWarningsOption())
|
|
return true;
|
|
|
|
// Error in strict mode code or warn with strict option.
|
|
// XXX include the index and maybe array length in the error message
|
|
unsigned flags = strict ? JSREPORT_ERROR : (JSREPORT_STRICT | JSREPORT_WARNING);
|
|
return JS_ReportErrorFlagsAndNumber(ncx, flags, js_GetErrorMessage, NULL,
|
|
JSMSG_CANT_DEFINE_PAST_ARRAY_LENGTH);
|
|
}
|
|
|
|
static bool
|
|
array_addProperty(JSContext *cx, HandleObject obj, HandleId id,
|
|
MutableHandleValue vp)
|
|
{
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
|
|
uint32_t index;
|
|
if (!js_IdIsIndex(id, &index))
|
|
return true;
|
|
|
|
uint32_t length = arr->length();
|
|
if (index >= length) {
|
|
MOZ_ASSERT(arr->lengthIsWritable(),
|
|
"how'd this element get added if length is non-writable?");
|
|
ArrayObject::setLength(cx, arr, index + 1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
js::ObjectMayHaveExtraIndexedProperties(JSObject *obj)
|
|
{
|
|
/*
|
|
* Whether obj may have indexed properties anywhere besides its dense
|
|
* elements. This includes other indexed properties in its shape hierarchy,
|
|
* and indexed properties or elements along its prototype chain.
|
|
*/
|
|
|
|
JS_ASSERT(obj->isNative());
|
|
|
|
if (obj->isIndexed())
|
|
return true;
|
|
|
|
/*
|
|
* Walk up the prototype chain and see if this indexed element already
|
|
* exists. If we hit the end of the prototype chain, it's safe to set the
|
|
* element on the original object.
|
|
*/
|
|
while ((obj = obj->getProto()) != NULL) {
|
|
/*
|
|
* If the prototype is a non-native object (possibly a dense array), or
|
|
* a native object (possibly a slow array) that has indexed properties,
|
|
* return true.
|
|
*/
|
|
if (!obj->isNative())
|
|
return true;
|
|
if (obj->isIndexed())
|
|
return true;
|
|
if (obj->getDenseInitializedLength() > 0)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const Class ArrayObject::class_ = {
|
|
"Array",
|
|
JSCLASS_HAS_CACHED_PROTO(JSProto_Array),
|
|
array_addProperty,
|
|
JS_DeletePropertyStub, /* delProperty */
|
|
JS_PropertyStub, /* getProperty */
|
|
JS_StrictPropertyStub, /* setProperty */
|
|
JS_EnumerateStub,
|
|
JS_ResolveStub,
|
|
JS_ConvertStub,
|
|
NULL,
|
|
NULL, /* checkAccess */
|
|
NULL, /* call */
|
|
NULL, /* hasInstance */
|
|
NULL, /* construct */
|
|
NULL, /* trace */
|
|
{
|
|
NULL, /* outerObject */
|
|
NULL, /* innerObject */
|
|
NULL, /* iteratorObject */
|
|
false, /* isWrappedNative */
|
|
}
|
|
};
|
|
|
|
static bool
|
|
AddLengthProperty(ExclusiveContext *cx, HandleObject obj)
|
|
{
|
|
/*
|
|
* Add the 'length' property for a newly created array,
|
|
* and update the elements to be an empty array owned by the object.
|
|
* The shared emptyObjectElements singleton cannot be used for slow arrays,
|
|
* as accesses to 'length' will use the elements header.
|
|
*/
|
|
|
|
RootedId lengthId(cx, NameToId(cx->names().length));
|
|
JS_ASSERT(!obj->nativeLookup(cx, lengthId));
|
|
|
|
return JSObject::addProperty(cx, obj, lengthId, array_length_getter, array_length_setter,
|
|
SHAPE_INVALID_SLOT, JSPROP_PERMANENT | JSPROP_SHARED, 0, 0,
|
|
/* allowDictionary = */ false);
|
|
}
|
|
|
|
#if JS_HAS_TOSOURCE
|
|
JS_ALWAYS_INLINE bool
|
|
IsArray(HandleValue v)
|
|
{
|
|
return v.isObject() && v.toObject().is<ArrayObject>();
|
|
}
|
|
|
|
JS_ALWAYS_INLINE bool
|
|
array_toSource_impl(JSContext *cx, CallArgs args)
|
|
{
|
|
JS_ASSERT(IsArray(args.thisv()));
|
|
|
|
Rooted<JSObject*> obj(cx, &args.thisv().toObject());
|
|
RootedValue elt(cx);
|
|
|
|
AutoCycleDetector detector(cx, obj);
|
|
if (!detector.init())
|
|
return false;
|
|
|
|
StringBuffer sb(cx);
|
|
|
|
if (detector.foundCycle()) {
|
|
if (!sb.append("[]"))
|
|
return false;
|
|
goto make_string;
|
|
}
|
|
|
|
if (!sb.append('['))
|
|
return false;
|
|
|
|
uint32_t length;
|
|
if (!GetLengthProperty(cx, obj, &length))
|
|
return false;
|
|
|
|
for (uint32_t index = 0; index < length; index++) {
|
|
bool hole;
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
|
|
!GetElement(cx, obj, index, &hole, &elt)) {
|
|
return false;
|
|
}
|
|
|
|
/* Get element's character string. */
|
|
JSString *str;
|
|
if (hole) {
|
|
str = cx->runtime()->emptyString;
|
|
} else {
|
|
str = ValueToSource(cx, elt);
|
|
if (!str)
|
|
return false;
|
|
}
|
|
|
|
/* Append element to buffer. */
|
|
if (!sb.append(str))
|
|
return false;
|
|
if (index + 1 != length) {
|
|
if (!sb.append(", "))
|
|
return false;
|
|
} else if (hole) {
|
|
if (!sb.append(','))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Finalize the buffer. */
|
|
if (!sb.append(']'))
|
|
return false;
|
|
|
|
make_string:
|
|
JSString *str = sb.finishString();
|
|
if (!str)
|
|
return false;
|
|
|
|
args.rval().setString(str);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
array_toSource(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
JS_CHECK_RECURSION(cx, return false);
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
return CallNonGenericMethod<IsArray, array_toSource_impl>(cx, args);
|
|
}
|
|
#endif
|
|
|
|
struct EmptySeparatorOp
|
|
{
|
|
bool operator()(JSContext *, StringBuffer &sb) { return true; }
|
|
};
|
|
|
|
struct CharSeparatorOp
|
|
{
|
|
jschar sep;
|
|
CharSeparatorOp(jschar sep) : sep(sep) {};
|
|
bool operator()(JSContext *, StringBuffer &sb) { return sb.append(sep); }
|
|
};
|
|
|
|
struct StringSeparatorOp
|
|
{
|
|
const jschar *sepchars;
|
|
size_t seplen;
|
|
|
|
StringSeparatorOp(const jschar *sepchars, size_t seplen)
|
|
: sepchars(sepchars), seplen(seplen) {};
|
|
|
|
bool operator()(JSContext *cx, StringBuffer &sb) {
|
|
return sb.append(sepchars, seplen);
|
|
}
|
|
};
|
|
|
|
template <bool Locale, typename SeparatorOp>
|
|
static bool
|
|
ArrayJoinKernel(JSContext *cx, SeparatorOp sepOp, HandleObject obj, uint32_t length,
|
|
StringBuffer &sb)
|
|
{
|
|
uint32_t i = 0;
|
|
|
|
if (!Locale && obj->is<ArrayObject>() && !ObjectMayHaveExtraIndexedProperties(obj)) {
|
|
// This loop handles all elements up to initializedLength. If
|
|
// length > initLength we rely on the second loop to add the
|
|
// other elements.
|
|
uint32_t initLength = obj->getDenseInitializedLength();
|
|
while (i < initLength) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
const Value &elem = obj->getDenseElement(i);
|
|
|
|
if (elem.isString()) {
|
|
if (!sb.append(elem.toString()))
|
|
return false;
|
|
} else if (elem.isNumber()) {
|
|
if (!NumberValueToStringBuffer(cx, elem, sb))
|
|
return false;
|
|
} else if (elem.isBoolean()) {
|
|
if (!BooleanToStringBuffer(cx, elem.toBoolean(), sb))
|
|
return false;
|
|
} else if (elem.isObject()) {
|
|
/*
|
|
* Object stringifying could modify the initialized length or make
|
|
* the array sparse. Delegate it to a separate loop to keep this
|
|
* one tight.
|
|
*/
|
|
break;
|
|
} else {
|
|
JS_ASSERT(elem.isMagic(JS_ELEMENTS_HOLE) || elem.isNullOrUndefined());
|
|
}
|
|
|
|
if (++i != length && !sepOp(cx, sb))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (i != length) {
|
|
RootedValue v(cx);
|
|
while (i < length) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
bool hole;
|
|
if (!GetElement(cx, obj, i, &hole, &v))
|
|
return false;
|
|
if (!hole && !v.isNullOrUndefined()) {
|
|
if (Locale) {
|
|
JSObject *robj = ToObject(cx, v);
|
|
if (!robj)
|
|
return false;
|
|
RootedId id(cx, NameToId(cx->names().toLocaleString));
|
|
if (!robj->callMethod(cx, id, 0, NULL, &v))
|
|
return false;
|
|
}
|
|
if (!ValueToStringBuffer(cx, v, sb))
|
|
return false;
|
|
}
|
|
|
|
if (++i != length && !sepOp(cx, sb))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <bool Locale>
|
|
static bool
|
|
ArrayJoin(JSContext *cx, CallArgs &args)
|
|
{
|
|
// This method is shared by Array.prototype.join and
|
|
// Array.prototype.toLocaleString. The steps in ES5 are nearly the same, so
|
|
// the annotations in this function apply to both toLocaleString and join.
|
|
|
|
// Step 1
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
AutoCycleDetector detector(cx, obj);
|
|
if (!detector.init())
|
|
return false;
|
|
|
|
if (detector.foundCycle()) {
|
|
args.rval().setString(cx->names().empty);
|
|
return true;
|
|
}
|
|
|
|
// Steps 2 and 3
|
|
uint32_t length;
|
|
if (!GetLengthProperty(cx, obj, &length))
|
|
return false;
|
|
|
|
// Steps 4 and 5
|
|
RootedString sepstr(cx, NULL);
|
|
if (!Locale && args.hasDefined(0)) {
|
|
sepstr = ToString<CanGC>(cx, args[0]);
|
|
if (!sepstr)
|
|
return false;
|
|
}
|
|
const jschar *sepchars;
|
|
size_t seplen;
|
|
if (sepstr) {
|
|
sepchars = sepstr->getChars(cx);
|
|
if (!sepchars)
|
|
return false;
|
|
seplen = sepstr->length();
|
|
} else {
|
|
static const jschar comma = ',';
|
|
sepchars = ,
|
|
seplen = 1;
|
|
}
|
|
|
|
// Step 6 is implicit in the loops below
|
|
|
|
StringBuffer sb(cx);
|
|
|
|
// The separator will be added |length - 1| times, reserve space for that
|
|
// so that we don't have to unnecessarily grow the buffer.
|
|
if (length > 0 && !sb.reserve(seplen * (length - 1)))
|
|
return false;
|
|
|
|
// Various optimized versions of steps 7-10
|
|
if (seplen == 0) {
|
|
EmptySeparatorOp op;
|
|
if (!ArrayJoinKernel<Locale>(cx, op, obj, length, sb))
|
|
return false;
|
|
} else if (seplen == 1) {
|
|
CharSeparatorOp op(sepchars[0]);
|
|
if (!ArrayJoinKernel<Locale>(cx, op, obj, length, sb))
|
|
return false;
|
|
} else {
|
|
StringSeparatorOp op(sepchars, seplen);
|
|
if (!ArrayJoinKernel<Locale>(cx, op, obj, length, sb))
|
|
return false;
|
|
}
|
|
|
|
// Step 11
|
|
JSString *str = sb.finishString();
|
|
if (!str)
|
|
return false;
|
|
args.rval().setString(str);
|
|
return true;
|
|
}
|
|
|
|
/* ES5 15.4.4.2. NB: The algorithm here differs from the one in ES3. */
|
|
static bool
|
|
array_toString(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
JS_CHECK_RECURSION(cx, return false);
|
|
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
RootedValue join(cx, args.calleev());
|
|
if (!JSObject::getProperty(cx, obj, obj, cx->names().join, &join))
|
|
return false;
|
|
|
|
if (!js_IsCallable(join)) {
|
|
JSString *str = JS_BasicObjectToString(cx, obj);
|
|
if (!str)
|
|
return false;
|
|
args.rval().setString(str);
|
|
return true;
|
|
}
|
|
|
|
InvokeArgs args2(cx);
|
|
if (!args2.init(0))
|
|
return false;
|
|
|
|
args2.setCallee(join);
|
|
args2.setThis(ObjectValue(*obj));
|
|
|
|
/* Do the call. */
|
|
if (!Invoke(cx, args2))
|
|
return false;
|
|
args.rval().set(args2.rval());
|
|
return true;
|
|
}
|
|
|
|
/* ES5 15.4.4.3 */
|
|
static bool
|
|
array_toLocaleString(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
JS_CHECK_RECURSION(cx, return false);
|
|
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
return ArrayJoin<true>(cx, args);
|
|
}
|
|
|
|
/* ES5 15.4.4.5 */
|
|
static bool
|
|
array_join(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
JS_CHECK_RECURSION(cx, return false);
|
|
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
return ArrayJoin<false>(cx, args);
|
|
}
|
|
|
|
static inline bool
|
|
InitArrayTypes(JSContext *cx, TypeObject *type, const Value *vector, unsigned count)
|
|
{
|
|
if (cx->typeInferenceEnabled() && !type->unknownProperties()) {
|
|
AutoEnterAnalysis enter(cx);
|
|
|
|
TypeSet *types = type->getProperty(cx, JSID_VOID);
|
|
if (!types)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < count; i++) {
|
|
if (vector[i].isMagic(JS_ELEMENTS_HOLE))
|
|
continue;
|
|
Type valtype = GetValueType(vector[i]);
|
|
types->addType(cx, valtype);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
enum ShouldUpdateTypes
|
|
{
|
|
UpdateTypes = true,
|
|
DontUpdateTypes = false
|
|
};
|
|
|
|
/* vector must point to rooted memory. */
|
|
static bool
|
|
InitArrayElements(JSContext *cx, HandleObject obj, uint32_t start, uint32_t count, const Value *vector, ShouldUpdateTypes updateTypes)
|
|
{
|
|
JS_ASSERT(count <= MAX_ARRAY_INDEX);
|
|
|
|
if (count == 0)
|
|
return true;
|
|
|
|
types::TypeObject *type = obj->getType(cx);
|
|
if (!type)
|
|
return false;
|
|
if (updateTypes && !InitArrayTypes(cx, type, vector, count))
|
|
return false;
|
|
|
|
/*
|
|
* Optimize for dense arrays so long as adding the given set of elements
|
|
* wouldn't otherwise make the array slow or exceed a non-writable array
|
|
* length.
|
|
*/
|
|
do {
|
|
if (!obj->is<ArrayObject>())
|
|
break;
|
|
if (ObjectMayHaveExtraIndexedProperties(obj))
|
|
break;
|
|
|
|
if (obj->shouldConvertDoubleElements())
|
|
break;
|
|
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
|
|
if (!arr->lengthIsWritable() && start + count > arr->length())
|
|
break;
|
|
|
|
JSObject::EnsureDenseResult result = arr->ensureDenseElements(cx, start, count);
|
|
if (result != JSObject::ED_OK) {
|
|
if (result == JSObject::ED_FAILED)
|
|
return false;
|
|
JS_ASSERT(result == JSObject::ED_SPARSE);
|
|
break;
|
|
}
|
|
|
|
uint32_t newlen = start + count;
|
|
if (newlen > arr->length())
|
|
arr->setLengthInt32(newlen);
|
|
|
|
JS_ASSERT(count < UINT32_MAX / sizeof(Value));
|
|
arr->copyDenseElements(start, vector, count);
|
|
JS_ASSERT_IF(count != 0, !arr->getDenseElement(newlen - 1).isMagic(JS_ELEMENTS_HOLE));
|
|
return true;
|
|
} while (false);
|
|
|
|
const Value* end = vector + count;
|
|
while (vector < end && start <= MAX_ARRAY_INDEX) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
|
|
!SetArrayElement(cx, obj, start++, HandleValue::fromMarkedLocation(vector++))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (vector == end)
|
|
return true;
|
|
|
|
JS_ASSERT(start == MAX_ARRAY_INDEX + 1);
|
|
RootedValue value(cx);
|
|
RootedId id(cx);
|
|
RootedValue indexv(cx);
|
|
double index = MAX_ARRAY_INDEX + 1;
|
|
do {
|
|
value = *vector++;
|
|
indexv = DoubleValue(index);
|
|
if (!ValueToId<CanGC>(cx, indexv, &id) ||
|
|
!JSObject::setGeneric(cx, obj, obj, id, &value, true))
|
|
{
|
|
return false;
|
|
}
|
|
index += 1;
|
|
} while (vector != end);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
array_reverse(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
uint32_t len;
|
|
if (!GetLengthProperty(cx, obj, &len))
|
|
return false;
|
|
|
|
do {
|
|
if (!obj->is<ArrayObject>())
|
|
break;
|
|
if (ObjectMayHaveExtraIndexedProperties(obj))
|
|
break;
|
|
|
|
/* An empty array or an array with no elements is already reversed. */
|
|
if (len == 0 || obj->getDenseCapacity() == 0) {
|
|
args.rval().setObject(*obj);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* It's actually surprisingly complicated to reverse an array due to the
|
|
* orthogonality of array length and array capacity while handling
|
|
* leading and trailing holes correctly. Reversing seems less likely to
|
|
* be a common operation than other array mass-mutation methods, so for
|
|
* now just take a probably-small memory hit (in the absence of too many
|
|
* holes in the array at its start) and ensure that the capacity is
|
|
* sufficient to hold all the elements in the array if it were full.
|
|
*/
|
|
JSObject::EnsureDenseResult result = obj->ensureDenseElements(cx, len, 0);
|
|
if (result != JSObject::ED_OK) {
|
|
if (result == JSObject::ED_FAILED)
|
|
return false;
|
|
JS_ASSERT(result == JSObject::ED_SPARSE);
|
|
break;
|
|
}
|
|
|
|
/* Fill out the array's initialized length to its proper length. */
|
|
obj->ensureDenseInitializedLength(cx, len, 0);
|
|
|
|
RootedValue origlo(cx), orighi(cx);
|
|
|
|
uint32_t lo = 0, hi = len - 1;
|
|
for (; lo < hi; lo++, hi--) {
|
|
origlo = obj->getDenseElement(lo);
|
|
orighi = obj->getDenseElement(hi);
|
|
obj->setDenseElement(lo, orighi);
|
|
if (orighi.isMagic(JS_ELEMENTS_HOLE) &&
|
|
!js_SuppressDeletedProperty(cx, obj, INT_TO_JSID(lo))) {
|
|
return false;
|
|
}
|
|
obj->setDenseElement(hi, origlo);
|
|
if (origlo.isMagic(JS_ELEMENTS_HOLE) &&
|
|
!js_SuppressDeletedProperty(cx, obj, INT_TO_JSID(hi))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Per ECMA-262, don't update the length of the array, even if the new
|
|
* array has trailing holes (and thus the original array began with
|
|
* holes).
|
|
*/
|
|
args.rval().setObject(*obj);
|
|
return true;
|
|
} while (false);
|
|
|
|
RootedValue lowval(cx), hival(cx);
|
|
for (uint32_t i = 0, half = len / 2; i < half; i++) {
|
|
bool hole, hole2;
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
|
|
!GetElement(cx, obj, i, &hole, &lowval) ||
|
|
!GetElement(cx, obj, len - i - 1, &hole2, &hival))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (!hole && !hole2) {
|
|
if (!SetArrayElement(cx, obj, i, hival))
|
|
return false;
|
|
if (!SetArrayElement(cx, obj, len - i - 1, lowval))
|
|
return false;
|
|
} else if (hole && !hole2) {
|
|
if (!SetArrayElement(cx, obj, i, hival))
|
|
return false;
|
|
if (!DeletePropertyOrThrow(cx, obj, len - i - 1))
|
|
return false;
|
|
} else if (!hole && hole2) {
|
|
if (!DeletePropertyOrThrow(cx, obj, i))
|
|
return false;
|
|
if (!SetArrayElement(cx, obj, len - i - 1, lowval))
|
|
return false;
|
|
} else {
|
|
// No action required.
|
|
}
|
|
}
|
|
args.rval().setObject(*obj);
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
inline bool
|
|
CompareStringValues(JSContext *cx, const Value &a, const Value &b, bool *lessOrEqualp)
|
|
{
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
JSString *astr = a.toString();
|
|
JSString *bstr = b.toString();
|
|
int32_t result;
|
|
if (!CompareStrings(cx, astr, bstr, &result))
|
|
return false;
|
|
|
|
*lessOrEqualp = (result <= 0);
|
|
return true;
|
|
}
|
|
|
|
static const uint64_t powersOf10[] = {
|
|
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 1000000000000ULL
|
|
};
|
|
|
|
static inline unsigned
|
|
NumDigitsBase10(uint32_t n)
|
|
{
|
|
/*
|
|
* This is just floor_log10(n) + 1
|
|
* Algorithm taken from
|
|
* http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
|
|
*/
|
|
uint32_t log2 = CeilingLog2(n);
|
|
uint32_t t = log2 * 1233 >> 12;
|
|
return t - (n < powersOf10[t]) + 1;
|
|
}
|
|
|
|
inline bool
|
|
CompareLexicographicInt32(JSContext *cx, const Value &a, const Value &b, bool *lessOrEqualp)
|
|
{
|
|
int32_t aint = a.toInt32();
|
|
int32_t bint = b.toInt32();
|
|
|
|
/*
|
|
* If both numbers are equal ... trivial
|
|
* If only one of both is negative --> arithmetic comparison as char code
|
|
* of '-' is always less than any other digit
|
|
* If both numbers are negative convert them to positive and continue
|
|
* handling ...
|
|
*/
|
|
if (aint == bint) {
|
|
*lessOrEqualp = true;
|
|
} else if ((aint < 0) && (bint >= 0)) {
|
|
*lessOrEqualp = true;
|
|
} else if ((aint >= 0) && (bint < 0)) {
|
|
*lessOrEqualp = false;
|
|
} else {
|
|
uint32_t auint = Abs(aint);
|
|
uint32_t buint = Abs(bint);
|
|
|
|
/*
|
|
* ... get number of digits of both integers.
|
|
* If they have the same number of digits --> arithmetic comparison.
|
|
* If digits_a > digits_b: a < b*10e(digits_a - digits_b).
|
|
* If digits_b > digits_a: a*10e(digits_b - digits_a) <= b.
|
|
*/
|
|
unsigned digitsa = NumDigitsBase10(auint);
|
|
unsigned digitsb = NumDigitsBase10(buint);
|
|
if (digitsa == digitsb) {
|
|
*lessOrEqualp = (auint <= buint);
|
|
} else if (digitsa > digitsb) {
|
|
JS_ASSERT((digitsa - digitsb) < ArrayLength(powersOf10));
|
|
*lessOrEqualp = (uint64_t(auint) < uint64_t(buint) * powersOf10[digitsa - digitsb]);
|
|
} else { /* if (digitsb > digitsa) */
|
|
JS_ASSERT((digitsb - digitsa) < ArrayLength(powersOf10));
|
|
*lessOrEqualp = (uint64_t(auint) * powersOf10[digitsb - digitsa] <= uint64_t(buint));
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool
|
|
CompareSubStringValues(JSContext *cx, const jschar *s1, size_t l1,
|
|
const jschar *s2, size_t l2, bool *lessOrEqualp)
|
|
{
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
int32_t result;
|
|
if (!s1 || !s2 || !CompareChars(s1, l1, s2, l2, &result))
|
|
return false;
|
|
|
|
*lessOrEqualp = (result <= 0);
|
|
return true;
|
|
}
|
|
|
|
struct SortComparatorStrings
|
|
{
|
|
JSContext *const cx;
|
|
|
|
SortComparatorStrings(JSContext *cx)
|
|
: cx(cx) {}
|
|
|
|
bool operator()(const Value &a, const Value &b, bool *lessOrEqualp) {
|
|
return CompareStringValues(cx, a, b, lessOrEqualp);
|
|
}
|
|
};
|
|
|
|
struct SortComparatorLexicographicInt32
|
|
{
|
|
JSContext *const cx;
|
|
|
|
SortComparatorLexicographicInt32(JSContext *cx)
|
|
: cx(cx) {}
|
|
|
|
bool operator()(const Value &a, const Value &b, bool *lessOrEqualp) {
|
|
return CompareLexicographicInt32(cx, a, b, lessOrEqualp);
|
|
}
|
|
};
|
|
|
|
struct StringifiedElement
|
|
{
|
|
size_t charsBegin;
|
|
size_t charsEnd;
|
|
size_t elementIndex;
|
|
};
|
|
|
|
struct SortComparatorStringifiedElements
|
|
{
|
|
JSContext *const cx;
|
|
const StringBuffer &sb;
|
|
|
|
SortComparatorStringifiedElements(JSContext *cx, const StringBuffer &sb)
|
|
: cx(cx), sb(sb) {}
|
|
|
|
bool operator()(const StringifiedElement &a, const StringifiedElement &b, bool *lessOrEqualp) {
|
|
return CompareSubStringValues(cx, sb.begin() + a.charsBegin, a.charsEnd - a.charsBegin,
|
|
sb.begin() + b.charsBegin, b.charsEnd - b.charsBegin,
|
|
lessOrEqualp);
|
|
}
|
|
};
|
|
|
|
struct SortComparatorFunction
|
|
{
|
|
JSContext *const cx;
|
|
const Value &fval;
|
|
FastInvokeGuard &fig;
|
|
|
|
SortComparatorFunction(JSContext *cx, const Value &fval, FastInvokeGuard &fig)
|
|
: cx(cx), fval(fval), fig(fig) { }
|
|
|
|
bool operator()(const Value &a, const Value &b, bool *lessOrEqualp);
|
|
};
|
|
|
|
bool
|
|
SortComparatorFunction::operator()(const Value &a, const Value &b, bool *lessOrEqualp)
|
|
{
|
|
/*
|
|
* array_sort deals with holes and undefs on its own and they should not
|
|
* come here.
|
|
*/
|
|
JS_ASSERT(!a.isMagic() && !a.isUndefined());
|
|
JS_ASSERT(!a.isMagic() && !b.isUndefined());
|
|
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
InvokeArgs &args = fig.args();
|
|
if (!args.init(2))
|
|
return false;
|
|
|
|
args.setCallee(fval);
|
|
args.setThis(UndefinedValue());
|
|
args[0].set(a);
|
|
args[1].set(b);
|
|
|
|
if (!fig.invoke(cx))
|
|
return false;
|
|
|
|
double cmp;
|
|
if (!ToNumber(cx, args.rval(), &cmp))
|
|
return false;
|
|
|
|
/*
|
|
* XXX eport some kind of error here if cmp is NaN? ECMA talks about
|
|
* 'consistent compare functions' that don't return NaN, but is silent
|
|
* about what the result should be. So we currently ignore it.
|
|
*/
|
|
*lessOrEqualp = (IsNaN(cmp) || cmp <= 0);
|
|
return true;
|
|
}
|
|
|
|
struct NumericElement
|
|
{
|
|
double dv;
|
|
size_t elementIndex;
|
|
};
|
|
|
|
bool
|
|
ComparatorNumericLeftMinusRight(const NumericElement &a, const NumericElement &b,
|
|
bool *lessOrEqualp)
|
|
{
|
|
*lessOrEqualp = (a.dv <= b.dv);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ComparatorNumericRightMinusLeft(const NumericElement &a, const NumericElement &b,
|
|
bool *lessOrEqualp)
|
|
{
|
|
*lessOrEqualp = (b.dv <= a.dv);
|
|
return true;
|
|
}
|
|
|
|
typedef bool (*ComparatorNumeric)(const NumericElement &a, const NumericElement &b,
|
|
bool *lessOrEqualp);
|
|
|
|
ComparatorNumeric SortComparatorNumerics[] = {
|
|
NULL,
|
|
NULL,
|
|
ComparatorNumericLeftMinusRight,
|
|
ComparatorNumericRightMinusLeft
|
|
};
|
|
|
|
bool
|
|
ComparatorInt32LeftMinusRight(const Value &a, const Value &b, bool *lessOrEqualp)
|
|
{
|
|
*lessOrEqualp = (a.toInt32() <= b.toInt32());
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ComparatorInt32RightMinusLeft(const Value &a, const Value &b, bool *lessOrEqualp)
|
|
{
|
|
*lessOrEqualp = (b.toInt32() <= a.toInt32());
|
|
return true;
|
|
}
|
|
|
|
typedef bool (*ComparatorInt32)(const Value &a, const Value &b, bool *lessOrEqualp);
|
|
|
|
ComparatorInt32 SortComparatorInt32s[] = {
|
|
NULL,
|
|
NULL,
|
|
ComparatorInt32LeftMinusRight,
|
|
ComparatorInt32RightMinusLeft
|
|
};
|
|
|
|
// Note: Values for this enum must match up with SortComparatorNumerics
|
|
// and SortComparatorInt32s.
|
|
enum ComparatorMatchResult {
|
|
Match_Failure = 0,
|
|
Match_None,
|
|
Match_LeftMinusRight,
|
|
Match_RightMinusLeft
|
|
};
|
|
|
|
/*
|
|
* Specialize behavior for comparator functions with particular common bytecode
|
|
* patterns: namely, |return x - y| and |return y - x|.
|
|
*/
|
|
ComparatorMatchResult
|
|
MatchNumericComparator(JSContext *cx, const Value &v)
|
|
{
|
|
if (!v.isObject())
|
|
return Match_None;
|
|
|
|
JSObject &obj = v.toObject();
|
|
if (!obj.is<JSFunction>())
|
|
return Match_None;
|
|
|
|
JSFunction *fun = &obj.as<JSFunction>();
|
|
if (!fun->isInterpreted())
|
|
return Match_None;
|
|
|
|
JSScript *script = fun->getOrCreateScript(cx);
|
|
if (!script)
|
|
return Match_Failure;
|
|
|
|
jsbytecode *pc = script->code;
|
|
|
|
uint16_t arg0, arg1;
|
|
if (JSOp(*pc) != JSOP_GETARG)
|
|
return Match_None;
|
|
arg0 = GET_ARGNO(pc);
|
|
pc += JSOP_GETARG_LENGTH;
|
|
|
|
if (JSOp(*pc) != JSOP_GETARG)
|
|
return Match_None;
|
|
arg1 = GET_ARGNO(pc);
|
|
pc += JSOP_GETARG_LENGTH;
|
|
|
|
if (JSOp(*pc) != JSOP_SUB)
|
|
return Match_None;
|
|
pc += JSOP_SUB_LENGTH;
|
|
|
|
if (JSOp(*pc) != JSOP_RETURN)
|
|
return Match_None;
|
|
|
|
if (arg0 == 0 && arg1 == 1)
|
|
return Match_LeftMinusRight;
|
|
|
|
if (arg0 == 1 && arg1 == 0)
|
|
return Match_RightMinusLeft;
|
|
|
|
return Match_None;
|
|
}
|
|
|
|
template<typename K, typename C>
|
|
inline bool
|
|
MergeSortByKey(K keys, size_t len, K scratch, C comparator, AutoValueVector *vec)
|
|
{
|
|
MOZ_ASSERT(vec->length() >= len);
|
|
|
|
/* Sort keys. */
|
|
if (!MergeSort(keys, len, scratch, comparator))
|
|
return false;
|
|
|
|
/*
|
|
* Reorder vec by keys in-place, going element by element. When an out-of-
|
|
* place element is encountered, move that element to its proper position,
|
|
* displacing whatever element was at *that* point to its proper position,
|
|
* and so on until an element must be moved to the current position.
|
|
*
|
|
* At each outer iteration all elements up to |i| are sorted. If
|
|
* necessary each inner iteration moves some number of unsorted elements
|
|
* (including |i|) directly to sorted position. Thus on completion |*vec|
|
|
* is sorted, and out-of-position elements have moved once. Complexity is
|
|
* Θ(len) + O(len) == O(2*len), with each element visited at most twice.
|
|
*/
|
|
for (size_t i = 0; i < len; i++) {
|
|
size_t j = keys[i].elementIndex;
|
|
if (i == j)
|
|
continue; // fixed point
|
|
|
|
MOZ_ASSERT(j > i, "Everything less than |i| should be in the right place!");
|
|
Value tv = (*vec)[j];
|
|
do {
|
|
size_t k = keys[j].elementIndex;
|
|
keys[j].elementIndex = j;
|
|
(*vec)[j] = (*vec)[k];
|
|
j = k;
|
|
} while (j != i);
|
|
|
|
// We could assert the loop invariant that |i == keys[i].elementIndex|
|
|
// here if we synced |keys[i].elementIndex|. But doing so would render
|
|
// the assertion vacuous, so don't bother, even in debug builds.
|
|
(*vec)[i] = tv;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Sort Values as strings.
|
|
*
|
|
* To minimize #conversions, SortLexicographically() first converts all Values
|
|
* to strings at once, then sorts the elements by these cached strings.
|
|
*/
|
|
bool
|
|
SortLexicographically(JSContext *cx, AutoValueVector *vec, size_t len)
|
|
{
|
|
JS_ASSERT(vec->length() >= len);
|
|
|
|
StringBuffer sb(cx);
|
|
Vector<StringifiedElement, 0, TempAllocPolicy> strElements(cx);
|
|
|
|
/* MergeSort uses the upper half as scratch space. */
|
|
if (!strElements.reserve(2 * len))
|
|
return false;
|
|
|
|
/* Convert Values to strings. */
|
|
size_t cursor = 0;
|
|
for (size_t i = 0; i < len; i++) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
if (!ValueToStringBuffer(cx, (*vec)[i], sb))
|
|
return false;
|
|
|
|
StringifiedElement el = { cursor, sb.length(), i };
|
|
strElements.infallibleAppend(el);
|
|
cursor = sb.length();
|
|
}
|
|
|
|
/* Resize strElements so we can perform MergeSort. */
|
|
JS_ALWAYS_TRUE(strElements.resize(2 * len));
|
|
|
|
/* Sort Values in vec alphabetically. */
|
|
return MergeSortByKey(strElements.begin(), len, strElements.begin() + len,
|
|
SortComparatorStringifiedElements(cx, sb), vec);
|
|
}
|
|
|
|
/*
|
|
* Sort Values as numbers.
|
|
*
|
|
* To minimize #conversions, SortNumerically first converts all Values to
|
|
* numerics at once, then sorts the elements by these cached numerics.
|
|
*/
|
|
bool
|
|
SortNumerically(JSContext *cx, AutoValueVector *vec, size_t len, ComparatorMatchResult comp)
|
|
{
|
|
JS_ASSERT(vec->length() >= len);
|
|
|
|
Vector<NumericElement, 0, TempAllocPolicy> numElements(cx);
|
|
|
|
/* MergeSort uses the upper half as scratch space. */
|
|
if (!numElements.reserve(2 * len))
|
|
return false;
|
|
|
|
/* Convert Values to numerics. */
|
|
for (size_t i = 0; i < len; i++) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
double dv;
|
|
if (!ToNumber(cx, vec->handleAt(i), &dv))
|
|
return false;
|
|
|
|
NumericElement el = { dv, i };
|
|
numElements.infallibleAppend(el);
|
|
}
|
|
|
|
/* Resize strElements so we can perform MergeSort. */
|
|
JS_ALWAYS_TRUE(numElements.resize(2 * len));
|
|
|
|
/* Sort Values in vec numerically. */
|
|
return MergeSortByKey(numElements.begin(), len, numElements.begin() + len,
|
|
SortComparatorNumerics[comp], vec);
|
|
}
|
|
|
|
} /* namespace anonymous */
|
|
|
|
bool
|
|
js::array_sort(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
|
|
RootedValue fvalRoot(cx);
|
|
Value &fval = fvalRoot.get();
|
|
|
|
if (args.hasDefined(0)) {
|
|
if (args[0].isPrimitive()) {
|
|
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_SORT_ARG);
|
|
return false;
|
|
}
|
|
fval = args[0]; /* non-default compare function */
|
|
} else {
|
|
fval.setNull();
|
|
}
|
|
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
uint32_t len;
|
|
if (!GetLengthProperty(cx, obj, &len))
|
|
return false;
|
|
if (len < 2) {
|
|
/* [] and [a] remain unchanged when sorted. */
|
|
args.rval().setObject(*obj);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We need a temporary array of 2 * len Value to hold the array elements
|
|
* and the scratch space for merge sort. Check that its size does not
|
|
* overflow size_t, which would allow for indexing beyond the end of the
|
|
* malloc'd vector.
|
|
*/
|
|
#if JS_BITS_PER_WORD == 32
|
|
if (size_t(len) > size_t(-1) / (2 * sizeof(Value))) {
|
|
js_ReportAllocationOverflow(cx);
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initialize vec as a root. We will clear elements of vec one by
|
|
* one while increasing the rooted amount of vec when we know that the
|
|
* property at the corresponding index exists and its value must be rooted.
|
|
*
|
|
* In this way when sorting a huge mostly sparse array we will not
|
|
* access the tail of vec corresponding to properties that do not
|
|
* exist, allowing OS to avoiding committing RAM. See bug 330812.
|
|
*/
|
|
size_t n, undefs;
|
|
{
|
|
AutoValueVector vec(cx);
|
|
if (!vec.reserve(2 * size_t(len)))
|
|
return false;
|
|
|
|
/*
|
|
* By ECMA 262, 15.4.4.11, a property that does not exist (which we
|
|
* call a "hole") is always greater than an existing property with
|
|
* value undefined and that is always greater than any other property.
|
|
* Thus to sort holes and undefs we simply count them, sort the rest
|
|
* of elements, append undefs after them and then make holes after
|
|
* undefs.
|
|
*/
|
|
undefs = 0;
|
|
bool allStrings = true;
|
|
bool allInts = true;
|
|
RootedValue v(cx);
|
|
for (uint32_t i = 0; i < len; i++) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
/* Clear vec[newlen] before including it in the rooted set. */
|
|
bool hole;
|
|
if (!GetElement(cx, obj, i, &hole, &v))
|
|
return false;
|
|
if (hole)
|
|
continue;
|
|
if (v.isUndefined()) {
|
|
++undefs;
|
|
continue;
|
|
}
|
|
vec.infallibleAppend(v);
|
|
allStrings = allStrings && v.isString();
|
|
allInts = allInts && v.isInt32();
|
|
}
|
|
|
|
|
|
/*
|
|
* If the array only contains holes, we're done. But if it contains
|
|
* undefs, those must be sorted to the front of the array.
|
|
*/
|
|
n = vec.length();
|
|
if (n == 0 && undefs == 0) {
|
|
args.rval().setObject(*obj);
|
|
return true;
|
|
}
|
|
|
|
/* Here len == n + undefs + number_of_holes. */
|
|
if (fval.isNull()) {
|
|
/*
|
|
* Sort using the default comparator converting all elements to
|
|
* strings.
|
|
*/
|
|
if (allStrings) {
|
|
JS_ALWAYS_TRUE(vec.resize(n * 2));
|
|
if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorStrings(cx)))
|
|
return false;
|
|
} else if (allInts) {
|
|
JS_ALWAYS_TRUE(vec.resize(n * 2));
|
|
if (!MergeSort(vec.begin(), n, vec.begin() + n,
|
|
SortComparatorLexicographicInt32(cx))) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!SortLexicographically(cx, &vec, n))
|
|
return false;
|
|
}
|
|
} else {
|
|
ComparatorMatchResult comp = MatchNumericComparator(cx, fval);
|
|
if (comp == Match_Failure)
|
|
return false;
|
|
|
|
if (comp != Match_None) {
|
|
if (allInts) {
|
|
JS_ALWAYS_TRUE(vec.resize(n * 2));
|
|
if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorInt32s[comp]))
|
|
return false;
|
|
} else {
|
|
if (!SortNumerically(cx, &vec, n, comp))
|
|
return false;
|
|
}
|
|
} else {
|
|
FastInvokeGuard fig(cx, fval);
|
|
MOZ_ASSERT(!InParallelSection(),
|
|
"Array.sort() can't currently be used from parallel code");
|
|
JS_ALWAYS_TRUE(vec.resize(n * 2));
|
|
if (!MergeSort(vec.begin(), n, vec.begin() + n,
|
|
SortComparatorFunction(cx, fval, fig)))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!InitArrayElements(cx, obj, 0, uint32_t(n), vec.begin(), DontUpdateTypes))
|
|
return false;
|
|
}
|
|
|
|
/* Set undefs that sorted after the rest of elements. */
|
|
while (undefs != 0) {
|
|
--undefs;
|
|
RootedValue undefinedValue(cx);
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx) || !SetArrayElement(cx, obj, n++, undefinedValue))
|
|
return false;
|
|
}
|
|
|
|
/* Re-create any holes that sorted to the end of the array. */
|
|
while (len > n) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx) || !DeletePropertyOrThrow(cx, obj, --len))
|
|
return false;
|
|
}
|
|
args.rval().setObject(*obj);
|
|
return true;
|
|
}
|
|
|
|
JS_ALWAYS_INLINE bool
|
|
NewbornArrayPushImpl(JSContext *cx, HandleObject obj, const Value &v)
|
|
{
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
|
|
JS_ASSERT(!v.isMagic());
|
|
JS_ASSERT(arr->lengthIsWritable());
|
|
|
|
uint32_t length = arr->length();
|
|
JS_ASSERT(length <= arr->getDenseCapacity());
|
|
|
|
if (!arr->ensureElements(cx, length + 1))
|
|
return false;
|
|
|
|
arr->setDenseInitializedLength(length + 1);
|
|
arr->setLengthInt32(length + 1);
|
|
JSObject::initDenseElementWithType(cx, arr, length, v);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
js_NewbornArrayPush(JSContext *cx, HandleObject obj, const Value &vp)
|
|
{
|
|
return NewbornArrayPushImpl(cx, obj, vp);
|
|
}
|
|
|
|
/* ES5 15.4.4.7 */
|
|
bool
|
|
js::array_push(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
|
|
/* Step 1. */
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
/* Fast path for the fully-dense case. */
|
|
if (obj->is<ArrayObject>()) {
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
if (arr->lengthIsWritable() && !ObjectMayHaveExtraIndexedProperties(arr)) {
|
|
uint32_t length = arr->length();
|
|
uint32_t argCount = args.length();
|
|
JSObject::EnsureDenseResult result = arr->ensureDenseElements(cx, length, argCount);
|
|
if (result == JSObject::ED_FAILED)
|
|
return false;
|
|
|
|
if (result == JSObject::ED_OK) {
|
|
arr->setLengthInt32(length + argCount);
|
|
for (uint32_t i = 0, index = length; i < argCount; index++, i++)
|
|
JSObject::setDenseElementWithType(cx, arr, index, args[i]);
|
|
args.rval().setNumber(arr->length());
|
|
return true;
|
|
}
|
|
|
|
MOZ_ASSERT(result == JSObject::ED_SPARSE);
|
|
}
|
|
}
|
|
|
|
/* Steps 2-3. */
|
|
uint32_t length;
|
|
if (!GetLengthProperty(cx, obj, &length))
|
|
return false;
|
|
|
|
/* Steps 4-5. */
|
|
if (!InitArrayElements(cx, obj, length, args.length(), args.array(), UpdateTypes))
|
|
return false;
|
|
|
|
/* Steps 6-7. */
|
|
double newlength = length + double(args.length());
|
|
args.rval().setNumber(newlength);
|
|
return SetLengthProperty(cx, obj, newlength);
|
|
}
|
|
|
|
/* ES6 20130308 draft 15.4.4.6. */
|
|
bool
|
|
js::array_pop(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
|
|
/* Step 1. */
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
/* Steps 2-3. */
|
|
uint32_t index;
|
|
if (!GetLengthProperty(cx, obj, &index))
|
|
return false;
|
|
|
|
/* Steps 4-5. */
|
|
if (index == 0) {
|
|
/* Step 4b. */
|
|
args.rval().setUndefined();
|
|
} else {
|
|
/* Step 5a. */
|
|
index--;
|
|
|
|
/* Step 5b, 5e. */
|
|
bool hole;
|
|
if (!GetElement(cx, obj, index, &hole, args.rval()))
|
|
return false;
|
|
|
|
/* Step 5c. */
|
|
if (!hole && !DeletePropertyOrThrow(cx, obj, index))
|
|
return false;
|
|
}
|
|
|
|
// If this was an array, then there are no elements above the one we just
|
|
// deleted (if we deleted an element). Thus we can shrink the dense
|
|
// initialized length accordingly. (This is fine even if the array length
|
|
// is non-writable: length-changing occurs after element-deletion effects.)
|
|
// Don't do anything if this isn't an array, as any deletion above has no
|
|
// effect on any elements after the "last" one indicated by the "length"
|
|
// property.
|
|
if (obj->is<ArrayObject>() && obj->getDenseInitializedLength() > index)
|
|
obj->setDenseInitializedLength(index);
|
|
|
|
/* Steps 4a, 5d. */
|
|
return SetLengthProperty(cx, obj, index);
|
|
}
|
|
|
|
void
|
|
js::ArrayShiftMoveElements(JSObject *obj)
|
|
{
|
|
JS_ASSERT(obj->is<ArrayObject>());
|
|
JS_ASSERT(obj->as<ArrayObject>().lengthIsWritable());
|
|
|
|
/*
|
|
* At this point the length and initialized length have already been
|
|
* decremented and the result fetched, so just shift the array elements
|
|
* themselves.
|
|
*/
|
|
uint32_t initlen = obj->getDenseInitializedLength();
|
|
obj->moveDenseElementsUnbarriered(0, 1, initlen);
|
|
}
|
|
|
|
/* ES5 15.4.4.9 */
|
|
bool
|
|
js::array_shift(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
|
|
/* Step 1. */
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
/* Steps 2-3. */
|
|
uint32_t len;
|
|
if (!GetLengthProperty(cx, obj, &len))
|
|
return false;
|
|
|
|
/* Step 4. */
|
|
if (len == 0) {
|
|
/* Step 4a. */
|
|
if (!SetLengthProperty(cx, obj, 0))
|
|
return false;
|
|
|
|
/* Step 4b. */
|
|
args.rval().setUndefined();
|
|
return true;
|
|
}
|
|
|
|
uint32_t newlen = len - 1;
|
|
|
|
/* Fast paths. */
|
|
if (obj->is<ArrayObject>() &&
|
|
obj->getDenseInitializedLength() > 0 &&
|
|
newlen < obj->getDenseCapacity() &&
|
|
!ObjectMayHaveExtraIndexedProperties(obj))
|
|
{
|
|
args.rval().set(obj->getDenseElement(0));
|
|
if (args.rval().isMagic(JS_ELEMENTS_HOLE))
|
|
args.rval().setUndefined();
|
|
|
|
obj->moveDenseElements(0, 1, obj->getDenseInitializedLength() - 1);
|
|
obj->setDenseInitializedLength(obj->getDenseInitializedLength() - 1);
|
|
|
|
if (!SetLengthProperty(cx, obj, newlen))
|
|
return false;
|
|
|
|
return js_SuppressDeletedProperty(cx, obj, INT_TO_JSID(newlen));
|
|
}
|
|
|
|
/* Steps 5, 10. */
|
|
bool hole;
|
|
if (!GetElement(cx, obj, uint32_t(0), &hole, args.rval()))
|
|
return false;
|
|
|
|
/* Steps 6-7. */
|
|
RootedValue value(cx);
|
|
for (uint32_t i = 0; i < newlen; i++) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
if (!GetElement(cx, obj, i + 1, &hole, &value))
|
|
return false;
|
|
if (hole) {
|
|
if (!DeletePropertyOrThrow(cx, obj, i))
|
|
return false;
|
|
} else {
|
|
if (!SetArrayElement(cx, obj, i, value))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Step 8. */
|
|
if (!DeletePropertyOrThrow(cx, obj, newlen))
|
|
return false;
|
|
|
|
/* Step 9. */
|
|
return SetLengthProperty(cx, obj, newlen);
|
|
}
|
|
|
|
static bool
|
|
array_unshift(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
uint32_t length;
|
|
if (!GetLengthProperty(cx, obj, &length))
|
|
return false;
|
|
|
|
double newlen = length;
|
|
if (args.length() > 0) {
|
|
/* Slide up the array to make room for all args at the bottom. */
|
|
if (length > 0) {
|
|
bool optimized = false;
|
|
do {
|
|
if (!obj->is<ArrayObject>())
|
|
break;
|
|
if (ObjectMayHaveExtraIndexedProperties(obj))
|
|
break;
|
|
if (!obj->as<ArrayObject>().lengthIsWritable())
|
|
break;
|
|
JSObject::EnsureDenseResult result = obj->ensureDenseElements(cx, length, args.length());
|
|
if (result != JSObject::ED_OK) {
|
|
if (result == JSObject::ED_FAILED)
|
|
return false;
|
|
JS_ASSERT(result == JSObject::ED_SPARSE);
|
|
break;
|
|
}
|
|
obj->moveDenseElements(args.length(), 0, length);
|
|
for (uint32_t i = 0; i < args.length(); i++)
|
|
obj->setDenseElement(i, MagicValue(JS_ELEMENTS_HOLE));
|
|
optimized = true;
|
|
} while (false);
|
|
|
|
if (!optimized) {
|
|
double last = length;
|
|
double upperIndex = last + args.length();
|
|
RootedValue value(cx);
|
|
do {
|
|
--last, --upperIndex;
|
|
bool hole;
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
if (!GetElement(cx, obj, last, &hole, &value))
|
|
return false;
|
|
if (hole) {
|
|
if (!DeletePropertyOrThrow(cx, obj, upperIndex))
|
|
return false;
|
|
} else {
|
|
if (!SetArrayElement(cx, obj, upperIndex, value))
|
|
return false;
|
|
}
|
|
} while (last != 0);
|
|
}
|
|
}
|
|
|
|
/* Copy from args to the bottom of the array. */
|
|
if (!InitArrayElements(cx, obj, 0, args.length(), args.array(), UpdateTypes))
|
|
return false;
|
|
|
|
newlen += args.length();
|
|
}
|
|
if (!SetLengthProperty(cx, obj, newlen))
|
|
return false;
|
|
|
|
/* Follow Perl by returning the new array length. */
|
|
args.rval().setNumber(newlen);
|
|
return true;
|
|
}
|
|
|
|
static inline void
|
|
TryReuseArrayType(JSObject *obj, ArrayObject *narr)
|
|
{
|
|
/*
|
|
* Try to change the type of a newly created array narr to the same type
|
|
* as obj. This can only be performed if the original object is an array
|
|
* and has the same prototype.
|
|
*/
|
|
JS_ASSERT(narr->getProto()->hasNewType(&ArrayObject::class_, narr->type()));
|
|
|
|
if (obj->is<ArrayObject>() && !obj->hasSingletonType() && obj->getProto() == narr->getProto())
|
|
narr->setType(obj->type());
|
|
}
|
|
|
|
/*
|
|
* Returns true if this is a dense array whose |count| properties starting from
|
|
* |startingIndex| may be accessed (get, set, delete) directly through its
|
|
* contiguous vector of elements without fear of getters, setters, etc. along
|
|
* the prototype chain, or of enumerators requiring notification of
|
|
* modifications.
|
|
*/
|
|
static inline bool
|
|
CanOptimizeForDenseStorage(HandleObject arr, uint32_t startingIndex, uint32_t count, JSContext *cx)
|
|
{
|
|
/* If the desired properties overflow dense storage, we can't optimize. */
|
|
if (UINT32_MAX - startingIndex < count)
|
|
return false;
|
|
|
|
/* There's no optimizing possible if it's not an array. */
|
|
if (!arr->is<ArrayObject>())
|
|
return false;
|
|
|
|
/*
|
|
* Don't optimize if the array might be in the midst of iteration. We
|
|
* rely on this to be able to safely move dense array elements around with
|
|
* just a memmove (see JSObject::moveDenseArrayElements), without worrying
|
|
* about updating any in-progress enumerators for properties implicitly
|
|
* deleted if a hole is moved from one location to another location not yet
|
|
* visited. See bug 690622.
|
|
*
|
|
* Another potential wrinkle: what if the enumeration is happening on an
|
|
* object which merely has |arr| on its prototype chain? It turns out this
|
|
* case can't happen, because any dense array used as the prototype of
|
|
* another object is first slowified, for type inference's sake.
|
|
*/
|
|
types::TypeObject *arrType = arr->getType(cx);
|
|
if (JS_UNLIKELY(!arrType || arrType->hasAllFlags(OBJECT_FLAG_ITERATED)))
|
|
return false;
|
|
|
|
/*
|
|
* Now watch out for getters and setters along the prototype chain or in
|
|
* other indexed properties on the object. (Note that non-writable length
|
|
* is subsumed by the initializedLength comparison.)
|
|
*/
|
|
return !ObjectMayHaveExtraIndexedProperties(arr) &&
|
|
startingIndex + count <= arr->getDenseInitializedLength();
|
|
}
|
|
|
|
/* ES5 15.4.4.12. */
|
|
static bool
|
|
array_splice(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
|
|
/* Step 1. */
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
/* Steps 3-4. */
|
|
uint32_t len;
|
|
if (!GetLengthProperty(cx, obj, &len))
|
|
return false;
|
|
|
|
/* Step 5. */
|
|
double relativeStart;
|
|
if (!ToInteger(cx, args.get(0), &relativeStart))
|
|
return false;
|
|
|
|
/* Step 6. */
|
|
uint32_t actualStart;
|
|
if (relativeStart < 0)
|
|
actualStart = Max(len + relativeStart, 0.0);
|
|
else
|
|
actualStart = Min(relativeStart, double(len));
|
|
|
|
/* Step 7. */
|
|
uint32_t actualDeleteCount;
|
|
if (argc != 1) {
|
|
double deleteCountDouble;
|
|
RootedValue cnt(cx, argc >= 2 ? args[1] : Int32Value(0));
|
|
if (!ToInteger(cx, cnt, &deleteCountDouble))
|
|
return false;
|
|
actualDeleteCount = Min(Max(deleteCountDouble, 0.0), double(len - actualStart));
|
|
} else {
|
|
/*
|
|
* Non-standard: if start was specified but deleteCount was omitted,
|
|
* delete to the end of the array. See bug 668024 for discussion.
|
|
*/
|
|
actualDeleteCount = len - actualStart;
|
|
}
|
|
|
|
JS_ASSERT(len - actualStart >= actualDeleteCount);
|
|
|
|
/* Steps 2, 8-9. */
|
|
Rooted<ArrayObject*> arr(cx);
|
|
if (CanOptimizeForDenseStorage(obj, actualStart, actualDeleteCount, cx)) {
|
|
arr = NewDenseCopiedArray(cx, actualDeleteCount, obj, actualStart);
|
|
if (!arr)
|
|
return false;
|
|
TryReuseArrayType(obj, arr);
|
|
} else {
|
|
arr = NewDenseAllocatedArray(cx, actualDeleteCount);
|
|
if (!arr)
|
|
return false;
|
|
TryReuseArrayType(obj, arr);
|
|
|
|
RootedValue fromValue(cx);
|
|
for (uint32_t k = 0; k < actualDeleteCount; k++) {
|
|
bool hole;
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
|
|
!GetElement(cx, obj, actualStart + k, &hole, &fromValue) ||
|
|
(!hole && !JSObject::defineElement(cx, arr, k, fromValue)))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Step 11. */
|
|
uint32_t itemCount = (argc >= 2) ? (argc - 2) : 0;
|
|
|
|
if (itemCount < actualDeleteCount) {
|
|
/* Step 12: the array is being shrunk. */
|
|
uint32_t sourceIndex = actualStart + actualDeleteCount;
|
|
uint32_t targetIndex = actualStart + itemCount;
|
|
uint32_t finalLength = len - actualDeleteCount + itemCount;
|
|
|
|
if (CanOptimizeForDenseStorage(obj, 0, len, cx)) {
|
|
/* Steps 12(a)-(b). */
|
|
obj->moveDenseElements(targetIndex, sourceIndex, len - sourceIndex);
|
|
|
|
/*
|
|
* Update the initialized length. Do so before shrinking so that we
|
|
* can apply the write barrier to the old slots.
|
|
*/
|
|
if (cx->typeInferenceEnabled())
|
|
obj->setDenseInitializedLength(finalLength);
|
|
|
|
/* Steps 12(c)-(d). */
|
|
obj->shrinkElements(cx, finalLength);
|
|
|
|
/* Fix running enumerators for the deleted items. */
|
|
if (!js_SuppressDeletedElements(cx, obj, finalLength, len))
|
|
return false;
|
|
} else {
|
|
/*
|
|
* This is all very slow if the length is very large. We don't yet
|
|
* have the ability to iterate in sorted order, so we just do the
|
|
* pessimistic thing and let JS_CHECK_OPERATION_LIMIT handle the
|
|
* fallout.
|
|
*/
|
|
|
|
/* Steps 12(a)-(b). */
|
|
RootedValue fromValue(cx);
|
|
for (uint32_t from = sourceIndex, to = targetIndex; from < len; from++, to++) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
bool hole;
|
|
if (!GetElement(cx, obj, from, &hole, &fromValue))
|
|
return false;
|
|
if (hole) {
|
|
if (!DeletePropertyOrThrow(cx, obj, to))
|
|
return false;
|
|
} else {
|
|
if (!SetArrayElement(cx, obj, to, fromValue))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Steps 12(c)-(d). */
|
|
for (uint32_t k = len; k > finalLength; k--) {
|
|
if (!DeletePropertyOrThrow(cx, obj, k - 1))
|
|
return false;
|
|
}
|
|
}
|
|
} else if (itemCount > actualDeleteCount) {
|
|
/* Step 13. */
|
|
|
|
/*
|
|
* Optimize only if the array is already dense and we can extend it to
|
|
* its new length. It would be wrong to extend the elements here for a
|
|
* number of reasons.
|
|
*
|
|
* First, this could cause us to fall into the fast-path below. This
|
|
* would cause elements to be moved into places past the non-writable
|
|
* length. And when the dense initialized length is updated, that'll
|
|
* cause the |in| operator to think that those elements actually exist,
|
|
* even though, properly, setting them must fail.
|
|
*
|
|
* Second, extending the elements here will trigger assertions inside
|
|
* ensureDenseElements that the elements aren't being extended past the
|
|
* length of a non-writable array. This is because extending elements
|
|
* will extend capacity -- which might extend them past a non-writable
|
|
* length, violating the |capacity <= length| invariant for such
|
|
* arrays. And that would make the various JITted fast-path method
|
|
* implementations of [].push, [].unshift, and so on wrong.
|
|
*
|
|
* If the array length is non-writable, this method *will* throw. For
|
|
* simplicity, have the slow-path code do it. (Also note that the slow
|
|
* path may validly *not* throw -- if all the elements being moved are
|
|
* holes.)
|
|
*/
|
|
if (obj->is<ArrayObject>()) {
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
if (arr->lengthIsWritable()) {
|
|
JSObject::EnsureDenseResult res =
|
|
arr->ensureDenseElements(cx, arr->length(), itemCount - actualDeleteCount);
|
|
if (res == JSObject::ED_FAILED)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (CanOptimizeForDenseStorage(obj, len, itemCount - actualDeleteCount, cx)) {
|
|
obj->moveDenseElements(actualStart + itemCount,
|
|
actualStart + actualDeleteCount,
|
|
len - (actualStart + actualDeleteCount));
|
|
|
|
if (cx->typeInferenceEnabled())
|
|
obj->setDenseInitializedLength(len + itemCount - actualDeleteCount);
|
|
} else {
|
|
RootedValue fromValue(cx);
|
|
for (double k = len - actualDeleteCount; k > actualStart; k--) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
double from = k + actualDeleteCount - 1;
|
|
double to = k + itemCount - 1;
|
|
|
|
bool hole;
|
|
if (!GetElement(cx, obj, from, &hole, &fromValue))
|
|
return false;
|
|
|
|
if (hole) {
|
|
if (!DeletePropertyOrThrow(cx, obj, to))
|
|
return false;
|
|
} else {
|
|
if (!SetArrayElement(cx, obj, to, fromValue))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Step 10. */
|
|
Value *items = args.array() + 2;
|
|
|
|
/* Steps 14-15. */
|
|
for (uint32_t k = actualStart, i = 0; i < itemCount; i++, k++) {
|
|
if (!SetArrayElement(cx, obj, k, HandleValue::fromMarkedLocation(&items[i])))
|
|
return false;
|
|
}
|
|
|
|
/* Step 16. */
|
|
double finalLength = double(len) - actualDeleteCount + itemCount;
|
|
if (!SetLengthProperty(cx, obj, finalLength))
|
|
return false;
|
|
|
|
/* Step 17. */
|
|
args.rval().setObject(*arr);
|
|
return true;
|
|
}
|
|
|
|
#ifdef JS_ION
|
|
bool
|
|
js::array_concat_dense(JSContext *cx, Handle<ArrayObject*> arr1, Handle<ArrayObject*> arr2,
|
|
Handle<ArrayObject*> result)
|
|
{
|
|
uint32_t initlen1 = arr1->getDenseInitializedLength();
|
|
JS_ASSERT(initlen1 == arr1->length());
|
|
|
|
uint32_t initlen2 = arr2->getDenseInitializedLength();
|
|
JS_ASSERT(initlen2 == arr2->length());
|
|
|
|
/* No overflow here due to nelements limit. */
|
|
uint32_t len = initlen1 + initlen2;
|
|
|
|
if (!result->ensureElements(cx, len))
|
|
return false;
|
|
|
|
JS_ASSERT(!result->getDenseInitializedLength());
|
|
result->setDenseInitializedLength(len);
|
|
|
|
result->initDenseElements(0, arr1->getDenseElements(), initlen1);
|
|
result->initDenseElements(initlen1, arr2->getDenseElements(), initlen2);
|
|
result->setLengthInt32(len);
|
|
return true;
|
|
}
|
|
#endif /* JS_ION */
|
|
|
|
/*
|
|
* Python-esque sequence operations.
|
|
*/
|
|
bool
|
|
js::array_concat(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
|
|
/* Treat our |this| object as the first argument; see ECMA 15.4.4.4. */
|
|
Value *p = args.array() - 1;
|
|
|
|
/* Create a new Array object and root it using *vp. */
|
|
RootedObject aobj(cx, ToObject(cx, args.thisv()));
|
|
if (!aobj)
|
|
return false;
|
|
|
|
Rooted<ArrayObject*> narr(cx);
|
|
uint32_t length;
|
|
if (aobj->is<ArrayObject>() && !aobj->isIndexed()) {
|
|
length = aobj->as<ArrayObject>().length();
|
|
uint32_t initlen = aobj->getDenseInitializedLength();
|
|
narr = NewDenseCopiedArray(cx, initlen, aobj, 0);
|
|
if (!narr)
|
|
return false;
|
|
TryReuseArrayType(aobj, narr);
|
|
ArrayObject::setLength(cx, narr, length);
|
|
args.rval().setObject(*narr);
|
|
if (argc == 0)
|
|
return true;
|
|
argc--;
|
|
p++;
|
|
} else {
|
|
narr = NewDenseEmptyArray(cx);
|
|
if (!narr)
|
|
return false;
|
|
args.rval().setObject(*narr);
|
|
length = 0;
|
|
}
|
|
|
|
/* Loop over [0, argc] to concat args into narr, expanding all Arrays. */
|
|
for (unsigned i = 0; i <= argc; i++) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
HandleValue v = HandleValue::fromMarkedLocation(&p[i]);
|
|
if (v.isObject()) {
|
|
RootedObject obj(cx, &v.toObject());
|
|
if (ObjectClassIs(obj, ESClass_Array, cx)) {
|
|
uint32_t alength;
|
|
if (!GetLengthProperty(cx, obj, &alength))
|
|
return false;
|
|
RootedValue tmp(cx);
|
|
for (uint32_t slot = 0; slot < alength; slot++) {
|
|
bool hole;
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx) || !GetElement(cx, obj, slot, &hole, &tmp))
|
|
return false;
|
|
|
|
/*
|
|
* Per ECMA 262, 15.4.4.4, step 9, ignore nonexistent
|
|
* properties.
|
|
*/
|
|
if (!hole && !SetArrayElement(cx, narr, length + slot, tmp))
|
|
return false;
|
|
}
|
|
length += alength;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!SetArrayElement(cx, narr, length, v))
|
|
return false;
|
|
length++;
|
|
}
|
|
|
|
return SetLengthProperty(cx, narr, length);
|
|
}
|
|
|
|
static bool
|
|
array_slice(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
uint32_t length, begin, end, slot;
|
|
bool hole;
|
|
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
if (!GetLengthProperty(cx, obj, &length))
|
|
return false;
|
|
begin = 0;
|
|
end = length;
|
|
|
|
if (args.length() > 0) {
|
|
double d;
|
|
if (!ToInteger(cx, args[0], &d))
|
|
return false;
|
|
if (d < 0) {
|
|
d += length;
|
|
if (d < 0)
|
|
d = 0;
|
|
} else if (d > length) {
|
|
d = length;
|
|
}
|
|
begin = (uint32_t)d;
|
|
|
|
if (args.hasDefined(1)) {
|
|
if (!ToInteger(cx, args[1], &d))
|
|
return false;
|
|
if (d < 0) {
|
|
d += length;
|
|
if (d < 0)
|
|
d = 0;
|
|
} else if (d > length) {
|
|
d = length;
|
|
}
|
|
end = (uint32_t)d;
|
|
}
|
|
}
|
|
|
|
if (begin > end)
|
|
begin = end;
|
|
|
|
Rooted<ArrayObject*> narr(cx);
|
|
|
|
if (obj->is<ArrayObject>() && end <= obj->getDenseInitializedLength() &&
|
|
!ObjectMayHaveExtraIndexedProperties(obj))
|
|
{
|
|
narr = NewDenseCopiedArray(cx, end - begin, obj, begin);
|
|
if (!narr)
|
|
return false;
|
|
TryReuseArrayType(obj, narr);
|
|
args.rval().setObject(*narr);
|
|
return true;
|
|
}
|
|
|
|
narr = NewDenseAllocatedArray(cx, end - begin);
|
|
if (!narr)
|
|
return false;
|
|
TryReuseArrayType(obj, narr);
|
|
|
|
RootedValue value(cx);
|
|
for (slot = begin; slot < end; slot++) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
|
|
!GetElement(cx, obj, slot, &hole, &value)) {
|
|
return false;
|
|
}
|
|
if (!hole && !SetArrayElement(cx, narr, slot - begin, value))
|
|
return false;
|
|
}
|
|
|
|
args.rval().setObject(*narr);
|
|
return true;
|
|
}
|
|
|
|
/* ES5 15.4.4.20. */
|
|
static bool
|
|
array_filter(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
|
|
/* Step 1. */
|
|
RootedObject obj(cx, ToObject(cx, args.thisv()));
|
|
if (!obj)
|
|
return false;
|
|
|
|
/* Step 2-3. */
|
|
uint32_t len;
|
|
if (!GetLengthProperty(cx, obj, &len))
|
|
return false;
|
|
|
|
/* Step 4. */
|
|
if (args.length() == 0) {
|
|
js_ReportMissingArg(cx, args.calleev(), 0);
|
|
return false;
|
|
}
|
|
RootedObject callable(cx, ValueToCallable(cx, args[0], args.length() - 1));
|
|
if (!callable)
|
|
return false;
|
|
|
|
/* Step 5. */
|
|
RootedValue thisv(cx, args.length() >= 2 ? args[1] : UndefinedValue());
|
|
|
|
/* Step 6. */
|
|
RootedObject arr(cx, NewDenseAllocatedArray(cx, 0));
|
|
if (!arr)
|
|
return false;
|
|
TypeObject *newtype = GetTypeCallerInitObject(cx, JSProto_Array);
|
|
if (!newtype)
|
|
return false;
|
|
arr->setType(newtype);
|
|
|
|
/* Step 7. */
|
|
uint32_t k = 0;
|
|
|
|
/* Step 8. */
|
|
uint32_t to = 0;
|
|
|
|
/* Step 9. */
|
|
JS_ASSERT(!InParallelSection());
|
|
FastInvokeGuard fig(cx, ObjectValue(*callable));
|
|
InvokeArgs &args2 = fig.args();
|
|
RootedValue kValue(cx);
|
|
while (k < len) {
|
|
if (!JS_CHECK_OPERATION_LIMIT(cx))
|
|
return false;
|
|
|
|
/* Step a, b, and c.i. */
|
|
bool kNotPresent;
|
|
if (!GetElement(cx, obj, k, &kNotPresent, &kValue))
|
|
return false;
|
|
|
|
/* Step c.ii-iii. */
|
|
if (!kNotPresent) {
|
|
if (!args2.init(3))
|
|
return false;
|
|
args2.setCallee(ObjectValue(*callable));
|
|
args2.setThis(thisv);
|
|
args2[0].set(kValue);
|
|
args2[1].setNumber(k);
|
|
args2[2].setObject(*obj);
|
|
if (!fig.invoke(cx))
|
|
return false;
|
|
|
|
if (ToBoolean(args2.rval())) {
|
|
if (!SetArrayElement(cx, arr, to, kValue))
|
|
return false;
|
|
to++;
|
|
}
|
|
}
|
|
|
|
/* Step d. */
|
|
k++;
|
|
}
|
|
|
|
/* Step 10. */
|
|
args.rval().setObject(*arr);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
array_isArray(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
bool isArray = args.length() > 0 && IsObjectWithClass(args[0], ESClass_Array, cx);
|
|
args.rval().setBoolean(isArray);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
IsArrayConstructor(const Value &v)
|
|
{
|
|
// This must only return true if v is *the* Array constructor for the
|
|
// current compartment; we rely on the fact that any other Array
|
|
// constructor would be represented as a wrapper.
|
|
return v.isObject() &&
|
|
v.toObject().is<JSFunction>() &&
|
|
v.toObject().as<JSFunction>().isNative() &&
|
|
v.toObject().as<JSFunction>().native() == js_Array;
|
|
}
|
|
|
|
static bool
|
|
ArrayFromCallArgs(JSContext *cx, RootedTypeObject &type, CallArgs &args)
|
|
{
|
|
if (!InitArrayTypes(cx, type, args.array(), args.length()))
|
|
return false;
|
|
JSObject *obj = (args.length() == 0)
|
|
? NewDenseEmptyArray(cx)
|
|
: NewDenseCopiedArray(cx, args.length(), args.array());
|
|
if (!obj)
|
|
return false;
|
|
obj->setType(type);
|
|
args.rval().setObject(*obj);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
array_of(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
|
|
if (IsArrayConstructor(args.thisv()) || !IsConstructor(args.thisv())) {
|
|
// IsArrayConstructor(this) will usually be true in practice. This is
|
|
// the most common path.
|
|
RootedTypeObject type(cx, GetTypeCallerInitObject(cx, JSProto_Array));
|
|
if (!type)
|
|
return false;
|
|
return ArrayFromCallArgs(cx, type, args);
|
|
}
|
|
|
|
// Step 4.
|
|
RootedObject obj(cx);
|
|
{
|
|
RootedValue v(cx);
|
|
Value argv[1] = {NumberValue(argc)};
|
|
if (!InvokeConstructor(cx, args.thisv(), 1, argv, v.address()))
|
|
return false;
|
|
obj = ToObject(cx, v);
|
|
if (!obj)
|
|
return false;
|
|
}
|
|
|
|
// Step 8.
|
|
for (unsigned k = 0; k < argc; k++) {
|
|
if (!JSObject::defineElement(cx, obj, k, args[k]))
|
|
return false;
|
|
}
|
|
|
|
// Steps 9-10.
|
|
RootedValue v(cx, NumberValue(argc));
|
|
if (!JSObject::setProperty(cx, obj, obj, cx->names().length, &v, true))
|
|
return false;
|
|
|
|
// Step 11.
|
|
args.rval().setObject(*obj);
|
|
return true;
|
|
}
|
|
|
|
#define GENERIC JSFUN_GENERIC_NATIVE
|
|
|
|
static const JSFunctionSpec array_methods[] = {
|
|
#if JS_HAS_TOSOURCE
|
|
JS_FN(js_toSource_str, array_toSource, 0,0),
|
|
#endif
|
|
JS_FN(js_toString_str, array_toString, 0,0),
|
|
JS_FN(js_toLocaleString_str,array_toLocaleString,0,0),
|
|
|
|
/* Perl-ish methods. */
|
|
JS_FN("join", array_join, 1,JSFUN_GENERIC_NATIVE),
|
|
JS_FN("reverse", array_reverse, 0,JSFUN_GENERIC_NATIVE),
|
|
JS_FN("sort", array_sort, 1,JSFUN_GENERIC_NATIVE),
|
|
JS_FN("push", array_push, 1,JSFUN_GENERIC_NATIVE),
|
|
JS_FN("pop", array_pop, 0,JSFUN_GENERIC_NATIVE),
|
|
JS_FN("shift", array_shift, 0,JSFUN_GENERIC_NATIVE),
|
|
JS_FN("unshift", array_unshift, 1,JSFUN_GENERIC_NATIVE),
|
|
JS_FN("splice", array_splice, 2,JSFUN_GENERIC_NATIVE),
|
|
|
|
/* Pythonic sequence methods. */
|
|
JS_FN("concat", array_concat, 1,JSFUN_GENERIC_NATIVE),
|
|
JS_FN("slice", array_slice, 2,JSFUN_GENERIC_NATIVE),
|
|
|
|
JS_SELF_HOSTED_FN("lastIndexOf", "ArrayLastIndexOf", 1,0),
|
|
JS_SELF_HOSTED_FN("indexOf", "ArrayIndexOf", 1,0),
|
|
JS_SELF_HOSTED_FN("forEach", "ArrayForEach", 1,0),
|
|
JS_SELF_HOSTED_FN("map", "ArrayMap", 1,0),
|
|
JS_SELF_HOSTED_FN("reduce", "ArrayReduce", 1,0),
|
|
JS_SELF_HOSTED_FN("reduceRight", "ArrayReduceRight", 1,0),
|
|
JS_FN("filter", array_filter, 1,JSFUN_GENERIC_NATIVE),
|
|
JS_SELF_HOSTED_FN("some", "ArraySome", 1,0),
|
|
JS_SELF_HOSTED_FN("every", "ArrayEvery", 1,0),
|
|
|
|
#ifdef ENABLE_PARALLEL_JS
|
|
/* Parallelizable and pure methods. */
|
|
JS_SELF_HOSTED_FN("mapPar", "ArrayMapPar", 2,0),
|
|
JS_SELF_HOSTED_FN("reducePar", "ArrayReducePar", 2,0),
|
|
JS_SELF_HOSTED_FN("scanPar", "ArrayScanPar", 2,0),
|
|
JS_SELF_HOSTED_FN("scatterPar", "ArrayScatterPar", 5,0),
|
|
JS_SELF_HOSTED_FN("filterPar", "ArrayFilterPar", 2,0),
|
|
#endif
|
|
|
|
/* ES6 additions */
|
|
JS_SELF_HOSTED_FN("find", "ArrayFind", 1,0),
|
|
JS_SELF_HOSTED_FN("findIndex", "ArrayFindIndex", 1,0),
|
|
|
|
JS_FN("iterator", JS_ArrayIterator, 0,0),
|
|
JS_FS_END
|
|
};
|
|
|
|
static const JSFunctionSpec array_static_methods[] = {
|
|
JS_FN("isArray", array_isArray, 1,0),
|
|
JS_SELF_HOSTED_FN("lastIndexOf", "ArrayStaticLastIndexOf", 2,0),
|
|
JS_SELF_HOSTED_FN("indexOf", "ArrayStaticIndexOf", 2,0),
|
|
JS_SELF_HOSTED_FN("forEach", "ArrayStaticForEach", 2,0),
|
|
JS_SELF_HOSTED_FN("map", "ArrayStaticMap", 2,0),
|
|
JS_SELF_HOSTED_FN("every", "ArrayStaticEvery", 2,0),
|
|
JS_SELF_HOSTED_FN("some", "ArrayStaticSome", 2,0),
|
|
JS_SELF_HOSTED_FN("reduce", "ArrayStaticReduce", 2,0),
|
|
JS_SELF_HOSTED_FN("reduceRight", "ArrayStaticReduceRight", 2,0),
|
|
JS_FN("of", array_of, 0,0),
|
|
|
|
#ifdef ENABLE_PARALLEL_JS
|
|
JS_SELF_HOSTED_FN("build", "ArrayStaticBuild", 2,0),
|
|
/* Parallelizable and pure static methods. */
|
|
JS_SELF_HOSTED_FN("buildPar", "ArrayStaticBuildPar", 3,0),
|
|
#endif
|
|
|
|
JS_FS_END
|
|
};
|
|
|
|
/* ES5 15.4.2 */
|
|
bool
|
|
js_Array(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
RootedTypeObject type(cx, GetTypeCallerInitObject(cx, JSProto_Array));
|
|
if (!type)
|
|
return false;
|
|
|
|
if (args.length() != 1 || !args[0].isNumber())
|
|
return ArrayFromCallArgs(cx, type, args);
|
|
|
|
uint32_t length;
|
|
if (args[0].isInt32()) {
|
|
int32_t i = args[0].toInt32();
|
|
if (i < 0) {
|
|
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_ARRAY_LENGTH);
|
|
return false;
|
|
}
|
|
length = uint32_t(i);
|
|
} else {
|
|
double d = args[0].toDouble();
|
|
length = ToUint32(d);
|
|
if (d != double(length)) {
|
|
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_ARRAY_LENGTH);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate dense elements eagerly for small arrays, to avoid reallocating
|
|
* elements when filling the array.
|
|
*/
|
|
static const uint32_t ArrayEagerAllocationMaxLength = 2048;
|
|
|
|
RootedObject obj(cx);
|
|
obj = (length <= ArrayEagerAllocationMaxLength)
|
|
? NewDenseAllocatedArray(cx, length)
|
|
: NewDenseUnallocatedArray(cx, length);
|
|
if (!obj)
|
|
return false;
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
|
|
arr->setType(type);
|
|
|
|
/* If the length calculation overflowed, make sure that is marked for the new type. */
|
|
if (arr->length() > INT32_MAX)
|
|
ArrayObject::setLength(cx, arr, arr->length());
|
|
|
|
args.rval().setObject(*arr);
|
|
return true;
|
|
}
|
|
|
|
JSObject *
|
|
js_InitArrayClass(JSContext *cx, HandleObject obj)
|
|
{
|
|
JS_ASSERT(obj->isNative());
|
|
|
|
Rooted<GlobalObject*> global(cx, &obj->as<GlobalObject>());
|
|
|
|
RootedObject proto(cx, global->getOrCreateObjectPrototype(cx));
|
|
if (!proto)
|
|
return NULL;
|
|
|
|
RootedTypeObject type(cx, cx->getNewType(&ArrayObject::class_, proto.get()));
|
|
if (!type)
|
|
return NULL;
|
|
|
|
JSObject *metadata = NULL;
|
|
if (!NewObjectMetadata(cx, &metadata))
|
|
return NULL;
|
|
|
|
RootedShape shape(cx, EmptyShape::getInitialShape(cx, &ArrayObject::class_, TaggedProto(proto),
|
|
proto->getParent(), metadata,
|
|
gc::FINALIZE_OBJECT0));
|
|
|
|
RootedObject arrayProto(cx, JSObject::createArray(cx, gc::FINALIZE_OBJECT4, gc::TenuredHeap, shape, type, 0));
|
|
if (!arrayProto || !JSObject::setSingletonType(cx, arrayProto) || !AddLengthProperty(cx, arrayProto))
|
|
return NULL;
|
|
|
|
RootedFunction ctor(cx);
|
|
ctor = global->createConstructor(cx, js_Array, cx->names().Array, 1);
|
|
if (!ctor)
|
|
return NULL;
|
|
|
|
/*
|
|
* The default 'new' type of Array.prototype is required by type inference
|
|
* to have unknown properties, to simplify handling of e.g. heterogenous
|
|
* arrays in JSON and script literals and allows setDenseArrayElement to
|
|
* be used without updating the indexed type set for such default arrays.
|
|
*/
|
|
if (!JSObject::setNewTypeUnknown(cx, &ArrayObject::class_, arrayProto))
|
|
return NULL;
|
|
|
|
if (!LinkConstructorAndPrototype(cx, ctor, arrayProto))
|
|
return NULL;
|
|
|
|
if (!DefinePropertiesAndBrand(cx, arrayProto, NULL, array_methods) ||
|
|
!DefinePropertiesAndBrand(cx, ctor, NULL, array_static_methods))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if (!DefineConstructorAndPrototype(cx, global, JSProto_Array, ctor, arrayProto))
|
|
return NULL;
|
|
|
|
return arrayProto;
|
|
}
|
|
|
|
/*
|
|
* Array allocation functions.
|
|
*/
|
|
|
|
static inline bool
|
|
EnsureNewArrayElements(ExclusiveContext *cx, JSObject *obj, uint32_t length)
|
|
{
|
|
/*
|
|
* If ensureElements creates dynamically allocated slots, then having
|
|
* fixedSlots is a waste.
|
|
*/
|
|
DebugOnly<uint32_t> cap = obj->getDenseCapacity();
|
|
|
|
if (!obj->ensureElements(cx, length))
|
|
return false;
|
|
|
|
JS_ASSERT_IF(cap, !obj->hasDynamicElements());
|
|
|
|
return true;
|
|
}
|
|
|
|
template<bool allocateCapacity>
|
|
static JS_ALWAYS_INLINE ArrayObject *
|
|
NewArray(ExclusiveContext *cxArg, uint32_t length,
|
|
JSObject *protoArg, NewObjectKind newKind = GenericObject)
|
|
{
|
|
gc::AllocKind allocKind = GuessArrayGCKind(length);
|
|
JS_ASSERT(CanBeFinalizedInBackground(allocKind, &ArrayObject::class_));
|
|
allocKind = GetBackgroundAllocKind(allocKind);
|
|
|
|
NewObjectCache::EntryIndex entry = -1;
|
|
if (JSContext *cx = cxArg->maybeJSContext()) {
|
|
NewObjectCache &cache = cx->runtime()->newObjectCache;
|
|
if (newKind == GenericObject &&
|
|
!cx->compartment()->objectMetadataCallback &&
|
|
cache.lookupGlobal(&ArrayObject::class_, cx->global(), allocKind, &entry))
|
|
{
|
|
RootedObject obj(cx, cache.newObjectFromHit(cx, entry,
|
|
GetInitialHeap(newKind, &ArrayObject::class_)));
|
|
if (obj) {
|
|
/* Fixup the elements pointer and length, which may be incorrect. */
|
|
Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>());
|
|
arr->setFixedElements();
|
|
ArrayObject::setLength(cx, arr, length);
|
|
if (allocateCapacity && !EnsureNewArrayElements(cx, arr, length))
|
|
return NULL;
|
|
return arr;
|
|
}
|
|
}
|
|
}
|
|
|
|
RootedObject proto(cxArg, protoArg);
|
|
if (protoArg)
|
|
JS::PoisonPtr(&protoArg);
|
|
|
|
if (!proto && !FindProto(cxArg, &ArrayObject::class_, &proto))
|
|
return NULL;
|
|
|
|
RootedTypeObject type(cxArg, cxArg->getNewType(&ArrayObject::class_, proto.get()));
|
|
if (!type)
|
|
return NULL;
|
|
|
|
JSObject *metadata = NULL;
|
|
if (!NewObjectMetadata(cxArg, &metadata))
|
|
return NULL;
|
|
|
|
/*
|
|
* Get a shape with zero fixed slots, regardless of the size class.
|
|
* See JSObject::createArray.
|
|
*/
|
|
RootedShape shape(cxArg, EmptyShape::getInitialShape(cxArg, &ArrayObject::class_,
|
|
TaggedProto(proto), cxArg->global(),
|
|
metadata, gc::FINALIZE_OBJECT0));
|
|
if (!shape)
|
|
return NULL;
|
|
|
|
Rooted<ArrayObject*> arr(cxArg, JSObject::createArray(cxArg, allocKind,
|
|
GetInitialHeap(newKind, &ArrayObject::class_),
|
|
shape, type, length));
|
|
if (!arr)
|
|
return NULL;
|
|
|
|
if (shape->isEmptyShape()) {
|
|
if (!AddLengthProperty(cxArg, arr))
|
|
return NULL;
|
|
shape = arr->lastProperty();
|
|
EmptyShape::insertInitialShape(cxArg, shape, proto);
|
|
}
|
|
|
|
if (newKind == SingletonObject && !JSObject::setSingletonType(cxArg, arr))
|
|
return NULL;
|
|
|
|
if (entry != -1) {
|
|
cxArg->asJSContext()->runtime()->newObjectCache.fillGlobal(entry, &ArrayObject::class_,
|
|
cxArg->global(), allocKind, arr);
|
|
}
|
|
|
|
if (allocateCapacity && !EnsureNewArrayElements(cxArg, arr, length))
|
|
return NULL;
|
|
|
|
Probes::createObject(cxArg, arr);
|
|
return arr;
|
|
}
|
|
|
|
ArrayObject * JS_FASTCALL
|
|
js::NewDenseEmptyArray(JSContext *cx, JSObject *proto /* = NULL */,
|
|
NewObjectKind newKind /* = GenericObject */)
|
|
{
|
|
return NewArray<false>(cx, 0, proto, newKind);
|
|
}
|
|
|
|
ArrayObject * JS_FASTCALL
|
|
js::NewDenseAllocatedArray(ExclusiveContext *cx, uint32_t length, JSObject *proto /* = NULL */,
|
|
NewObjectKind newKind /* = GenericObject */)
|
|
{
|
|
return NewArray<true>(cx, length, proto, newKind);
|
|
}
|
|
|
|
ArrayObject * JS_FASTCALL
|
|
js::NewDenseUnallocatedArray(ExclusiveContext *cx, uint32_t length, JSObject *proto /* = NULL */,
|
|
NewObjectKind newKind /* = GenericObject */)
|
|
{
|
|
return NewArray<false>(cx, length, proto, newKind);
|
|
}
|
|
|
|
ArrayObject *
|
|
js::NewDenseCopiedArray(JSContext *cx, uint32_t length, HandleObject src, uint32_t elementOffset,
|
|
JSObject *proto /* = NULL */)
|
|
{
|
|
JS_ASSERT(!src->isIndexed());
|
|
|
|
ArrayObject* arr = NewArray<true>(cx, length, proto);
|
|
if (!arr)
|
|
return NULL;
|
|
|
|
JS_ASSERT(arr->getDenseCapacity() >= length);
|
|
|
|
const Value* vp = src->getDenseElements() + elementOffset;
|
|
arr->setDenseInitializedLength(vp ? length : 0);
|
|
|
|
if (vp)
|
|
arr->initDenseElements(0, vp, length);
|
|
|
|
return arr;
|
|
}
|
|
|
|
// values must point at already-rooted Value objects
|
|
ArrayObject *
|
|
js::NewDenseCopiedArray(JSContext *cx, uint32_t length, const Value *values,
|
|
JSObject *proto /* = NULL */, NewObjectKind newKind /* = GenericObject */)
|
|
{
|
|
ArrayObject* arr = NewArray<true>(cx, length, proto);
|
|
if (!arr)
|
|
return NULL;
|
|
|
|
JS_ASSERT(arr->getDenseCapacity() >= length);
|
|
|
|
arr->setDenseInitializedLength(values ? length : 0);
|
|
|
|
if (values)
|
|
arr->initDenseElements(0, values, length);
|
|
|
|
return arr;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
bool
|
|
js_ArrayInfo(JSContext *cx, unsigned argc, Value *vp)
|
|
{
|
|
CallArgs args = CallArgsFromVp(argc, vp);
|
|
JSObject *obj;
|
|
|
|
for (unsigned i = 0; i < args.length(); i++) {
|
|
RootedValue arg(cx, args[i]);
|
|
|
|
char *bytes = DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, arg, NullPtr());
|
|
if (!bytes)
|
|
return false;
|
|
if (arg.isPrimitive() ||
|
|
!(obj = arg.toObjectOrNull())->is<ArrayObject>()) {
|
|
fprintf(stderr, "%s: not array\n", bytes);
|
|
js_free(bytes);
|
|
continue;
|
|
}
|
|
fprintf(stderr, "%s: (len %u", bytes, obj->as<ArrayObject>().length());
|
|
fprintf(stderr, ", capacity %u", obj->getDenseCapacity());
|
|
fputs(")\n", stderr);
|
|
js_free(bytes);
|
|
}
|
|
|
|
args.rval().setUndefined();
|
|
return true;
|
|
}
|
|
#endif
|