[analyzer] Refactor conditional expression evaluating code

Summary:
Instead of digging through the ExplodedGraph, to figure out which edge brought
us here, I compute the value of conditional expression by looking at the
sub-expression values.

To do this, I needed to change the liveness algorithm a bit -- now, the full
conditional expression also depends on all atomic sub-expressions, not only the
outermost ones.

Reviewers: jordan_rose

CC: cfe-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D1340

llvm-svn: 189090
This commit is contained in:
Pavel Labath 2013-08-23 07:19:22 +00:00
parent a9debbfb01
commit 02b64d46a0
4 changed files with 99 additions and 63 deletions

View File

@ -212,6 +212,8 @@ class TransferFunctions : public StmtVisitor<TransferFunctions> {
LiveVariables::LivenessValues &val;
LiveVariables::Observer *observer;
const CFGBlock *currentBlock;
void markLogicalExprLeaves(const Expr *E);
public:
TransferFunctions(LiveVariablesImpl &im,
LiveVariables::LivenessValues &Val,
@ -368,9 +370,25 @@ void TransferFunctions::VisitBinaryOperator(BinaryOperator *B) {
if (observer)
observer->observerKill(DR);
}
} else if (B->isLogicalOp()) {
// Leaf expressions in the logical operator tree are live until we reach the
// outermost logical operator. Static analyzer relies on this behaviour.
markLogicalExprLeaves(B->getLHS()->IgnoreParens());
markLogicalExprLeaves(B->getRHS()->IgnoreParens());
}
}
void TransferFunctions::markLogicalExprLeaves(const Expr *E) {
const BinaryOperator *B = dyn_cast<BinaryOperator>(E);
if (!B || !B->isLogicalOp()) {
val.liveStmts = LV.SSetFact.add(val.liveStmts, E);
return;
}
markLogicalExprLeaves(B->getLHS()->IgnoreParens());
markLogicalExprLeaves(B->getRHS()->IgnoreParens());
}
void TransferFunctions::VisitBlockExpr(BlockExpr *BE) {
AnalysisDeclContext::referenced_decls_iterator I, E;
llvm::tie(I, E) =

View File

@ -1343,12 +1343,24 @@ void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term,
return;
}
SValBuilder &SVB = Pred->getState()->getStateManager().getSValBuilder();
SVal TrueVal = SVB.makeTruthVal(true);
SVal FalseVal = SVB.makeTruthVal(false);
// Resolve the condition in the precense of nested '||' and '&&'.
if (const Expr *Ex = dyn_cast<Expr>(Condition))
Condition = Ex->IgnoreParens();
Condition = ResolveCondition(Condition, BldCtx.getBlock());
// Cast truth values to the correct type.
if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
TrueVal = SVB.evalCast(TrueVal, Ex->getType(),
getContext().getLogicalOperationType());
FalseVal = SVB.evalCast(FalseVal, Ex->getType(),
getContext().getLogicalOperationType());
}
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
Condition->getLocStart(),
"Error evaluating branch");
@ -1391,31 +1403,37 @@ void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term,
}
}
ProgramStateRef StTrue, StFalse;
// If the condition is still unknown, give up.
if (X.isUnknownOrUndef()) {
builder.generateNode(PrevState, true, PredI);
builder.generateNode(PrevState, false, PredI);
StTrue = PrevState->BindExpr(Condition, BldCtx.LC, TrueVal);
StFalse = PrevState->BindExpr(Condition, BldCtx.LC, FalseVal);
builder.generateNode(StTrue, true, PredI);
builder.generateNode(StFalse, false, PredI);
continue;
}
DefinedSVal V = X.castAs<DefinedSVal>();
ProgramStateRef StTrue, StFalse;
tie(StTrue, StFalse) = PrevState->assume(V);
// Process the true branch.
if (builder.isFeasible(true)) {
if (StTrue)
if (StTrue) {
StTrue = StTrue->BindExpr(Condition, BldCtx.LC, TrueVal);
builder.generateNode(StTrue, true, PredI);
else
} else
builder.markInfeasible(true);
}
// Process the false branch.
if (builder.isFeasible(false)) {
if (StFalse)
if (StFalse) {
StFalse = StFalse->BindExpr(Condition, BldCtx.LC, FalseVal);
builder.generateNode(StFalse, false, PredI);
else
} else
builder.markInfeasible(false);
}
}

View File

@ -501,6 +501,33 @@ void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
}
}
static ProgramStateRef evaluateLogicalExpression(const Expr *E,
const LocationContext *LC,
ProgramStateRef State) {
SVal X = State->getSVal(E, LC);
if (! X.isUnknown())
return State;
const BinaryOperator *B = dyn_cast<BinaryOperator>(E->IgnoreParens());
if (!B || (B->getOpcode() != BO_LAnd && B->getOpcode() != BO_LOr))
return State;
State = evaluateLogicalExpression(B->getLHS(), LC, State);
X = State->getSVal(B->getLHS(), LC);
QualType XType = B->getLHS()->getType();
assert(X.isConstant());
if (!X.isZeroConstant() == (B->getOpcode() == BO_LAnd)) {
// LHS not sufficient, we need to check RHS as well
State = evaluateLogicalExpression(B->getRHS(), LC, State);
X = State->getSVal(B->getRHS(), LC);
XType = B->getRHS()->getType();
}
SValBuilder &SVB = State->getStateManager().getSValBuilder();
return State->BindExpr(E, LC, SVB.evalCast(X, B->getType(), XType));
}
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
assert(B->getOpcode() == BO_LAnd ||
@ -509,64 +536,25 @@ void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
ProgramStateRef state = Pred->getState();
ExplodedNode *N = Pred;
while (!N->getLocation().getAs<BlockEntrance>()) {
ProgramPoint P = N->getLocation();
assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
(void) P;
assert(N->pred_size() == 1);
N = *N->pred_begin();
}
assert(N->pred_size() == 1);
N = *N->pred_begin();
BlockEdge BE = N->getLocation().castAs<BlockEdge>();
SVal X;
state = evaluateLogicalExpression(B, Pred->getLocationContext(), state);
SVal X = state->getSVal(B, Pred->getLocationContext());
// Determine the value of the expression by introspecting how we
// got this location in the CFG. This requires looking at the previous
// block we were in and what kind of control-flow transfer was involved.
const CFGBlock *SrcBlock = BE.getSrc();
// The only terminator (if there is one) that makes sense is a logical op.
CFGTerminator T = SrcBlock->getTerminator();
if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
(void) Term;
assert(Term->isLogicalOp());
assert(SrcBlock->succ_size() == 2);
// Did we take the true or false branch?
unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
X = svalBuilder.makeIntVal(constant, B->getType());
}
else {
// If there is no terminator, by construction the last statement
// in SrcBlock is the value of the enclosing expression.
// However, we still need to constrain that value to be 0 or 1.
assert(!SrcBlock->empty());
CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
const Expr *RHS = cast<Expr>(Elem.getStmt());
SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
if (RHSVal.isUndef()) {
X = RHSVal;
if (!X.isUndef()) {
DefinedOrUnknownSVal DefinedRHS = X.castAs<DefinedOrUnknownSVal>();
ProgramStateRef StTrue, StFalse;
llvm::tie(StTrue, StFalse) = state->assume(DefinedRHS);
if (StTrue) {
if (!StFalse) {
// The value is known to be true.
X = getSValBuilder().makeIntVal(1, B->getType());
} // else The truth value of X is unknown, just leave it as it is.
} else {
DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
ProgramStateRef StTrue, StFalse;
llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
if (StTrue) {
if (StFalse) {
// We can't constrain the value to 0 or 1.
// The best we can do is a cast.
X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
} else {
// The value is known to be true.
X = getSValBuilder().makeIntVal(1, B->getType());
}
} else {
// The value is known to be false.
assert(StFalse && "Infeasible path!");
X = getSValBuilder().makeIntVal(0, B->getType());
}
// The value is known to be false.
assert(StFalse && "Infeasible path!");
X = getSValBuilder().makeIntVal(0, B->getType());
}
}
Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
}

View File

@ -25,3 +25,15 @@ int testTypeIsInt(int i, void *p) {
return 1;
return 0;
}
// These crashed the analyzer at some point.
int between(char *x) {
extern char start[];
extern char end[];
return x >= start && x < end;
}
int undef(void) {} // expected-warning{{control reaches end of non-void function}}
void useUndef(void) { 0 || undef(); }
void testPointer(void) { (void) (1 && testPointer && 0); }