mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-01-08 09:03:18 +00:00
[mlir][linalg] Add control to pad-slice swap pattern
The pad-slice swap pattern generates `scf.if` and `tensor.generate` to guard against zero-sized slices if it cannot prove the slice is always non-zero. This is safe but quite conservative. It can be unnecessary for cases where we know by problem definition such cases does not exist, even if with dynamic shaped ops or unknown tile/slice sizes, e.g., convolution padding size = 1 with kernel dim size = 3. So this commit introduces a control to the pattern to specify whether to generate the if constructs to handle such cases better, given that once the if constructs is materialized, it's very hard to analyze and simplify. Reviewed By: mravishankar Differential Revision: https://reviews.llvm.org/D117017
This commit is contained in:
parent
27cd2a6284
commit
0edb412773
@ -1399,10 +1399,27 @@ LogicalResult applyStagedPatterns(
|
||||
/// Rewrite extract_slice(pad_tensor(x)) into pad_tensor(extract_slice(x)).
|
||||
struct ExtractSliceOfPadTensorSwapPattern
|
||||
: public OpRewritePattern<tensor::ExtractSliceOp> {
|
||||
using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
|
||||
/// A function to control pattern application and rewrite logic.
|
||||
///
|
||||
/// The function will be given the slice op and should return:
|
||||
/// - None: to fail the match and not apply the pattern;
|
||||
/// - true: to apply the pattern with zero slice guard;
|
||||
/// - false: to apply the pattern without zero slice guard.
|
||||
///
|
||||
/// See the documentation for tensor::bubbleUpPadSlice regarding zero slice
|
||||
/// guard.
|
||||
using ControlFn = std::function<llvm::Optional<bool>(tensor::ExtractSliceOp)>;
|
||||
|
||||
ExtractSliceOfPadTensorSwapPattern(MLIRContext *context,
|
||||
ControlFn controlFn = nullptr,
|
||||
PatternBenefit benefit = 1)
|
||||
: OpRewritePattern(context, benefit), controlFn(std::move(controlFn)) {}
|
||||
|
||||
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
|
||||
PatternRewriter &rewriter) const override;
|
||||
|
||||
private:
|
||||
ControlFn controlFn;
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -18,6 +18,32 @@
|
||||
namespace mlir {
|
||||
namespace tensor {
|
||||
|
||||
class PadOp;
|
||||
|
||||
/// Bubbles up a slice of this pad by taking the slice first and then performing
|
||||
/// the padding. `offsets` and `strides` specifies each dimension's start offset
|
||||
/// and size for the slice. The slice has unit strides along all dimensions.
|
||||
///
|
||||
/// Specifically, this function converts:
|
||||
/// ```
|
||||
/// %0 = tensor.pad %source low[...] high[...] { linalg.yield %cst }
|
||||
/// %1 = <extract-slice> %0 offsets=[...], sizes[...]
|
||||
/// ```
|
||||
/// into
|
||||
/// ```
|
||||
/// %0 = tensor.extract_slice %source ...
|
||||
/// %0 = tensor.pad %0 low[...] high[...] { linalg.yield %cst }
|
||||
/// ```
|
||||
///
|
||||
/// If `generateZeroSliceGuard` is true, the generated IR will contain logic
|
||||
/// to guard against the case that we might take a zero-sized slice from the
|
||||
/// original source. For such cases, we `tensor.generate` to generate the
|
||||
/// full tensor.
|
||||
Operation *bubbleUpPadSlice(OpBuilder &b, tensor::PadOp padOp,
|
||||
ArrayRef<OpFoldResult> offsets,
|
||||
ArrayRef<OpFoldResult> sizes,
|
||||
bool generateZeroSliceGuard = true);
|
||||
|
||||
/// Registers external models for Tiling interface for tensor ops.
|
||||
/// Currently, it registers:
|
||||
///
|
||||
|
@ -54,6 +54,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
|
||||
MLIRStandardOpsTransforms
|
||||
MLIRStandardToLLVM
|
||||
MLIRTensor
|
||||
MLIRTensorTilingInterfaceImpl
|
||||
MLIRTensorTransforms
|
||||
MLIRTransforms
|
||||
MLIRTransformUtils
|
||||
|
@ -19,6 +19,7 @@
|
||||
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
||||
#include "mlir/Dialect/SCF/Transforms.h"
|
||||
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||||
#include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
|
||||
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
||||
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
||||
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
||||
@ -911,23 +912,26 @@ GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp,
|
||||
|
||||
LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
|
||||
tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
|
||||
auto padOp = sliceOp.source().getDefiningOp<tensor::PadOp>();
|
||||
if (!padOp)
|
||||
return failure();
|
||||
// Only unit stride supported.
|
||||
if (!sliceOp.hasUnitStride())
|
||||
return failure();
|
||||
|
||||
TilingInterface tilingInterface =
|
||||
dyn_cast<TilingInterface>(padOp.getOperation());
|
||||
auto padOp = sliceOp.source().getDefiningOp<tensor::PadOp>();
|
||||
if (!padOp)
|
||||
return failure();
|
||||
|
||||
bool zeroSliceGuard = true;
|
||||
if (controlFn) {
|
||||
if (Optional<bool> control = controlFn(sliceOp))
|
||||
zeroSliceGuard = control.getValue();
|
||||
else
|
||||
return failure();
|
||||
}
|
||||
|
||||
Operation *tiledPadOp =
|
||||
tilingInterface
|
||||
.getTiledImplementation(
|
||||
rewriter, /*dest=*/ValueRange{}, sliceOp.getMixedOffsets(),
|
||||
sliceOp.getMixedSizes(), /*tileDestOperands=*/false)
|
||||
.front();
|
||||
tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(),
|
||||
sliceOp.getMixedSizes(), zeroSliceGuard);
|
||||
// All shapes are static and the data source is actually used. Rewrite into
|
||||
// pad_tensor(subtensor(x)).
|
||||
// pad(extract_slice(x)).
|
||||
rewriter.replaceOp(sliceOp, tiledPadOp->getResults());
|
||||
return success();
|
||||
}
|
||||
|
@ -63,216 +63,224 @@ struct PadOpTiling : public TilingInterface::ExternalModel<PadOpTiling, PadOp> {
|
||||
ArrayRef<OpFoldResult> offsets,
|
||||
ArrayRef<OpFoldResult> sizes,
|
||||
bool /*tileDestOperands*/) const {
|
||||
auto padOp = cast<PadOp>(op);
|
||||
// Only constant padding value supported.
|
||||
Value padValue = padOp.getConstantPaddingValue();
|
||||
if (!padValue)
|
||||
Operation *result =
|
||||
tensor::bubbleUpPadSlice(b, cast<PadOp>(op), offsets, sizes);
|
||||
if (!result)
|
||||
return {};
|
||||
|
||||
// Helper variables and functions for various arithmetic operations. These
|
||||
// are used extensively for computing new offset/length and padding values.
|
||||
Location loc = op->getLoc();
|
||||
AffineExpr dim0, dim1;
|
||||
bindDims(b.getContext(), dim0, dim1);
|
||||
// Add two integers.
|
||||
auto addMap = AffineMap::get(2, 0, {dim0 + dim1});
|
||||
auto add = [&](Value v1, Value v2) {
|
||||
return b.createOrFold<AffineApplyOp>(loc, addMap, ValueRange{v1, v2});
|
||||
};
|
||||
// Subtract two integers.
|
||||
auto subMap = AffineMap::get(2, 0, {dim0 - dim1});
|
||||
auto sub = [&](Value v1, Value v2) {
|
||||
return b.createOrFold<AffineApplyOp>(loc, subMap, ValueRange{v1, v2});
|
||||
};
|
||||
// Take the minimum of two integers.
|
||||
auto idMap = AffineMap::getMultiDimIdentityMap(2, b.getContext());
|
||||
auto min = [&](Value v1, Value v2) {
|
||||
return b.createOrFold<AffineMinOp>(loc, idMap, ValueRange{v1, v2});
|
||||
};
|
||||
// Take the maximum of two integers.
|
||||
auto max = [&](Value v1, Value v2) {
|
||||
return b.createOrFold<AffineMaxOp>(loc, idMap, ValueRange{v1, v2});
|
||||
};
|
||||
// Zero index-typed integer.
|
||||
auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
|
||||
|
||||
// Helper function for filling static/dynamic low/high padding indices
|
||||
// vectors of PadOp.
|
||||
auto appendIndex = [&](Value val, SmallVector<Value> &dynIndices,
|
||||
SmallVector<int64_t> &staticIndices) {
|
||||
if (auto constInt = getConstantIntValue(val)) {
|
||||
staticIndices.push_back(*constInt);
|
||||
} else {
|
||||
staticIndices.push_back(ShapedType::kDynamicSize);
|
||||
dynIndices.push_back(val);
|
||||
}
|
||||
};
|
||||
|
||||
// Compute new offsets, lengths, low padding, high padding.
|
||||
SmallVector<OpFoldResult> newOffsets, newLengths, newStrides;
|
||||
SmallVector<Value> newLows, newHighs;
|
||||
SmallVector<int64_t> staticNewLows, staticNewHighs;
|
||||
// Set to true if the original data source is not read at all.
|
||||
bool hasZeroLen = false;
|
||||
// Same as hasZeroLen, but for dynamic dimension sizes. This condition
|
||||
// is true if the original data source turns out to be unused at runtime.
|
||||
Value dynHasZeroLenCond;
|
||||
|
||||
int64_t rank = padOp.getSourceType().getRank();
|
||||
for (unsigned dim = 0; dim < rank; ++dim) {
|
||||
auto low =
|
||||
getValueOrCreateConstantIndexOp(b, loc, padOp.getMixedLowPad()[dim]);
|
||||
bool hasLowPad = getConstantIntValue(low) != static_cast<int64_t>(0);
|
||||
auto high =
|
||||
getValueOrCreateConstantIndexOp(b, loc, padOp.getMixedHighPad()[dim]);
|
||||
bool hasHighPad = getConstantIntValue(high) != static_cast<int64_t>(0);
|
||||
auto offset = getValueOrCreateConstantIndexOp(b, loc, offsets[dim]);
|
||||
auto length = getValueOrCreateConstantIndexOp(b, loc, sizes[dim]);
|
||||
auto srcSize = b.createOrFold<tensor::DimOp>(loc, padOp.source(), dim);
|
||||
|
||||
// The new amount of low padding is `low - offset`. Except for the case
|
||||
// where none of the low padding is read. In that case, the new amount of
|
||||
// low padding is zero.
|
||||
//
|
||||
// Optimization: If low = 0, then newLow = 0.
|
||||
Value newLow = hasLowPad ? max(zero, sub(low, offset)) : zero;
|
||||
appendIndex(newLow, newLows, staticNewLows);
|
||||
|
||||
// Start reading the data from position `offset - low`. Since the original
|
||||
// read may have started in the low padding zone, this value could be
|
||||
// negative. Therefore, start reading from:
|
||||
//
|
||||
// max(offset - low, 0)
|
||||
//
|
||||
// The original read could also have started in the high padding zone.
|
||||
// In that case, set the offset to the end of source tensor. The new
|
||||
// ExtractSliceOp length will be zero in that case. (Effectively reading
|
||||
// no data from the source.)
|
||||
//
|
||||
// Optimization: If low = 0, then the formula can be simplified.
|
||||
Value newOffset = hasLowPad ? min(max(sub(offset, low), zero), srcSize)
|
||||
: min(offset, srcSize);
|
||||
newOffsets.push_back(getAsOpFoldResult(newOffset));
|
||||
|
||||
// The original ExtractSliceOp was reading until position `offset +
|
||||
// length`. Therefore, the corresponding position within the source tensor
|
||||
// is:
|
||||
//
|
||||
// offset + length - low
|
||||
//
|
||||
// In case the original ExtractSliceOp stopped reading within the low
|
||||
// padding zone, this value can be negative. In that case, the end
|
||||
// position of the read should be zero. (Similar to newOffset.)
|
||||
//
|
||||
// The original read could also have stopped in the high padding zone.
|
||||
// In that case, set the end positition of the read should be the end of
|
||||
// the source tensor. (Similar to newOffset.)
|
||||
//
|
||||
// endLoc = min(max(offset - low + length, 0), srcSize)
|
||||
//
|
||||
// The new ExtractSliceOp length is `endLoc - newOffset`.
|
||||
//
|
||||
// Optimization: If low = 0, then the formula can be simplified.
|
||||
Value endLoc =
|
||||
hasLowPad ? min(max(add(sub(offset, low), length), zero), srcSize)
|
||||
: min(add(offset, length), srcSize);
|
||||
Value newLength = sub(endLoc, newOffset);
|
||||
newLengths.push_back(getAsOpFoldResult(newLength));
|
||||
|
||||
// Check if newLength is zero. In that case, no SubTensorOp should be
|
||||
// executed.
|
||||
if (auto newLengthInt = getConstantIntValue(newLength)) {
|
||||
hasZeroLen |= *newLengthInt == 0;
|
||||
} else {
|
||||
Value check = b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
||||
newLength, zero);
|
||||
dynHasZeroLenCond =
|
||||
dynHasZeroLenCond
|
||||
? b.create<arith::OrIOp>(loc, check, dynHasZeroLenCond)
|
||||
: check;
|
||||
}
|
||||
|
||||
// The amount of high padding is simply the number of elements remaining,
|
||||
// so that the result has the same length as the original ExtractSliceOp.
|
||||
// As an optimization, if the original high padding is zero, then the new
|
||||
// high padding must also be zero.
|
||||
Value newHigh = hasHighPad ? sub(sub(length, newLength), newLow) : zero;
|
||||
appendIndex(newHigh, newHighs, staticNewHighs);
|
||||
|
||||
// Only unit stride supported.
|
||||
newStrides.push_back(b.getIndexAttr(1));
|
||||
}
|
||||
|
||||
// The shape of the result can be obtained from the sizes passed in.
|
||||
SmallVector<Value> dynDims;
|
||||
SmallVector<int64_t> shape;
|
||||
dispatchIndexOpFoldResults(sizes, dynDims, shape, ShapedType::kDynamicSize);
|
||||
RankedTensorType resultType =
|
||||
RankedTensorType::get(shape, padOp.getResultType().getElementType());
|
||||
|
||||
// Insert cast to ensure that types match. (May be folded away.)
|
||||
auto castResult = [&](Value val) -> Operation * {
|
||||
auto castOp = b.create<tensor::CastOp>(loc, resultType, val);
|
||||
return castOp;
|
||||
};
|
||||
|
||||
// In cases where the original data source is unused: Emit a GenerateOp and
|
||||
// do not generate a SliceOp. (The result shape of the SliceOp would
|
||||
// have a dimension of size 0, the semantics of which is unclear.)
|
||||
auto createGenerateOp = [&]() {
|
||||
// Create GenerateOp.
|
||||
auto generateOp = b.create<tensor::GenerateOp>(
|
||||
loc, resultType, dynDims,
|
||||
[&](OpBuilder &builder, Location gLoc, ValueRange indices) {
|
||||
builder.create<tensor::YieldOp>(gLoc, padValue);
|
||||
});
|
||||
return castResult(generateOp);
|
||||
};
|
||||
|
||||
// Emit a SliceOp and a PadOp. Should not be used in cases where
|
||||
// the result shape of the new SliceOp has a zero dimension.
|
||||
auto createPadTensorOfSubTensor = [&]() {
|
||||
// Create pad_tensor(subtensor(x)).
|
||||
auto newSliceOp = b.create<tensor::ExtractSliceOp>(
|
||||
loc, padOp.source(), newOffsets, newLengths, newStrides);
|
||||
auto newPadOp = b.create<PadOp>(loc, newSliceOp, staticNewLows,
|
||||
staticNewHighs, newLows, newHighs);
|
||||
|
||||
// Copy region to new PadOp.
|
||||
BlockAndValueMapping bvm;
|
||||
padOp.region().cloneInto(&newPadOp.getRegion(), bvm);
|
||||
|
||||
// Cast result and return.
|
||||
return castResult(newPadOp);
|
||||
};
|
||||
|
||||
// Rewrite subtensor(pad_tensor(x)) into a GenerateOp it is statically known
|
||||
// that the original data source x is not used.
|
||||
if (hasZeroLen)
|
||||
return {createGenerateOp()};
|
||||
|
||||
// If there are dynamic dimensions: Generate an scf.if check to avoid
|
||||
// creating SliceOps with result dimensions of size 0 at runtime.
|
||||
if (dynHasZeroLenCond) {
|
||||
auto result = b.create<scf::IfOp>(
|
||||
loc, resultType, dynHasZeroLenCond,
|
||||
/*thenBuilder=*/
|
||||
[&](OpBuilder &b, Location loc) {
|
||||
b.create<scf::YieldOp>(loc, createGenerateOp()->getResult(0));
|
||||
},
|
||||
/*elseBuilder=*/
|
||||
[&](OpBuilder &b, Location loc) {
|
||||
b.create<scf::YieldOp>(loc,
|
||||
createPadTensorOfSubTensor()->getResult(0));
|
||||
});
|
||||
return {result};
|
||||
}
|
||||
return {createPadTensorOfSubTensor()};
|
||||
return {result};
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
Operation *tensor::bubbleUpPadSlice(OpBuilder &b, tensor::PadOp padOp,
|
||||
ArrayRef<OpFoldResult> offsets,
|
||||
ArrayRef<OpFoldResult> sizes,
|
||||
bool generateZeroSliceGuard) {
|
||||
// Only constant padding value supported.
|
||||
Value padValue = padOp.getConstantPaddingValue();
|
||||
if (!padValue)
|
||||
return nullptr;
|
||||
|
||||
// Helper variables and functions for various arithmetic operations. These
|
||||
// are used extensively for computing new offset/length and padding values.
|
||||
Location loc = padOp->getLoc();
|
||||
AffineExpr dim0, dim1;
|
||||
bindDims(b.getContext(), dim0, dim1);
|
||||
// Add two integers.
|
||||
auto addMap = AffineMap::get(2, 0, {dim0 + dim1});
|
||||
auto add = [&](Value v1, Value v2) {
|
||||
return b.createOrFold<AffineApplyOp>(loc, addMap, ValueRange{v1, v2});
|
||||
};
|
||||
// Subtract two integers.
|
||||
auto subMap = AffineMap::get(2, 0, {dim0 - dim1});
|
||||
auto sub = [&](Value v1, Value v2) {
|
||||
return b.createOrFold<AffineApplyOp>(loc, subMap, ValueRange{v1, v2});
|
||||
};
|
||||
// Take the minimum of two integers.
|
||||
auto idMap = AffineMap::getMultiDimIdentityMap(2, b.getContext());
|
||||
auto min = [&](Value v1, Value v2) {
|
||||
return b.createOrFold<AffineMinOp>(loc, idMap, ValueRange{v1, v2});
|
||||
};
|
||||
// Take the maximum of two integers.
|
||||
auto max = [&](Value v1, Value v2) {
|
||||
return b.createOrFold<AffineMaxOp>(loc, idMap, ValueRange{v1, v2});
|
||||
};
|
||||
// Zero index-typed integer.
|
||||
auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
|
||||
|
||||
// Helper function for filling static/dynamic low/high padding indices
|
||||
// vectors of PadOp.
|
||||
auto appendIndex = [&](Value val, SmallVector<Value> &dynIndices,
|
||||
SmallVector<int64_t> &staticIndices) {
|
||||
if (auto constInt = getConstantIntValue(val)) {
|
||||
staticIndices.push_back(*constInt);
|
||||
} else {
|
||||
staticIndices.push_back(ShapedType::kDynamicSize);
|
||||
dynIndices.push_back(val);
|
||||
}
|
||||
};
|
||||
|
||||
// Compute new offsets, lengths, low padding, high padding.
|
||||
SmallVector<OpFoldResult> newOffsets, newLengths, newStrides;
|
||||
SmallVector<Value> newLows, newHighs;
|
||||
SmallVector<int64_t> staticNewLows, staticNewHighs;
|
||||
// Set to true if the original data source is not read at all.
|
||||
bool hasZeroLen = false;
|
||||
// Same as hasZeroLen, but for dynamic dimension sizes. This condition
|
||||
// is true if the original data source turns out to be unused at runtime.
|
||||
Value dynHasZeroLenCond;
|
||||
|
||||
int64_t rank = padOp.getSourceType().getRank();
|
||||
for (unsigned dim = 0; dim < rank; ++dim) {
|
||||
auto low =
|
||||
getValueOrCreateConstantIndexOp(b, loc, padOp.getMixedLowPad()[dim]);
|
||||
bool hasLowPad = getConstantIntValue(low) != static_cast<int64_t>(0);
|
||||
auto high =
|
||||
getValueOrCreateConstantIndexOp(b, loc, padOp.getMixedHighPad()[dim]);
|
||||
bool hasHighPad = getConstantIntValue(high) != static_cast<int64_t>(0);
|
||||
auto offset = getValueOrCreateConstantIndexOp(b, loc, offsets[dim]);
|
||||
auto length = getValueOrCreateConstantIndexOp(b, loc, sizes[dim]);
|
||||
auto srcSize = b.createOrFold<tensor::DimOp>(loc, padOp.source(), dim);
|
||||
|
||||
// The new amount of low padding is `low - offset`. Except for the case
|
||||
// where none of the low padding is read. In that case, the new amount of
|
||||
// low padding is zero.
|
||||
//
|
||||
// Optimization: If low = 0, then newLow = 0.
|
||||
Value newLow = hasLowPad ? max(zero, sub(low, offset)) : zero;
|
||||
appendIndex(newLow, newLows, staticNewLows);
|
||||
|
||||
// Start reading the data from position `offset - low`. Since the original
|
||||
// read may have started in the low padding zone, this value could be
|
||||
// negative. Therefore, start reading from:
|
||||
//
|
||||
// max(offset - low, 0)
|
||||
//
|
||||
// The original read could also have started in the high padding zone.
|
||||
// In that case, set the offset to the end of source tensor. The new
|
||||
// ExtractSliceOp length will be zero in that case. (Effectively reading
|
||||
// no data from the source.)
|
||||
//
|
||||
// Optimization: If low = 0, then the formula can be simplified.
|
||||
Value newOffset = hasLowPad ? min(max(sub(offset, low), zero), srcSize)
|
||||
: min(offset, srcSize);
|
||||
newOffsets.push_back(getAsOpFoldResult(newOffset));
|
||||
|
||||
// The original ExtractSliceOp was reading until position `offset +
|
||||
// length`. Therefore, the corresponding position within the source tensor
|
||||
// is:
|
||||
//
|
||||
// offset + length - low
|
||||
//
|
||||
// In case the original ExtractSliceOp stopped reading within the low
|
||||
// padding zone, this value can be negative. In that case, the end
|
||||
// position of the read should be zero. (Similar to newOffset.)
|
||||
//
|
||||
// The original read could also have stopped in the high padding zone.
|
||||
// In that case, set the end positition of the read should be the end of
|
||||
// the source tensor. (Similar to newOffset.)
|
||||
//
|
||||
// endLoc = min(max(offset - low + length, 0), srcSize)
|
||||
//
|
||||
// The new ExtractSliceOp length is `endLoc - newOffset`.
|
||||
//
|
||||
// Optimization: If low = 0, then the formula can be simplified.
|
||||
Value endLoc = hasLowPad
|
||||
? min(max(add(sub(offset, low), length), zero), srcSize)
|
||||
: min(add(offset, length), srcSize);
|
||||
Value newLength = sub(endLoc, newOffset);
|
||||
newLengths.push_back(getAsOpFoldResult(newLength));
|
||||
|
||||
// Check if newLength is zero. In that case, no SubTensorOp should be
|
||||
// executed.
|
||||
if (auto newLengthInt = getConstantIntValue(newLength)) {
|
||||
hasZeroLen |= *newLengthInt == 0;
|
||||
} else {
|
||||
Value check = b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
||||
newLength, zero);
|
||||
dynHasZeroLenCond =
|
||||
dynHasZeroLenCond
|
||||
? b.create<arith::OrIOp>(loc, check, dynHasZeroLenCond)
|
||||
: check;
|
||||
}
|
||||
|
||||
// The amount of high padding is simply the number of elements remaining,
|
||||
// so that the result has the same length as the original ExtractSliceOp.
|
||||
// As an optimization, if the original high padding is zero, then the new
|
||||
// high padding must also be zero.
|
||||
Value newHigh = hasHighPad ? sub(sub(length, newLength), newLow) : zero;
|
||||
appendIndex(newHigh, newHighs, staticNewHighs);
|
||||
|
||||
// Only unit stride supported.
|
||||
newStrides.push_back(b.getIndexAttr(1));
|
||||
}
|
||||
|
||||
// The shape of the result can be obtained from the sizes passed in.
|
||||
SmallVector<Value> dynDims;
|
||||
SmallVector<int64_t> shape;
|
||||
dispatchIndexOpFoldResults(sizes, dynDims, shape, ShapedType::kDynamicSize);
|
||||
RankedTensorType resultType =
|
||||
RankedTensorType::get(shape, padOp.getResultType().getElementType());
|
||||
|
||||
// Insert cast to ensure that types match. (May be folded away.)
|
||||
auto castResult = [&](Value val) -> Operation * {
|
||||
return b.create<tensor::CastOp>(loc, resultType, val);
|
||||
};
|
||||
|
||||
// In cases where the original data source is unused: Emit a GenerateOp and
|
||||
// do not generate a SliceOp. (The result shape of the SliceOp would
|
||||
// have a dimension of size 0, the semantics of which is unclear.)
|
||||
auto createGenerateOp = [&]() {
|
||||
// Create GenerateOp.
|
||||
auto generateOp = b.create<tensor::GenerateOp>(
|
||||
loc, resultType, dynDims,
|
||||
[&](OpBuilder &builder, Location gLoc, ValueRange indices) {
|
||||
builder.create<tensor::YieldOp>(gLoc, padValue);
|
||||
});
|
||||
return castResult(generateOp);
|
||||
};
|
||||
|
||||
// Emit a SliceOp and a PadOp. Should not be used in cases where
|
||||
// the result shape of the new SliceOp has a zero dimension.
|
||||
auto createPadOfExtractSlice = [&]() {
|
||||
// Create pad(extract_slice(x)).
|
||||
auto newSliceOp = b.create<tensor::ExtractSliceOp>(
|
||||
loc, padOp.source(), newOffsets, newLengths, newStrides);
|
||||
auto newPadOp = b.create<PadOp>(loc, newSliceOp, staticNewLows,
|
||||
staticNewHighs, newLows, newHighs);
|
||||
|
||||
// Copy region to new PadOp.
|
||||
BlockAndValueMapping bvm;
|
||||
padOp.region().cloneInto(&newPadOp.getRegion(), bvm);
|
||||
|
||||
// Cast result and return.
|
||||
return castResult(newPadOp);
|
||||
};
|
||||
|
||||
// Rewrite extract_slice(pad(x)) into a GenerateOp it is statically known that
|
||||
// the original data source x is not used.
|
||||
if (hasZeroLen)
|
||||
return createGenerateOp();
|
||||
|
||||
// If there are dynamic dimensions: Generate an scf.if check to avoid
|
||||
// creating SliceOps with result dimensions of size 0 at runtime.
|
||||
if (generateZeroSliceGuard && dynHasZeroLenCond) {
|
||||
auto result = b.create<scf::IfOp>(
|
||||
loc, resultType, dynHasZeroLenCond,
|
||||
/*thenBuilder=*/
|
||||
[&](OpBuilder &b, Location loc) {
|
||||
b.create<scf::YieldOp>(loc, createGenerateOp()->getResult(0));
|
||||
},
|
||||
/*elseBuilder=*/
|
||||
[&](OpBuilder &b, Location loc) {
|
||||
b.create<scf::YieldOp>(loc, createPadOfExtractSlice()->getResult(0));
|
||||
});
|
||||
return result;
|
||||
}
|
||||
return createPadOfExtractSlice();
|
||||
}
|
||||
|
||||
void mlir::tensor::registerTilingOpInterfaceExternalModels(
|
||||
DialectRegistry ®istry) {
|
||||
registry.addOpInterface<tensor::PadOp, PadOpTiling>();
|
||||
|
@ -7084,6 +7084,7 @@ cc_library(
|
||||
":StandardOpsTransforms",
|
||||
":Support",
|
||||
":TensorDialect",
|
||||
":TensorTilingInterfaceImpl",
|
||||
":TensorTransforms",
|
||||
":TensorUtils",
|
||||
":TransformUtils",
|
||||
|
Loading…
Reference in New Issue
Block a user