[mlir][vulkan-runner] Add support for integer types.

Summary:
Add support for memrefs with element type as integer type
and simple test.

Differential Revision: https://reviews.llvm.org/D78560
This commit is contained in:
Denis Khalikov 2020-04-20 23:31:24 +03:00
parent e57361c055
commit 1009177d49
4 changed files with 167 additions and 45 deletions

View File

@ -54,10 +54,12 @@ private:
/// Checks where the given type is supported by Vulkan runtime.
bool isSupportedType(Type type) {
// TODO(denis0x0D): Handle other types.
if (auto memRefType = type.dyn_cast_or_null<MemRefType>())
if (auto memRefType = type.dyn_cast_or_null<MemRefType>()) {
auto elementType = memRefType.getElementType();
return memRefType.hasRank() &&
(memRefType.getRank() >= 1 && memRefType.getRank() <= 3);
(memRefType.getRank() >= 1 && memRefType.getRank() <= 3) &&
(elementType.isIntOrFloat());
}
return false;
}

View File

@ -30,6 +30,9 @@ using namespace mlir;
static constexpr const char *kBindMemRef1DFloat = "bindMemRef1DFloat";
static constexpr const char *kBindMemRef2DFloat = "bindMemRef2DFloat";
static constexpr const char *kBindMemRef3DFloat = "bindMemRef3DFloat";
static constexpr const char *kBindMemRef1DInt = "bindMemRef1DInt";
static constexpr const char *kBindMemRef2DInt = "bindMemRef2DInt";
static constexpr const char *kBindMemRef3DInt = "bindMemRef3DInt";
static constexpr const char *kCInterfaceVulkanLaunch =
"_mlir_ciface_vulkanLaunch";
static constexpr const char *kDeinitVulkan = "deinitVulkan";
@ -73,12 +76,15 @@ private:
llvmPointerType = LLVM::LLVMType::getInt8PtrTy(llvmDialect);
llvmInt32Type = LLVM::LLVMType::getInt32Ty(llvmDialect);
llvmInt64Type = LLVM::LLVMType::getInt64Ty(llvmDialect);
llvmMemRef1DFloat = getMemRefType(1);
llvmMemRef2DFloat = getMemRefType(2);
llvmMemRef3DFloat = getMemRefType(3);
llvmMemRef1DFloat = getMemRefType(1, llvmFloatType);
llvmMemRef2DFloat = getMemRefType(2, llvmFloatType);
llvmMemRef3DFloat = getMemRefType(3, llvmFloatType);
llvmMemRef1DInt = getMemRefType(1, llvmInt32Type);
llvmMemRef2DInt = getMemRefType(2, llvmInt32Type);
llvmMemRef3DInt = getMemRefType(3, llvmInt32Type);
}
LLVM::LLVMType getMemRefType(uint32_t rank) {
LLVM::LLVMType getMemRefType(uint32_t rank, LLVM::LLVMType elemenType) {
// According to the MLIR doc memref argument is converted into a
// pointer-to-struct argument of type:
// template <typename Elem, size_t Rank>
@ -89,15 +95,16 @@ private:
// int64_t sizes[Rank]; // omitted when rank == 0
// int64_t strides[Rank]; // omitted when rank == 0
// };
auto llvmPtrToFloatType = getFloatType().getPointerTo();
auto llvmPtrToElementType = elemenType.getPointerTo();
auto llvmArrayRankElementSizeType =
LLVM::LLVMType::getArrayTy(getInt64Type(), rank);
// Create a type
// `!llvm<"{ float*, float*, i64, [`rank` x i64], [`rank` x i64]}">`.
// `!llvm<"{ `element-type`*, `element-type`*, i64,
// [`rank` x i64], [`rank` x i64]}">`.
return LLVM::LLVMType::getStructTy(
llvmDialect,
{llvmPtrToFloatType, llvmPtrToFloatType, getInt64Type(),
{llvmPtrToElementType, llvmPtrToElementType, getInt64Type(),
llvmArrayRankElementSizeType, llvmArrayRankElementSizeType});
}
@ -109,6 +116,9 @@ private:
LLVM::LLVMType getMemRef1DFloat() { return llvmMemRef1DFloat; }
LLVM::LLVMType getMemRef2DFloat() { return llvmMemRef2DFloat; }
LLVM::LLVMType getMemRef3DFloat() { return llvmMemRef3DFloat; }
LLVM::LLVMType getMemRef1DInt() { return llvmMemRef1DInt; }
LLVM::LLVMType getMemRef2DInt() { return llvmMemRef2DInt; }
LLVM::LLVMType getMemRef3DInt() { return llvmMemRef3DInt; }
/// Creates a LLVM global for the given `name`.
Value createEntryPointNameConstant(StringRef name, Location loc,
@ -142,8 +152,19 @@ private:
/// Collects SPIRV attributes from the given `vulkanLaunchCallOp`.
void collectSPIRVAttributes(LLVM::CallOp vulkanLaunchCallOp);
/// Deduces a rank from the given 'ptrToMemRefDescriptor`.
LogicalResult deduceMemRefRank(Value ptrToMemRefDescriptor, uint32_t &rank);
/// Deduces a rank and element type from the given 'ptrToMemRefDescriptor`.
LogicalResult deduceMemRefRankAndType(Value ptrToMemRefDescriptor,
uint32_t &rank, LLVM::LLVMType &type);
/// Returns a string representation from the given `type`.
StringRef stringifyType(LLVM::LLVMType type) {
if (type.isFloatTy())
return "Float";
if (type.isIntegerTy())
return "Int";
llvm_unreachable("unsupported type");
}
public:
void runOnOperation() override;
@ -158,6 +179,9 @@ private:
LLVM::LLVMType llvmMemRef1DFloat;
LLVM::LLVMType llvmMemRef2DFloat;
LLVM::LLVMType llvmMemRef3DFloat;
LLVM::LLVMType llvmMemRef1DInt;
LLVM::LLVMType llvmMemRef2DInt;
LLVM::LLVMType llvmMemRef3DInt;
// TODO: Use an associative array to support multiple vulkan launch calls.
std::pair<StringAttr, StringAttr> spirvAttributes;
@ -231,13 +255,15 @@ void VulkanLaunchFuncToVulkanCallsPass::createBindMemRefCalls(
auto ptrToMemRefDescriptor = en.value();
uint32_t rank = 0;
if (failed(deduceMemRefRank(ptrToMemRefDescriptor, rank))) {
LLVM::LLVMType type;
if (failed(deduceMemRefRankAndType(ptrToMemRefDescriptor, rank, type))) {
cInterfaceVulkanLaunchCallOp.emitError()
<< "invalid memref descriptor " << ptrToMemRefDescriptor.getType();
return signalPassFailure();
}
auto symbolName = llvm::formatv("bindMemRef{0}DFloat", rank).str();
auto symbolName =
llvm::formatv("bindMemRef{0}D{1}", rank, stringifyType(type)).str();
// Create call to `bindMemRef`.
builder.create<LLVM::CallOp>(
loc, ArrayRef<Type>{getVoidType()},
@ -248,9 +274,8 @@ void VulkanLaunchFuncToVulkanCallsPass::createBindMemRefCalls(
}
}
LogicalResult
VulkanLaunchFuncToVulkanCallsPass::deduceMemRefRank(Value ptrToMemRefDescriptor,
uint32_t &rank) {
LogicalResult VulkanLaunchFuncToVulkanCallsPass::deduceMemRefRankAndType(
Value ptrToMemRefDescriptor, uint32_t &rank, LLVM::LLVMType &type) {
auto llvmPtrDescriptorTy =
ptrToMemRefDescriptor.getType().dyn_cast<LLVM::LLVMType>();
if (!llvmPtrDescriptorTy)
@ -267,11 +292,12 @@ VulkanLaunchFuncToVulkanCallsPass::deduceMemRefRank(Value ptrToMemRefDescriptor,
// };
if (!llvmDescriptorTy || !llvmDescriptorTy.isStructTy())
return failure();
type = llvmDescriptorTy.getStructElementType(0).getPointerElementTy();
if (llvmDescriptorTy.getStructNumElements() == 3) {
rank = 0;
return success();
}
rank = llvmDescriptorTy.getStructElementType(3).getArrayNumElements();
return success();
}
@ -312,35 +338,23 @@ void VulkanLaunchFuncToVulkanCallsPass::declareVulkanFunctions(Location loc) {
/*isVarArg=*/false));
}
if (!module.lookupSymbol(kBindMemRef1DFloat)) {
builder.create<LLVM::LLVMFuncOp>(
loc, kBindMemRef1DFloat,
LLVM::LLVMType::getFunctionTy(getVoidType(),
{getPointerType(), getInt32Type(),
getInt32Type(),
getMemRef1DFloat().getPointerTo()},
/*isVarArg=*/false));
#define CREATE_VULKAN_BIND_FUNC(MemRefType) \
if (!module.lookupSymbol(kBind##MemRefType)) { \
builder.create<LLVM::LLVMFuncOp>( \
loc, kBind##MemRefType, \
LLVM::LLVMType::getFunctionTy(getVoidType(), \
{getPointerType(), getInt32Type(), \
getInt32Type(), \
get##MemRefType().getPointerTo()}, \
/*isVarArg=*/false)); \
}
if (!module.lookupSymbol(kBindMemRef2DFloat)) {
builder.create<LLVM::LLVMFuncOp>(
loc, kBindMemRef2DFloat,
LLVM::LLVMType::getFunctionTy(getVoidType(),
{getPointerType(), getInt32Type(),
getInt32Type(),
getMemRef2DFloat().getPointerTo()},
/*isVarArg=*/false));
}
if (!module.lookupSymbol(kBindMemRef3DFloat)) {
builder.create<LLVM::LLVMFuncOp>(
loc, kBindMemRef3DFloat,
LLVM::LLVMType::getFunctionTy(getVoidType(),
{getPointerType(), getInt32Type(),
getInt32Type(),
getMemRef3DFloat().getPointerTo()},
/*isVarArg=*/false));
}
CREATE_VULKAN_BIND_FUNC(MemRef1DFloat);
CREATE_VULKAN_BIND_FUNC(MemRef2DFloat);
CREATE_VULKAN_BIND_FUNC(MemRef3DFloat);
CREATE_VULKAN_BIND_FUNC(MemRef1DInt);
CREATE_VULKAN_BIND_FUNC(MemRef2DInt);
CREATE_VULKAN_BIND_FUNC(MemRef3DInt);
if (!module.lookupSymbol(kInitVulkan)) {
builder.create<LLVM::LLVMFuncOp>(

View File

@ -0,0 +1,52 @@
// RUN: mlir-vulkan-runner %s --shared-libs=%vulkan_wrapper_library_dir/libvulkan-runtime-wrappers%shlibext,%linalg_test_lib_dir/libmlir_runner_utils%shlibext --entry-point-result=void | FileCheck %s
// CHECK-COUNT-64: [3, 3, 3, 3, 3, 3, 3, 3]
module attributes {
gpu.container_module,
spv.target_env = #spv.target_env<
#spv.vce<v1.0, [Shader], [SPV_KHR_storage_buffer_storage_class]>,
{max_compute_workgroup_invocations = 128 : i32,
max_compute_workgroup_size = dense<[128, 128, 64]> : vector<3xi32>}>
} {
gpu.module @kernels {
gpu.func @kernel_addi(%arg0 : memref<8xi32>, %arg1 : memref<8x8xi32>, %arg2 : memref<8x8x8xi32>)
kernel attributes { spv.entry_point_abi = {local_size = dense<[1, 1, 1]>: vector<3xi32>}} {
%x = "gpu.block_id"() {dimension = "x"} : () -> index
%y = "gpu.block_id"() {dimension = "y"} : () -> index
%z = "gpu.block_id"() {dimension = "z"} : () -> index
%0 = load %arg0[%x] : memref<8xi32>
%1 = load %arg1[%y, %x] : memref<8x8xi32>
%2 = addi %0, %1 : i32
store %2, %arg2[%z, %y, %x] : memref<8x8x8xi32>
gpu.return
}
}
func @main() {
%arg0 = alloc() : memref<8xi32>
%arg1 = alloc() : memref<8x8xi32>
%arg2 = alloc() : memref<8x8x8xi32>
%value0 = constant 0 : i32
%value1 = constant 1 : i32
%value2 = constant 2 : i32
%arg3 = memref_cast %arg0 : memref<8xi32> to memref<?xi32>
%arg4 = memref_cast %arg1 : memref<8x8xi32> to memref<?x?xi32>
%arg5 = memref_cast %arg2 : memref<8x8x8xi32> to memref<?x?x?xi32>
call @fillResource1DInt(%arg3, %value1) : (memref<?xi32>, i32) -> ()
call @fillResource2DInt(%arg4, %value2) : (memref<?x?xi32>, i32) -> ()
call @fillResource3DInt(%arg5, %value0) : (memref<?x?x?xi32>, i32) -> ()
%cst1 = constant 1 : index
%cst8 = constant 8 : index
"gpu.launch_func"(%cst8, %cst8, %cst8, %cst1, %cst1, %cst1, %arg0, %arg1, %arg2) { kernel = @kernels::@kernel_addi }
: (index, index, index, index, index, index, memref<8xi32>, memref<8x8xi32>, memref<8x8x8xi32>) -> ()
%arg6 = memref_cast %arg5 : memref<?x?x?xi32> to memref<*xi32>
call @print_memref_i32(%arg6) : (memref<*xi32>) -> ()
return
}
func @fillResource1DInt(%0 : memref<?xi32>, %1 : i32)
func @fillResource2DInt(%0 : memref<?x?xi32>, %1 : i32)
func @fillResource3DInt(%0 : memref<?x?x?xi32>, %1 : i32)
func @print_memref_i32(%ptr : memref<*xi32>)
}

View File

@ -135,6 +135,41 @@ void bindMemRef3DFloat(void *vkRuntimeManager, DescriptorSetIndex setIndex,
->setResourceData(setIndex, bindIndex, memBuffer);
}
/// Binds the given 1D int memref to the given descriptor set and descriptor
/// index.
void bindMemRef1DInt(void *vkRuntimeManager, DescriptorSetIndex setIndex,
BindingIndex bindIndex,
MemRefDescriptor<int32_t, 1> *ptr) {
VulkanHostMemoryBuffer memBuffer{
ptr->allocated, static_cast<uint32_t>(ptr->sizes[0] * sizeof(int32_t))};
reinterpret_cast<VulkanRuntimeManager *>(vkRuntimeManager)
->setResourceData(setIndex, bindIndex, memBuffer);
}
/// Binds the given 2D int memref to the given descriptor set and descriptor
/// index.
void bindMemRef2DInt(void *vkRuntimeManager, DescriptorSetIndex setIndex,
BindingIndex bindIndex,
MemRefDescriptor<int32_t, 2> *ptr) {
VulkanHostMemoryBuffer memBuffer{
ptr->allocated,
static_cast<uint32_t>(ptr->sizes[0] * ptr->sizes[1] * sizeof(int32_t))};
reinterpret_cast<VulkanRuntimeManager *>(vkRuntimeManager)
->setResourceData(setIndex, bindIndex, memBuffer);
}
/// Binds the given 3D int memref to the given descriptor set and descriptor
/// index.
void bindMemRef3DInt(void *vkRuntimeManager, DescriptorSetIndex setIndex,
BindingIndex bindIndex,
MemRefDescriptor<int32_t, 3> *ptr) {
VulkanHostMemoryBuffer memBuffer{
ptr->allocated, static_cast<uint32_t>(ptr->sizes[0] * ptr->sizes[1] *
ptr->sizes[2] * sizeof(int32_t))};
reinterpret_cast<VulkanRuntimeManager *>(vkRuntimeManager)
->setResourceData(setIndex, bindIndex, memBuffer);
}
/// Fills the given 1D float memref with the given float value.
void _mlir_ciface_fillResource1DFloat(MemRefDescriptor<float, 1> *ptr, // NOLINT
float value) {
@ -153,4 +188,23 @@ void _mlir_ciface_fillResource3DFloat(MemRefDescriptor<float, 3> *ptr, // NOLINT
std::fill_n(ptr->allocated, ptr->sizes[0] * ptr->sizes[1] * ptr->sizes[2],
value);
}
/// Fills the given 1D int memref with the given int value.
void _mlir_ciface_fillResource1DInt(MemRefDescriptor<int32_t, 1> *ptr, // NOLINT
int32_t value) {
std::fill_n(ptr->allocated, ptr->sizes[0], value);
}
/// Fills the given 2D int memref with the given int value.
void _mlir_ciface_fillResource2DInt(MemRefDescriptor<int32_t, 2> *ptr, // NOLINT
int32_t value) {
std::fill_n(ptr->allocated, ptr->sizes[0] * ptr->sizes[1], value);
}
/// Fills the given 3D int memref with the given int value.
void _mlir_ciface_fillResource3DInt(MemRefDescriptor<int32_t, 3> *ptr, // NOLINT
int32_t value) {
std::fill_n(ptr->allocated, ptr->sizes[0] * ptr->sizes[1] * ptr->sizes[2],
value);
}
}