llvm-capstone/lld/ELF/InputSection.cpp

510 lines
18 KiB
C++
Raw Normal View History

//===- InputSection.cpp ---------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "InputSection.h"
#include "Config.h"
#include "Error.h"
#include "InputFiles.h"
#include "OutputSections.h"
#include "Target.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace lld;
2016-02-28 00:25:54 +00:00
using namespace lld::elf;
template <class ELFT>
InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
const Elf_Shdr *Header,
Kind SectionKind)
: Header(Header), File(File), SectionKind(SectionKind), Repl(this) {
// The garbage collector sets sections' Live bits.
// If GC is disabled, all sections are considered live by default.
Live = !Config->GcSections;
// The ELF spec states that a value of 0 means the section has
// no alignment constraits.
Align = std::max<uintX_t>(Header->sh_addralign, 1);
}
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-03-31 21:26:23 +00:00
template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const {
if (auto *D = dyn_cast<InputSection<ELFT>>(this))
if (D->getThunksSize() > 0)
return D->getThunkOff() + D->getThunksSize();
return Header->sh_size;
}
template <class ELFT> StringRef InputSectionBase<ELFT>::getSectionName() const {
return check(File->getObj().getSectionName(this->Header));
}
template <class ELFT>
ArrayRef<uint8_t> InputSectionBase<ELFT>::getSectionData() const {
return check(this->File->getObj().getSectionContents(this->Header));
}
template <class ELFT>
typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) {
switch (SectionKind) {
case Regular:
return cast<InputSection<ELFT>>(this)->OutSecOff + Offset;
case EHFrame:
return cast<EHInputSection<ELFT>>(this)->getOffset(Offset);
case Merge:
return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset);
case MipsReginfo:
// MIPS .reginfo sections are consumed by the linker,
// so it should never be copied to output.
llvm_unreachable("MIPS .reginfo reached writeTo().");
}
llvm_unreachable("invalid section kind");
}
template <class ELFT>
typename ELFT::uint
InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) {
return getOffset(Sym.Value);
}
// Returns a section that Rel relocation is pointing to.
template <class ELFT>
InputSectionBase<ELFT> *
InputSectionBase<ELFT>::getRelocTarget(const Elf_Rel &Rel) const {
// Global symbol
uint32_t SymIndex = Rel.getSymbol(Config->Mips64EL);
SymbolBody &B = File->getSymbolBody(SymIndex).repl();
if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B))
2016-03-13 20:34:34 +00:00
if (D->Section)
return D->Section->Repl;
return nullptr;
}
template <class ELFT>
InputSectionBase<ELFT> *
InputSectionBase<ELFT>::getRelocTarget(const Elf_Rela &Rel) const {
return getRelocTarget(reinterpret_cast<const Elf_Rel &>(Rel));
}
template <class ELFT>
InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F,
const Elf_Shdr *Header)
: InputSectionBase<ELFT>(F, Header, Base::Regular) {}
template <class ELFT>
bool InputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) {
return S->SectionKind == Base::Regular;
}
template <class ELFT>
InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() {
assert(this->Header->sh_type == SHT_RELA || this->Header->sh_type == SHT_REL);
ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections();
return Sections[this->Header->sh_info];
}
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-03-31 21:26:23 +00:00
template <class ELFT> void InputSection<ELFT>::addThunk(SymbolBody &Body) {
Body.ThunkIndex = Thunks.size();
Thunks.push_back(&Body);
}
template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const {
return this->Header->sh_size;
}
template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const {
return Thunks.size() * Target->ThunkSize;
}
// This is used for -r. We can't use memcpy to copy relocations because we need
// to update symbol table offset and section index for each relocation. So we
// copy relocations one by one.
template <class ELFT>
template <class RelTy>
void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection();
for (const RelTy &Rel : Rels) {
uint32_t SymIndex = Rel.getSymbol(Config->Mips64EL);
uint32_t Type = Rel.getType(Config->Mips64EL);
SymbolBody &Body = this->File->getSymbolBody(SymIndex).repl();
RelTy *P = reinterpret_cast<RelTy *>(Buf);
Buf += sizeof(RelTy);
P->r_offset = RelocatedSection->getOffset(Rel.r_offset);
P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL);
}
}
template <class RelTy>
static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) {
switch (Rel->getType(Config->Mips64EL)) {
case R_MIPS_HI16:
return R_MIPS_LO16;
case R_MIPS_GOT16:
return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE;
case R_MIPS_PCHI16:
return R_MIPS_PCLO16;
case R_MICROMIPS_HI16:
return R_MICROMIPS_LO16;
default:
return R_MIPS_NONE;
}
}
template <endianness E> static int16_t readSignedLo16(uint8_t *Loc) {
return read32<E>(Loc) & 0xffff;
}
template <class ELFT>
template <class RelTy>
int32_t
InputSectionBase<ELFT>::findMipsPairedAddend(uint8_t *Buf, uint8_t *BufLoc,
SymbolBody &Sym, const RelTy *Rel,
const RelTy *End) {
uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL);
uint32_t Type = getMipsPairType(Rel, Sym);
// Some MIPS relocations use addend calculated from addend of the relocation
// itself and addend of paired relocation. ABI requires to compute such
// combined addend in case of REL relocation record format only.
// See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
if (RelTy::IsRela || Type == R_MIPS_NONE)
return 0;
for (const RelTy *RI = Rel; RI != End; ++RI) {
if (RI->getType(Config->Mips64EL) != Type)
continue;
if (RI->getSymbol(Config->Mips64EL) != SymIndex)
continue;
uintX_t Offset = getOffset(RI->r_offset);
if (Offset == (uintX_t)-1)
break;
const endianness E = ELFT::TargetEndianness;
return ((read32<E>(BufLoc) & 0xffff) << 16) +
readSignedLo16<E>(Buf + Offset);
}
unsigned OldType = Rel->getType(Config->Mips64EL);
StringRef OldName = getELFRelocationTypeName(Config->EMachine, OldType);
StringRef NewName = getELFRelocationTypeName(Config->EMachine, Type);
warning("can't find matching " + NewName + " relocation for " + OldName);
return 0;
}
template <class ELFT, class uintX_t>
static uintX_t adjustMipsSymVA(uint32_t Type, const elf::ObjectFile<ELFT> &File,
const SymbolBody &Body, uintX_t AddrLoc,
uintX_t SymVA) {
if (Type == R_MIPS_HI16 && &Body == ElfSym<ELFT>::MipsGpDisp)
return SymVA - AddrLoc;
if (Type == R_MIPS_LO16 && &Body == ElfSym<ELFT>::MipsGpDisp)
return SymVA - AddrLoc + 4;
if (Body.isLocal() && (Type == R_MIPS_GPREL16 || Type == R_MIPS_GPREL32))
// We need to adjust SymVA value in case of R_MIPS_GPREL16/32
// relocations because they use the following expression to calculate
// the relocation's result for local symbol: S + A + GP0 - G.
return SymVA + File.getMipsGp0();
return SymVA;
}
template <class ELFT, class uintX_t>
static uintX_t getMipsGotVA(const SymbolBody &Body, uintX_t SymVA,
uint8_t *BufLoc) {
if (Body.isLocal())
// If relocation against MIPS local symbol requires GOT entry, this entry
// should be initialized by 'page address'. This address is high 16-bits
// of sum the symbol's value and the addend.
return Out<ELFT>::Got->getMipsLocalPageAddr(SymVA);
if (!Body.isPreemptible())
// For non-local symbols GOT entries should contain their full
// addresses. But if such symbol cannot be preempted, we do not
// have to put them into the "global" part of GOT and use dynamic
// linker to determine their actual addresses. That is why we
// create GOT entries for them in the "local" part of GOT.
return Out<ELFT>::Got->getMipsLocalFullAddr(Body);
return Body.getGotVA<ELFT>();
}
template <class ELFT>
template <class RelTy>
void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd,
ArrayRef<RelTy> Rels) {
size_t Num = Rels.end() - Rels.begin();
for (size_t I = 0; I < Num; ++I) {
const RelTy &RI = *(Rels.begin() + I);
uintX_t Offset = getOffset(RI.r_offset);
if (Offset == (uintX_t)-1)
continue;
uintX_t A = getAddend<ELFT>(RI);
uint32_t SymIndex = RI.getSymbol(Config->Mips64EL);
uint32_t Type = RI.getType(Config->Mips64EL);
uint8_t *BufLoc = Buf + Offset;
uintX_t AddrLoc = OutSec->getVA() + Offset;
if (Target->pointsToLocalDynamicGotEntry(Type) &&
!Target->canRelaxTls(Type, nullptr)) {
Target->relocateOne(BufLoc, BufEnd, Type, AddrLoc,
Out<ELFT>::Got->getTlsIndexVA() + A);
continue;
}
SymbolBody &Body = File->getSymbolBody(SymIndex).repl();
if (Target->canRelaxTls(Type, &Body)) {
uintX_t SymVA;
if (Target->needsGot(Type, Body))
SymVA = Body.getGotVA<ELFT>();
else
SymVA = Body.getVA<ELFT>();
// By optimizing TLS relocations, it is sometimes needed to skip
// relocations that immediately follow TLS relocations. This function
// knows how many slots we need to skip.
I += Target->relaxTls(BufLoc, BufEnd, Type, AddrLoc, SymVA, Body);
continue;
}
// PPC64 has a special relocation representing the TOC base pointer
// that does not have a corresponding symbol.
if (Config->EMachine == EM_PPC64 && RI.getType(false) == R_PPC64_TOC) {
uintX_t SymVA = getPPC64TocBase() + A;
Target->relocateOne(BufLoc, BufEnd, Type, AddrLoc, SymVA);
continue;
}
if (Target->isTlsGlobalDynamicRel(Type) &&
!Target->canRelaxTls(Type, &Body)) {
Target->relocateOne(BufLoc, BufEnd, Type, AddrLoc,
Out<ELFT>::Got->getGlobalDynAddr(Body) + A);
continue;
}
if (!RelTy::IsRela)
A += Target->getImplicitAddend(BufLoc, Type);
if (Config->EMachine == EM_MIPS)
A += findMipsPairedAddend(Buf, BufLoc, Body, &RI, Rels.end());
uintX_t SymVA = Body.getVA<ELFT>(A);
if (Target->needsPlt(Type, Body)) {
SymVA = Body.getPltVA<ELFT>() + A;
} else if (Target->needsGot(Type, Body)) {
if (Config->EMachine == EM_MIPS)
SymVA = getMipsGotVA<ELFT>(Body, SymVA, BufLoc);
else
SymVA = Body.getGotVA<ELFT>() + A;
if (Body.isTls())
Type = Target->getTlsGotRel(Type);
} else if (Target->isSizeRel(Type) && Body.isPreemptible()) {
// A SIZE relocation is supposed to set a symbol size, but if a symbol
// can be preempted, the size at runtime may be different than link time.
// If that's the case, we leave the field alone rather than filling it
// with a possibly incorrect value.
continue;
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-03-31 21:26:23 +00:00
} else if (Target->needsThunk(Type, *this->getFile(), Body)) {
// Get address of a thunk code related to the symbol.
SymVA = Body.getThunkVA<ELFT>();
} else if (!Target->needsCopyRel<ELFT>(Type, Body) &&
Body.isPreemptible()) {
continue;
} else if (Config->EMachine == EM_MIPS) {
SymVA = adjustMipsSymVA<ELFT>(Type, *File, Body, AddrLoc, SymVA);
}
if (Target->isSizeRel(Type))
SymVA = Body.getSize<ELFT>() + A;
Target->relocateOne(BufLoc, BufEnd, Type, AddrLoc, SymVA);
}
}
template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) {
if (this->Header->sh_type == SHT_NOBITS)
return;
ELFFile<ELFT> &EObj = this->File->getObj();
// If -r is given, then an InputSection may be a relocation section.
if (this->Header->sh_type == SHT_RELA) {
copyRelocations(Buf + OutSecOff, EObj.relas(this->Header));
return;
}
if (this->Header->sh_type == SHT_REL) {
copyRelocations(Buf + OutSecOff, EObj.rels(this->Header));
return;
}
// Copy section contents from source object file to output file.
ArrayRef<uint8_t> Data = this->getSectionData();
memcpy(Buf + OutSecOff, Data.data(), Data.size());
// Iterate over all relocation sections that apply to this section.
uint8_t *BufEnd = Buf + OutSecOff + Data.size();
for (const Elf_Shdr *RelSec : this->RelocSections) {
if (RelSec->sh_type == SHT_RELA)
this->relocate(Buf, BufEnd, EObj.relas(RelSec));
else
this->relocate(Buf, BufEnd, EObj.rels(RelSec));
}
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-03-31 21:26:23 +00:00
// The section might have a data/code generated by the linker and need
// to be written after the section. Usually these are thunks - small piece
// of code used to jump between "incompatible" functions like PIC and non-PIC
// or if the jump target too far and its address does not fit to the short
// jump istruction.
if (!Thunks.empty()) {
Buf += OutSecOff + getThunkOff();
for (const SymbolBody *S : Thunks) {
Target->writeThunk(Buf, S->getVA<ELFT>());
Buf += Target->ThunkSize;
}
}
}
template <class ELFT>
void InputSection<ELFT>::replace(InputSection<ELFT> *Other) {
this->Align = std::max(this->Align, Other->Align);
Other->Repl = this->Repl;
Other->Live = false;
}
template <class ELFT>
SplitInputSection<ELFT>::SplitInputSection(
elf::ObjectFile<ELFT> *File, const Elf_Shdr *Header,
typename InputSectionBase<ELFT>::Kind SectionKind)
: InputSectionBase<ELFT>(File, Header, SectionKind) {}
template <class ELFT>
EHInputSection<ELFT>::EHInputSection(elf::ObjectFile<ELFT> *F,
const Elf_Shdr *Header)
: SplitInputSection<ELFT>(F, Header, InputSectionBase<ELFT>::EHFrame) {
// Mark .eh_frame sections as live by default because there are
// usually no relocations that point to .eh_frames. Otherwise,
// the garbage collector would drop all .eh_frame sections.
this->Live = true;
}
template <class ELFT>
bool EHInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) {
return S->SectionKind == InputSectionBase<ELFT>::EHFrame;
}
template <class ELFT>
typename ELFT::uint EHInputSection<ELFT>::getOffset(uintX_t Offset) {
// The file crtbeginT.o has relocations pointing to the start of an empty
// .eh_frame that is known to be the first in the link. It does that to
// identify the start of the output .eh_frame. Handle this special case.
if (this->getSectionHdr()->sh_size == 0)
return Offset;
std::pair<uintX_t, uintX_t> *I = this->getRangeAndSize(Offset).first;
uintX_t Base = I->second;
if (Base == uintX_t(-1))
return -1; // Not in the output
uintX_t Addend = Offset - I->first;
return Base + Addend;
}
template <class ELFT>
2016-03-11 16:32:46 +00:00
MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F,
const Elf_Shdr *Header)
: SplitInputSection<ELFT>(F, Header, InputSectionBase<ELFT>::Merge) {}
template <class ELFT>
bool MergeInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) {
return S->SectionKind == InputSectionBase<ELFT>::Merge;
}
template <class ELFT>
std::pair<std::pair<typename ELFT::uint, typename ELFT::uint> *,
typename ELFT::uint>
SplitInputSection<ELFT>::getRangeAndSize(uintX_t Offset) {
ArrayRef<uint8_t> D = this->getSectionData();
StringRef Data((const char *)D.data(), D.size());
uintX_t Size = Data.size();
if (Offset >= Size)
fatal("entry is past the end of the section");
// Find the element this offset points to.
auto I = std::upper_bound(
Offsets.begin(), Offsets.end(), Offset,
[](const uintX_t &A, const std::pair<uintX_t, uintX_t> &B) {
return A < B.first;
});
uintX_t End = I == Offsets.end() ? Data.size() : I->first;
--I;
return std::make_pair(&*I, End);
}
template <class ELFT>
typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) {
std::pair<std::pair<uintX_t, uintX_t> *, uintX_t> T =
this->getRangeAndSize(Offset);
std::pair<uintX_t, uintX_t> *I = T.first;
uintX_t End = T.second;
uintX_t Start = I->first;
// Compute the Addend and if the Base is cached, return.
uintX_t Addend = Offset - Start;
uintX_t &Base = I->second;
if (Base != uintX_t(-1))
return Base + Addend;
// Map the base to the offset in the output section and cache it.
ArrayRef<uint8_t> D = this->getSectionData();
StringRef Data((const char *)D.data(), D.size());
StringRef Entry = Data.substr(Start, End - Start);
Base =
static_cast<MergeOutputSection<ELFT> *>(this->OutSec)->getOffset(Entry);
return Base + Addend;
}
template <class ELFT>
MipsReginfoInputSection<ELFT>::MipsReginfoInputSection(elf::ObjectFile<ELFT> *F,
const Elf_Shdr *Hdr)
: InputSectionBase<ELFT>(F, Hdr, InputSectionBase<ELFT>::MipsReginfo) {
// Initialize this->Reginfo.
ArrayRef<uint8_t> D = this->getSectionData();
if (D.size() != sizeof(Elf_Mips_RegInfo<ELFT>))
fatal("invalid size of .reginfo section");
Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(D.data());
}
template <class ELFT>
bool MipsReginfoInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) {
return S->SectionKind == InputSectionBase<ELFT>::MipsReginfo;
}
2016-02-28 00:25:54 +00:00
template class elf::InputSectionBase<ELF32LE>;
template class elf::InputSectionBase<ELF32BE>;
template class elf::InputSectionBase<ELF64LE>;
template class elf::InputSectionBase<ELF64BE>;
template class elf::InputSection<ELF32LE>;
template class elf::InputSection<ELF32BE>;
template class elf::InputSection<ELF64LE>;
template class elf::InputSection<ELF64BE>;
template class elf::EHInputSection<ELF32LE>;
template class elf::EHInputSection<ELF32BE>;
template class elf::EHInputSection<ELF64LE>;
template class elf::EHInputSection<ELF64BE>;
template class elf::MergeInputSection<ELF32LE>;
template class elf::MergeInputSection<ELF32BE>;
template class elf::MergeInputSection<ELF64LE>;
template class elf::MergeInputSection<ELF64BE>;
template class elf::MipsReginfoInputSection<ELF32LE>;
template class elf::MipsReginfoInputSection<ELF32BE>;
template class elf::MipsReginfoInputSection<ELF64LE>;
template class elf::MipsReginfoInputSection<ELF64BE>;