[MLIR] Exact integer emptiness checks for FlatAffineConstraints

This patch adds the capability to perform exact integer emptiness checks for FlatAffineConstraints using the General Basis Reduction algorithm (GBR). Previously, only a heuristic was available for emptiness checks, which was not guaranteed to always give a conclusive result.

This patch adds a `Simplex` class, which can be constructed using a `FlatAffineConstraints`, and can find an integer sample point (if one exists) using the GBR algorithm. Additionally, it adds two classes `Matrix` and `Fraction`, which are used by `Simplex`.

The integer emptiness check functionality can be accessed through the new `FlatAffineConstraints::isIntegerEmpty()` function, which runs the existing heuristic first and, if that proves to be inconclusive, runs the GBR algorithm to produce a conclusive result.

Differential Revision: https://reviews.llvm.org/D80860
This commit is contained in:
Arjun P 2020-07-02 19:18:18 +05:30 committed by Uday Bondhugula
parent 1c9d681092
commit 10a898b3ec
15 changed files with 2314 additions and 9 deletions

View File

@ -126,19 +126,33 @@ public:
/// intersection with no simplification of any sort attempted.
void append(const FlatAffineConstraints &other);
// Checks for emptiness by performing variable elimination on all identifiers,
// running the GCD test on each equality constraint, and checking for invalid
// constraints.
// Returns true if the GCD test fails for any equality, or if any invalid
// constraints are discovered on any row. Returns false otherwise.
/// Checks for emptiness by performing variable elimination on all
/// identifiers, running the GCD test on each equality constraint, and
/// checking for invalid constraints. Returns true if the GCD test fails for
/// any equality, or if any invalid constraints are discovered on any row.
/// Returns false otherwise.
bool isEmpty() const;
// Runs the GCD test on all equality constraints. Returns 'true' if this test
// fails on any equality. Returns 'false' otherwise.
// This test can be used to disprove the existence of a solution. If it
// returns true, no integer solution to the equality constraints can exist.
/// Runs the GCD test on all equality constraints. Returns 'true' if this test
/// fails on any equality. Returns 'false' otherwise.
/// This test can be used to disprove the existence of a solution. If it
/// returns true, no integer solution to the equality constraints can exist.
bool isEmptyByGCDTest() const;
/// Runs the GCD test heuristic. If it proves inconclusive, falls back to
/// generalized basis reduction if the set is bounded.
///
/// Returns true if the set of constraints is found to have no solution,
/// false if a solution exists or all tests were inconclusive.
bool isIntegerEmpty() const;
/// Find a sample point satisfying the constraints. This uses a branch and
/// bound algorithm with generalized basis reduction, which always works if
/// the set is bounded. This should not be called for unbounded sets.
///
/// Returns such a point if one exists, or an empty Optional otherwise.
Optional<SmallVector<int64_t, 8>> findIntegerSample() const;
// Clones this object.
std::unique_ptr<FlatAffineConstraints> clone() const;

View File

@ -0,0 +1,77 @@
//===- Fraction.h - MLIR Fraction Class -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a simple class to represent fractions. It supports multiplication,
// comparison, floor, and ceiling operations.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_ANALYSIS_PRESBURGER_FRACTION_H
#define MLIR_ANALYSIS_PRESBURGER_FRACTION_H
#include "mlir/Support/MathExtras.h"
namespace mlir {
/// A class to represent fractions. The sign of the fraction is represented
/// in the sign of the numerator; the denominator is always positive.
///
/// Note that overflows may occur if the numerator or denominator are not
/// representable by 64-bit integers.
struct Fraction {
/// Default constructor initializes the represented rational number to zero.
Fraction() : num(0), den(1) {}
/// Construct a Fraction from a numerator and denominator.
Fraction(int64_t oNum, int64_t oDen) : num(oNum), den(oDen) {
if (den < 0) {
num = -num;
den = -den;
}
}
/// The numerator and denominator, respectively. The denominator is always
/// positive.
int64_t num, den;
};
/// Three-way comparison between two fractions.
/// Returns +1, 0, and -1 if the first fraction is greater than, equal to, or
/// less than the second fraction, respectively.
inline int compare(Fraction x, Fraction y) {
int64_t diff = x.num * y.den - y.num * x.den;
if (diff > 0)
return +1;
if (diff < 0)
return -1;
return 0;
}
inline int64_t floor(Fraction f) { return floorDiv(f.num, f.den); }
inline int64_t ceil(Fraction f) { return ceilDiv(f.num, f.den); }
inline Fraction operator-(Fraction x) { return Fraction(-x.num, x.den); }
inline bool operator<(Fraction x, Fraction y) { return compare(x, y) < 0; }
inline bool operator<=(Fraction x, Fraction y) { return compare(x, y) <= 0; }
inline bool operator==(Fraction x, Fraction y) { return compare(x, y) == 0; }
inline bool operator>(Fraction x, Fraction y) { return compare(x, y) > 0; }
inline bool operator>=(Fraction x, Fraction y) { return compare(x, y) >= 0; }
inline Fraction operator*(Fraction x, Fraction y) {
return Fraction(x.num * y.num, x.den * y.den);
}
} // namespace mlir
#endif // MLIR_ANALYSIS_PRESBURGER_FRACTION_H

View File

@ -0,0 +1,79 @@
//===- Matrix.h - MLIR Matrix Class -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a simple 2D matrix class that supports reading, writing, resizing,
// swapping rows, and swapping columns.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_ANALYSIS_PRESBURGER_MATRIX_H
#define MLIR_ANALYSIS_PRESBURGER_MATRIX_H
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
namespace mlir {
/// This is a simple class to represent a resizable matrix.
///
/// The data is stored in the form of a vector of vectors.
class Matrix {
public:
Matrix() = delete;
/// Construct a matrix with the specified number of rows and columns.
/// Initially, the values are default initialized.
Matrix(unsigned rows, unsigned columns);
/// Return the identity matrix of the specified dimension.
static Matrix identity(unsigned dimension);
/// Access the element at the specified row and column.
int64_t &at(unsigned row, unsigned column);
int64_t at(unsigned row, unsigned column) const;
int64_t &operator()(unsigned row, unsigned column);
int64_t operator()(unsigned row, unsigned column) const;
/// Swap the given columns.
void swapColumns(unsigned column, unsigned otherColumn);
/// Swap the given rows.
void swapRows(unsigned row, unsigned otherRow);
unsigned getNumRows() const;
unsigned getNumColumns() const;
/// Get an ArrayRef corresponding to the specified row.
ArrayRef<int64_t> getRow(unsigned row) const;
/// Add `scale` multiples of the source row to the target row.
void addToRow(unsigned sourceRow, unsigned targetRow, int64_t scale);
/// Resize the matrix to the specified dimensions. If a dimension is smaller,
/// the values are truncated; if it is bigger, the new values are default
/// initialized.
void resizeVertically(unsigned newNRows);
/// Print the matrix.
void print(raw_ostream &os) const;
void dump() const;
private:
unsigned nRows, nColumns;
/// Stores the data. data.size() is equal to nRows * nColumns.
SmallVector<int64_t, 64> data;
};
} // namespace mlir
#endif // MLIR_ANALYSIS_PRESBURGER_MATRIX_H

View File

@ -0,0 +1,327 @@
//===- Simplex.h - MLIR Simplex Class ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Functionality to perform analysis on FlatAffineConstraints. In particular,
// support for performing emptiness checks.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_ANALYSIS_PRESBURGER_SIMPLEX_H
#define MLIR_ANALYSIS_PRESBURGER_SIMPLEX_H
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Presburger/Fraction.h"
#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/raw_ostream.h"
namespace mlir {
class GBRSimplex;
/// This class implements a version of the Simplex and Generalized Basis
/// Reduction algorithms, which can perform analysis of integer sets with affine
/// inequalities and equalities. A Simplex can be constructed
/// by specifying the dimensionality of the set. It supports adding affine
/// inequalities and equalities, and can perform emptiness checks, i.e., it can
/// find a solution to the set of constraints if one exists, or say that the
/// set is empty if no solution exists. Currently, this only works for bounded
/// sets. Simplex can also be constructed from a FlatAffineConstraints object.
///
/// The implementation of this Simplex class, other than the functionality
/// for sampling, is based on the paper
/// "Simplify: A Theorem Prover for Program Checking"
/// by D. Detlefs, G. Nelson, J. B. Saxe.
///
/// We define variables, constraints, and unknowns. Consider the example of a
/// two-dimensional set defined by 1 + 2x + 3y >= 0 and 2x - 3y >= 0. Here,
/// x, y, are variables while 1 + 2x + 3y >= 0, 2x - 3y >= 0 are
/// constraints. Unknowns are either variables or constraints, i.e., x, y,
/// 1 + 2x + 3y >= 0, 2x - 3y >= 0 are all unknowns.
///
/// The implementation involves a matrix called a tableau, which can be thought
/// of as a 2D matrix of rational numbers having number of rows equal to the
/// number of constraints and number of columns equal to one plus the number of
/// variables. In our implementation, instead of storing rational numbers, we
/// store a common denominator for each row, so it is in fact a matrix of
/// integers with number of rows equal to number of constraints and number of
/// columns equal to _two_ plus the number of variables. For example, instead of
/// storing a row of three rationals [1/2, 2/3, 3], we would store [6, 3, 4, 18]
/// since 3/6 = 1/2, 4/6 = 2/3, and 18/6 = 3.
///
/// Every row and column except the first and second columns is associated with
/// an unknown and every unknown is associated with a row or column. The second
/// column represents the constant, explained in more detail below. An unknown
/// associated with a row or column is said to be in row or column position
/// respectively.
///
/// The vectors var and con store information about the variables and
/// constraints respectively, namely, whether they are in row or column
/// position, which row or column they are associated with, and whether they
/// correspond to a variable or a constraint.
///
/// An unknown is addressed by its index. If the index i is non-negative, then
/// the variable var[i] is being addressed. If the index i is negative, then
/// the constraint con[~i] is being addressed. Effectively this maps
/// 0 -> var[0], 1 -> var[1], -1 -> con[0], -2 -> con[1], etc. rowUnknown[r] and
/// colUnknown[c] are the indexes of the unknowns associated with row r and
/// column c, respectively.
///
/// The unknowns in column position are together called the basis. Initially the
/// basis is the set of variables -- in our example above, the initial basis is
/// x, y.
///
/// The unknowns in row position are represented in terms of the basis unknowns.
/// If the basis unknowns are u_1, u_2, ... u_m, and a row in the tableau is
/// d, c, a_1, a_2, ... a_m, this representats the unknown for that row as
/// (c + a_1*u_1 + a_2*u_2 + ... + a_m*u_m)/d. In our running example, if the
/// basis is the initial basis of x, y, then the constraint 1 + 2x + 3y >= 0
/// would be represented by the row [1, 1, 2, 3].
///
/// The association of unknowns to rows and columns can be changed by a process
/// called pivoting, where a row unknown and a column unknown exchange places
/// and the remaining row variables' representation is changed accordingly
/// by eliminating the old column unknown in favour of the new column unknown.
/// If we had pivoted the column for x with the row for 2x - 3y >= 0,
/// the new row for x would be [2, 1, 3] since x = (1*(2x - 3y) + 3*y)/2.
/// See the documentation for the pivot member function for details.
///
/// The association of unknowns to rows and columns is called the _tableau
/// configuration_. The _sample value_ of an unknown in a particular tableau
/// configuration is its value if all the column unknowns were set to zero.
/// Concretely, for unknowns in column position the sample value is zero and
/// for unknowns in row position the sample value is the constant term divided
/// by the common denominator.
///
/// The tableau configuration is called _consistent_ if the sample value of all
/// restricted unknowns is non-negative. Initially there are no constraints, and
/// the tableau is consistent. When a new constraint is added, its sample value
/// in the current tableau configuration may be negative. In that case, we try
/// to find a series of pivots to bring us to a consistent tableau
/// configuration, i.e. we try to make the new constraint's sample value
/// non-negative without making that of any other constraints negative. (See
/// findPivot and findPivotRow for details.) If this is not possible, then the
/// set of constraints is mutually contradictory and the tableau is marked
/// _empty_, which means the set of constraints has no solution.
///
/// This Simplex class also supports taking snapshots of the current state
/// and rolling back to prior snapshots. This works by maintaing an undo log
/// of operations. Snapshots are just pointers to a particular location in the
/// log, and rolling back to a snapshot is done by reverting each log entry's
/// operation from the end until we reach the snapshot's location.
///
/// Finding an integer sample is done with the Generalized Basis Reduction
/// algorithm. See the documentation for findIntegerSample and reduceBasis.
class Simplex {
public:
enum class Direction { Up, Down };
Simplex() = delete;
explicit Simplex(unsigned nVar);
explicit Simplex(const FlatAffineConstraints &constraints);
/// Returns true if the tableau is empty (has conflicting constraints),
/// false otherwise.
bool isEmpty() const;
/// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
/// is the current number of variables, then the corresponding inequality is
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
void addInequality(ArrayRef<int64_t> coeffs);
/// Returns the number of variables in the tableau.
unsigned numVariables() const;
/// Returns the number of constraints in the tableau.
unsigned numConstraints() const;
/// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
/// is the current number of variables, then the corresponding equality is
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
void addEquality(ArrayRef<int64_t> coeffs);
/// Mark the tableau as being empty.
void markEmpty();
/// Get a snapshot of the current state. This is used for rolling back.
unsigned getSnapshot() const;
/// Rollback to a snapshot. This invalidates all later snapshots.
void rollback(unsigned snapshot);
/// Compute the maximum or minimum value of the given row, depending on
/// direction.
///
/// Returns a (num, den) pair denoting the optimum, or None if no
/// optimum exists, i.e., if the expression is unbounded in this direction.
Optional<Fraction> computeRowOptimum(Direction direction, unsigned row);
/// Compute the maximum or minimum value of the given expression, depending on
/// direction.
///
/// Returns a (num, den) pair denoting the optimum, or a null value if no
/// optimum exists, i.e., if the expression is unbounded in this direction.
Optional<Fraction> computeOptimum(Direction direction,
ArrayRef<int64_t> coeffs);
/// Returns a (min, max) pair denoting the minimum and maximum integer values
/// of the given expression.
std::pair<int64_t, int64_t> computeIntegerBounds(ArrayRef<int64_t> coeffs);
/// Returns true if the polytope is unbounded, i.e., extends to infinity in
/// some direction. Otherwise, returns false.
bool isUnbounded();
/// Make a tableau to represent a pair of points in the given tableaus, one in
/// tableau A and one in B.
static Simplex makeProduct(const Simplex &a, const Simplex &b);
/// Returns the current sample point if it is integral. Otherwise, returns an
/// None.
Optional<SmallVector<int64_t, 8>> getSamplePointIfIntegral() const;
/// Returns an integer sample point if one exists, or None
/// otherwise. This should only be called for bounded sets.
Optional<SmallVector<int64_t, 8>> findIntegerSample();
/// Print the tableau's internal state.
void print(raw_ostream &os) const;
void dump() const;
private:
friend class GBRSimplex;
enum class Orientation { Row, Column };
/// An Unknown is either a variable or a constraint. It is always associated
/// with either a row or column. Whether it's a row or a column is specified
/// by the orientation and pos identifies the specific row or column it is
/// associated with. If the unknown is restricted, then it has a
/// non-negativity constraint associated with it, i.e., its sample value must
/// always be non-negative and if it cannot be made non-negative without
/// violating other constraints, the tableau is empty.
struct Unknown {
Unknown(Orientation oOrientation, bool oRestricted, unsigned oPos)
: pos(oPos), orientation(oOrientation), restricted(oRestricted) {}
unsigned pos;
Orientation orientation;
bool restricted : 1;
void print(raw_ostream &os) const {
os << (orientation == Orientation::Row ? "r" : "c");
os << pos;
if (restricted)
os << " [>=0]";
}
};
struct Pivot {
unsigned row, column;
};
/// Find a pivot to change the sample value of row in the specified
/// direction. The returned pivot row will be row if and only
/// if the unknown is unbounded in the specified direction.
///
/// Returns a (row, col) pair denoting a pivot, or an empty Optional if
/// no valid pivot exists.
Optional<Pivot> findPivot(int row, Direction direction) const;
/// Swap the row with the column in the tableau's data structures but not the
/// tableau itself. This is used by pivot.
void swapRowWithCol(unsigned row, unsigned col);
/// Pivot the row with the column.
void pivot(unsigned row, unsigned col);
void pivot(Pivot pair);
/// Returns the unknown associated with index.
const Unknown &unknownFromIndex(int index) const;
/// Returns the unknown associated with col.
const Unknown &unknownFromColumn(unsigned col) const;
/// Returns the unknown associated with row.
const Unknown &unknownFromRow(unsigned row) const;
/// Returns the unknown associated with index.
Unknown &unknownFromIndex(int index);
/// Returns the unknown associated with col.
Unknown &unknownFromColumn(unsigned col);
/// Returns the unknown associated with row.
Unknown &unknownFromRow(unsigned row);
/// Add a new row to the tableau and the associated data structures.
unsigned addRow(ArrayRef<int64_t> coeffs);
/// Normalize the given row by removing common factors between the numerator
/// and the denominator.
void normalizeRow(unsigned row);
/// Swap the two rows in the tableau and associated data structures.
void swapRows(unsigned i, unsigned j);
/// Restore the unknown to a non-negative sample value.
///
/// Returns true if the unknown was successfully restored to a non-negative
/// sample value, false otherwise.
LogicalResult restoreRow(Unknown &u);
enum class UndoLogEntry { RemoveLastConstraint, UnmarkEmpty };
/// Undo the operation represented by the log entry.
void undo(UndoLogEntry entry);
/// Find a row that can be used to pivot the column in the specified
/// direction. If skipRow is not null, then this row is excluded
/// from consideration. The returned pivot will maintain all constraints
/// except the column itself and skipRow, if it is set. (if these unknowns
/// are restricted).
///
/// Returns the row to pivot to, or an empty Optional if the column
/// is unbounded in the specified direction.
Optional<unsigned> findPivotRow(Optional<unsigned> skipRow,
Direction direction, unsigned col) const;
/// Reduce the given basis, starting at the specified level, using general
/// basis reduction.
void reduceBasis(Matrix &basis, unsigned level);
/// The number of rows in the tableau.
unsigned nRow;
/// The number of columns in the tableau, including the common denominator
/// and the constant column.
unsigned nCol;
/// The matrix representing the tableau.
Matrix tableau;
/// This is true if the tableau has been detected to be empty, false
/// otherwise.
bool empty;
/// Holds a log of operations, used for rolling back to a previous state.
SmallVector<UndoLogEntry, 8> undoLog;
/// These hold the indexes of the unknown at a given row or column position.
/// We keep these as signed integers since that makes it convenient to check
/// if an index corresponds to a variable or a constraint by checking the
/// sign.
///
/// colUnknown is padded with two null indexes at the front since the first
/// two columns don't correspond to any unknowns.
SmallVector<int, 8> rowUnknown, colUnknown;
/// These hold information about each unknown.
SmallVector<Unknown, 8> con, var;
};
} // namespace mlir
#endif // MLIR_ANALYSIS_PRESBURGER_SIMPLEX_H

View File

@ -11,6 +11,7 @@
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
@ -1035,6 +1036,28 @@ bool FlatAffineConstraints::isEmptyByGCDTest() const {
return false;
}
// First, try the GCD test heuristic.
//
// If that doesn't find the set empty, check if the set is unbounded. If it is,
// we cannot use the GBR algorithm and we conservatively return false.
//
// If the set is bounded, we use the complete emptiness check for this case
// provided by Simplex::findIntegerSample(), which gives a definitive answer.
bool FlatAffineConstraints::isIntegerEmpty() const {
if (isEmptyByGCDTest())
return true;
Simplex simplex(*this);
if (simplex.isUnbounded())
return false;
return !simplex.findIntegerSample().hasValue();
}
Optional<SmallVector<int64_t, 8>>
FlatAffineConstraints::findIntegerSample() const {
return Simplex(*this).findIntegerSample();
}
/// Tightens inequalities given that we are dealing with integer spaces. This is
/// analogous to the GCD test but applied to inequalities. The constant term can
/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,

View File

@ -25,6 +25,7 @@ add_mlir_library(MLIRAnalysis
MLIRCallInterfaces
MLIRControlFlowInterfaces
MLIRInferTypeOpInterface
MLIRPresburger
MLIRSCF
)
@ -46,5 +47,8 @@ add_mlir_library(MLIRLoopAnalysis
MLIRCallInterfaces
MLIRControlFlowInterfaces
MLIRInferTypeOpInterface
MLIRPresburger
MLIRSCF
)
add_subdirectory(Presburger)

View File

@ -0,0 +1,4 @@
add_mlir_library(MLIRPresburger
Simplex.cpp
Matrix.cpp
)

View File

@ -0,0 +1,92 @@
//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Matrix.h"
namespace mlir {
Matrix::Matrix(unsigned rows, unsigned columns)
: nRows(rows), nColumns(columns), data(nRows * nColumns) {}
Matrix Matrix::identity(unsigned dimension) {
Matrix matrix(dimension, dimension);
for (unsigned i = 0; i < dimension; ++i)
matrix(i, i) = 1;
return matrix;
}
int64_t &Matrix::at(unsigned row, unsigned column) {
assert(row < getNumRows() && "Row outside of range");
assert(column < getNumColumns() && "Column outside of range");
return data[row * nColumns + column];
}
int64_t Matrix::at(unsigned row, unsigned column) const {
assert(row < getNumRows() && "Row outside of range");
assert(column < getNumColumns() && "Column outside of range");
return data[row * nColumns + column];
}
int64_t &Matrix::operator()(unsigned row, unsigned column) {
return at(row, column);
}
int64_t Matrix::operator()(unsigned row, unsigned column) const {
return at(row, column);
}
unsigned Matrix::getNumRows() const { return nRows; }
unsigned Matrix::getNumColumns() const { return nColumns; }
void Matrix::resizeVertically(unsigned newNRows) {
nRows = newNRows;
data.resize(nRows * nColumns);
}
void Matrix::swapRows(unsigned row, unsigned otherRow) {
assert((row < getNumRows() && otherRow < getNumRows()) &&
"Given row out of bounds");
if (row == otherRow)
return;
for (unsigned col = 0; col < nColumns; col++)
std::swap(at(row, col), at(otherRow, col));
}
void Matrix::swapColumns(unsigned column, unsigned otherColumn) {
assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
"Given column out of bounds");
if (column == otherColumn)
return;
for (unsigned row = 0; row < nRows; row++)
std::swap(at(row, column), at(row, otherColumn));
}
ArrayRef<int64_t> Matrix::getRow(unsigned row) const {
return {&data[row * nColumns], nColumns};
}
void Matrix::addToRow(unsigned sourceRow, unsigned targetRow, int64_t scale) {
if (scale == 0)
return;
for (unsigned col = 0; col < nColumns; ++col)
at(targetRow, col) += scale * at(sourceRow, col);
return;
}
void Matrix::print(raw_ostream &os) const {
for (unsigned row = 0; row < nRows; ++row) {
for (unsigned column = 0; column < nColumns; ++column)
os << at(row, column) << ' ';
os << '\n';
}
}
void Matrix::dump() const { print(llvm::errs()); }
} // namespace mlir

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,277 @@
//===- AffineStructuresTest.cpp - Tests for AffineStructures ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineStructures.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <numeric>
namespace mlir {
/// Evaluate the value of the given affine expression at the specified point.
/// The expression is a list of coefficients for the dimensions followed by the
/// constant term.
int64_t valueAt(ArrayRef<int64_t> expr, ArrayRef<int64_t> point) {
assert(expr.size() == 1 + point.size());
int64_t value = expr.back();
for (unsigned i = 0; i < point.size(); ++i)
value += expr[i] * point[i];
return value;
}
/// If 'hasValue' is true, check that findIntegerSample returns a valid sample
/// for the FlatAffineConstraints fac.
///
/// If hasValue is false, check that findIntegerSample does not return None.
void checkSample(bool hasValue, const FlatAffineConstraints &fac) {
Optional<SmallVector<int64_t, 8>> maybeSample = fac.findIntegerSample();
if (!hasValue) {
EXPECT_FALSE(maybeSample.hasValue());
if (maybeSample.hasValue()) {
for (auto x : *maybeSample)
llvm::errs() << x << ' ';
llvm::errs() << '\n';
}
} else {
ASSERT_TRUE(maybeSample.hasValue());
for (unsigned i = 0; i < fac.getNumEqualities(); ++i)
EXPECT_EQ(valueAt(fac.getEquality(i), *maybeSample), 0);
for (unsigned i = 0; i < fac.getNumInequalities(); ++i)
EXPECT_GE(valueAt(fac.getInequality(i), *maybeSample), 0);
}
}
/// Construct a FlatAffineConstraints from a set of inequality and
/// equality constraints.
FlatAffineConstraints
makeFACFromConstraints(unsigned dims, ArrayRef<SmallVector<int64_t, 4>> ineqs,
ArrayRef<SmallVector<int64_t, 4>> eqs) {
FlatAffineConstraints fac(ineqs.size(), eqs.size(), dims + 1, dims);
for (const auto &eq : eqs)
fac.addEquality(eq);
for (const auto &ineq : ineqs)
fac.addInequality(ineq);
return fac;
}
/// Check sampling for all the permutations of the dimensions for the given
/// constraint set. Since the GBR algorithm progresses dimension-wise, different
/// orderings may cause the algorithm to proceed differently. At least some of
///.these permutations should make it past the heuristics and test the
/// implementation of the GBR algorithm itself.
void checkPermutationsSample(bool hasValue, unsigned nDim,
ArrayRef<SmallVector<int64_t, 4>> ineqs,
ArrayRef<SmallVector<int64_t, 4>> eqs) {
SmallVector<unsigned, 4> perm(nDim);
std::iota(perm.begin(), perm.end(), 0);
auto permute = [&perm](ArrayRef<int64_t> coeffs) {
SmallVector<int64_t, 4> permuted;
for (unsigned id : perm)
permuted.push_back(coeffs[id]);
permuted.push_back(coeffs.back());
return permuted;
};
do {
SmallVector<SmallVector<int64_t, 4>, 4> permutedIneqs, permutedEqs;
for (const auto &ineq : ineqs)
permutedIneqs.push_back(permute(ineq));
for (const auto &eq : eqs)
permutedEqs.push_back(permute(eq));
checkSample(hasValue,
makeFACFromConstraints(nDim, permutedIneqs, permutedEqs));
} while (std::next_permutation(perm.begin(), perm.end()));
}
TEST(FlatAffineConstraintsTest, FindSampleTest) {
// Bounded sets with only inequalities.
// 0 <= 7x <= 5
checkSample(true, makeFACFromConstraints(1, {{7, 0}, {-7, 5}}, {}));
// 1 <= 5x and 5x <= 4 (no solution).
checkSample(false, makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}));
// 1 <= 5x and 5x <= 9 (solution: x = 1).
checkSample(true, makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}));
// Bounded sets with equalities.
// x >= 8 and 40 >= y and x = y.
checkSample(
true, makeFACFromConstraints(2, {{1, 0, -8}, {0, -1, 40}}, {{1, -1, 0}}));
// x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z.
// solution: x = y = z = 10.
checkSample(true, makeFACFromConstraints(
3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -10}},
{{1, 2, -3, 0}}));
// x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z.
// This implies x + 2y >= 33 and x + 2y <= 30, which has no solution.
checkSample(false, makeFACFromConstraints(
3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -11}},
{{1, 2, -3, 0}}));
// 0 <= r and r <= 3 and 4q + r = 7.
// Solution: q = 1, r = 3.
checkSample(true,
makeFACFromConstraints(2, {{0, 1, 0}, {0, -1, 3}}, {{4, 1, -7}}));
// 4q + r = 7 and r = 0.
// Solution: q = 1, r = 3.
checkSample(false, makeFACFromConstraints(2, {}, {{4, 1, -7}, {0, 1, 0}}));
// The next two sets are large sets that should take a long time to sample
// with a naive branch and bound algorithm but can be sampled efficiently with
// the GBR algroithm.
//
// This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000).
checkSample(
true,
makeFACFromConstraints(
2, {{0, 1, 0}, {300000, -299999, -100000}, {-300000, 299998, 200000}},
{}));
// This is a tetrahedron with vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
// The first three points form a triangular base on the xz plane with the
// apex at the fourth point, which is the only integer point.
checkPermutationsSample(
true, 3,
{
{0, 1, 0, 0}, // y >= 0
{0, -1, 1, 0}, // z >= y
{300000, -299998, -1,
-100000}, // -300000x + 299998y + 100000 + z <= 0.
{-150000, 149999, 0, 100000}, // -150000x + 149999y + 100000 >= 0.
},
{});
// Same thing with some spurious extra dimensions equated to constants.
checkSample(true,
makeFACFromConstraints(
5,
{
{0, 1, 0, 1, -1, 0},
{0, -1, 1, -1, 1, 0},
{300000, -299998, -1, -9, 21, -112000},
{-150000, 149999, 0, -15, 47, 68000},
},
{{0, 0, 0, 1, -1, 0}, // p = q.
{0, 0, 0, 1, 1, -2000}})); // p + q = 20000 => p = q = 10000.
// This is a tetrahedron with vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100).
checkPermutationsSample(false, 3,
{
{0, 1, 0, 0},
{0, -300, 299, 0},
{300 * 299, -89400, -299, -100 * 299},
{-897, 894, 0, 598},
},
{});
// Two tests involving equalities that are integer empty but not rational
// empty.
// This is a line segment from (0, 1/3) to (100, 100 + 1/3).
checkSample(false, makeFACFromConstraints(
2,
{
{1, 0, 0}, // x >= 0.
{-1, 0, 100} // -x + 100 >= 0, i.e., x <= 100.
},
{
{3, -3, 1} // 3x - 3y + 1 = 0, i.e., y = x + 1/3.
}));
// A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3.
checkSample(false, makeFACFromConstraints(2,
{
{1, 0, 0}, // x >= 0.
{-1, 0, 100}, // x <= 100.
{3, -3, 2}, // 3x - 3y >= -2.
{-3, 3, -1}, // 3x - 3y <= -1.
},
{}));
checkSample(true, makeFACFromConstraints(2,
{
{2, 0, 0}, // 2x >= 1.
{-2, 0, 99}, // 2x <= 99.
{0, 2, 0}, // 2y >= 0.
{0, -2, 99}, // 2y <= 99.
},
{}));
}
TEST(FlatAffineConstraintsTest, IsIntegerEmptyTest) {
// 1 <= 5x and 5x <= 4 (no solution).
EXPECT_TRUE(
makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}).isIntegerEmpty());
// 1 <= 5x and 5x <= 9 (solution: x = 1).
EXPECT_FALSE(
makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}).isIntegerEmpty());
// An unbounded set, which isIntegerEmpty should detect as unbounded and
// return without calling findIntegerSample.
EXPECT_FALSE(makeFACFromConstraints(3,
{
{2, 0, 0, -1},
{-2, 0, 0, 1},
{0, 2, 0, -1},
{0, -2, 0, 1},
{0, 0, 2, -1},
},
{})
.isIntegerEmpty());
// FlatAffineConstraints::isEmpty() does not detect the following sets to be
// empty.
// 3x + 7y = 1 and 0 <= x, y <= 10.
// Since x and y are non-negative, 3x + 7y can never be 1.
EXPECT_TRUE(
makeFACFromConstraints(
2, {{1, 0, 0}, {-1, 0, 10}, {0, 1, 0}, {0, -1, 10}}, {{3, 7, -1}})
.isIntegerEmpty());
// 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100.
// Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2.
// Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty.
EXPECT_TRUE(
makeFACFromConstraints(3,
{
{1, 0, 0, 0},
{-1, 0, 0, 100},
{0, 1, 0, 0},
{0, -1, 0, 100},
},
{{2, -3, 0, 0}, {1, -1, 0, -1}, {1, 1, -6, -2}})
.isIntegerEmpty());
// 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100.
// 2x = 3y implies x is a multiple of 3 and y is even.
// Now y = x - 1 + 6z implies y = 2 mod 3. In fact, since y is even, we have
// y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying
// x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty.
EXPECT_TRUE(makeFACFromConstraints(
4,
{
{1, 0, 0, 0, 0},
{-1, 0, 0, 0, 100},
{0, 1, 0, 0, 0},
{0, -1, 0, 0, 100},
},
{{2, -3, 0, 0, 0}, {1, -1, 6, 0, -1}, {1, 1, 0, -6, -2}})
.isIntegerEmpty());
}
} // namespace mlir

View File

@ -0,0 +1,8 @@
add_mlir_unittest(MLIRAnalysisTests
AffineStructuresTest.cpp
)
target_link_libraries(MLIRAnalysisTests
PRIVATE MLIRLoopAnalysis)
add_subdirectory(Presburger)

View File

@ -0,0 +1,7 @@
add_mlir_unittest(MLIRPresburgerTests
MatrixTest.cpp
SimplexTest.cpp
)
target_link_libraries(MLIRPresburgerTests
PRIVATE MLIRPresburger)

View File

@ -0,0 +1,92 @@
//===- MatrixTest.cpp - Tests for Matrix ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Matrix.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
namespace mlir {
TEST(MatrixTest, ReadWrite) {
Matrix mat(5, 5);
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
mat(row, col) = 10 * row + col;
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
EXPECT_EQ(mat(row, col), int(10 * row + col));
}
TEST(MatrixTest, SwapColumns) {
Matrix mat(5, 5);
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
mat(row, col) = col == 3 ? 1 : 0;
mat.swapColumns(3, 1);
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
EXPECT_EQ(mat(row, col), col == 1 ? 1 : 0);
// swap around all the other columns, swap (1, 3) twice for no effect.
mat.swapColumns(3, 1);
mat.swapColumns(2, 4);
mat.swapColumns(1, 3);
mat.swapColumns(0, 4);
mat.swapColumns(2, 2);
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
EXPECT_EQ(mat(row, col), col == 1 ? 1 : 0);
}
TEST(MatrixTest, SwapRows) {
Matrix mat(5, 5);
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
mat(row, col) = row == 2 ? 1 : 0;
mat.swapRows(2, 0);
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
EXPECT_EQ(mat(row, col), row == 0 ? 1 : 0);
// swap around all the other rows, swap (2, 0) twice for no effect.
mat.swapRows(3, 4);
mat.swapRows(1, 4);
mat.swapRows(2, 0);
mat.swapRows(1, 1);
mat.swapRows(0, 2);
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
EXPECT_EQ(mat(row, col), row == 0 ? 1 : 0);
}
TEST(MatrixTest, resizeVertically) {
Matrix mat(5, 5);
EXPECT_EQ(mat.getNumRows(), 5u);
EXPECT_EQ(mat.getNumColumns(), 5u);
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
mat(row, col) = 10 * row + col;
mat.resizeVertically(3);
EXPECT_EQ(mat.getNumRows(), 3u);
EXPECT_EQ(mat.getNumColumns(), 5u);
for (unsigned row = 0; row < 3; ++row)
for (unsigned col = 0; col < 5; ++col)
EXPECT_EQ(mat(row, col), int(10 * row + col));
mat.resizeVertically(5);
EXPECT_EQ(mat.getNumRows(), 5u);
EXPECT_EQ(mat.getNumColumns(), 5u);
for (unsigned row = 0; row < 5; ++row)
for (unsigned col = 0; col < 5; ++col)
EXPECT_EQ(mat(row, col), row >= 3 ? 0 : int(10 * row + col));
}
} // namespace mlir

View File

@ -0,0 +1,219 @@
//===- SimplexTest.cpp - Tests for Simplex --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Simplex.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
namespace mlir {
/// Take a snapshot, add constraints making the set empty, and rollback.
/// The set should not be empty after rolling back.
TEST(SimplexTest, emptyRollback) {
Simplex simplex(2);
// (u - v) >= 0
simplex.addInequality({1, -1, 0});
EXPECT_FALSE(simplex.isEmpty());
unsigned snapshot = simplex.getSnapshot();
// (u - v) <= -1
simplex.addInequality({-1, 1, -1});
EXPECT_TRUE(simplex.isEmpty());
simplex.rollback(snapshot);
EXPECT_FALSE(simplex.isEmpty());
}
/// Check that the set gets marked as empty when we add contradictory
/// constraints.
TEST(SimplexTest, addEquality_separate) {
Simplex simplex(1);
simplex.addInequality({1, -1}); // x >= 1.
ASSERT_FALSE(simplex.isEmpty());
simplex.addEquality({1, 0}); // x == 0.
EXPECT_TRUE(simplex.isEmpty());
}
void expectInequalityMakesSetEmpty(Simplex &simplex, ArrayRef<int64_t> coeffs,
bool expect) {
ASSERT_FALSE(simplex.isEmpty());
unsigned snapshot = simplex.getSnapshot();
simplex.addInequality(coeffs);
EXPECT_EQ(simplex.isEmpty(), expect);
simplex.rollback(snapshot);
}
TEST(SimplexTest, addInequality_rollback) {
Simplex simplex(3);
SmallVector<int64_t, 4> coeffs[]{{1, 0, 0, 0}, // u >= 0.
{-1, 0, 0, 0}, // u <= 0.
{1, -1, 1, 0}, // u - v + w >= 0.
{1, 1, -1, 0}}; // u + v - w >= 0.
// The above constraints force u = 0 and v = w.
// The constraints below violate v = w.
SmallVector<int64_t, 4> checkCoeffs[]{{0, 1, -1, -1}, // v - w >= 1.
{0, -1, 1, -1}}; // v - w <= -1.
for (int run = 0; run < 4; run++) {
unsigned snapshot = simplex.getSnapshot();
expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false);
expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false);
for (int i = 0; i < 4; i++)
simplex.addInequality(coeffs[(run + i) % 4]);
expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], true);
expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], true);
simplex.rollback(snapshot);
EXPECT_EQ(simplex.numConstraints(), 0u);
expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false);
expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false);
}
}
Simplex simplexFromConstraints(unsigned nDim,
SmallVector<SmallVector<int64_t, 8>, 8> ineqs,
SmallVector<SmallVector<int64_t, 8>, 8> eqs) {
Simplex simplex(nDim);
for (const auto &ineq : ineqs)
simplex.addInequality(ineq);
for (const auto &eq : eqs)
simplex.addEquality(eq);
return simplex;
}
TEST(SimplexTest, isUnbounded) {
EXPECT_FALSE(simplexFromConstraints(
2, {{1, 1, 0}, {-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
.isUnbounded());
EXPECT_TRUE(
simplexFromConstraints(2, {{1, 1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
.isUnbounded());
EXPECT_TRUE(
simplexFromConstraints(2, {{-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
.isUnbounded());
EXPECT_TRUE(simplexFromConstraints(2, {}, {}).isUnbounded());
EXPECT_FALSE(simplexFromConstraints(3,
{
{2, 0, 0, -1},
{-2, 0, 0, 1},
{0, 2, 0, -1},
{0, -2, 0, 1},
{0, 0, 2, -1},
{0, 0, -2, 1},
},
{})
.isUnbounded());
EXPECT_TRUE(simplexFromConstraints(3,
{
{2, 0, 0, -1},
{-2, 0, 0, 1},
{0, 2, 0, -1},
{0, -2, 0, 1},
{0, 0, -2, 1},
},
{})
.isUnbounded());
EXPECT_TRUE(simplexFromConstraints(3,
{
{2, 0, 0, -1},
{-2, 0, 0, 1},
{0, 2, 0, -1},
{0, -2, 0, 1},
{0, 0, 2, -1},
},
{})
.isUnbounded());
// Bounded set with equalities.
EXPECT_FALSE(simplexFromConstraints(2,
{{1, 1, 1}, // x + y >= -1.
{-1, -1, 1}}, // x + y <= 1.
{{1, -1, 0}} // x = y.
)
.isUnbounded());
// Unbounded set with equalities.
EXPECT_TRUE(simplexFromConstraints(3,
{{1, 1, 1, 1}, // x + y + z >= -1.
{-1, -1, -1, 1}}, // x + y + z <= 1.
{{1, -1, -1, 0}} // x = y + z.
)
.isUnbounded());
// Rational empty set.
EXPECT_FALSE(simplexFromConstraints(3,
{
{2, 0, 0, -1},
{-2, 0, 0, 1},
{0, 2, 2, -1},
{0, -2, -2, 1},
{3, 3, 3, -4},
},
{})
.isUnbounded());
}
TEST(SimplexTest, getSamplePointIfIntegral) {
// Empty set.
EXPECT_FALSE(simplexFromConstraints(3,
{
{2, 0, 0, -1},
{-2, 0, 0, 1},
{0, 2, 2, -1},
{0, -2, -2, 1},
{3, 3, 3, -4},
},
{})
.getSamplePointIfIntegral()
.hasValue());
auto maybeSample = simplexFromConstraints(2,
{// x = y - 2.
{1, -1, 2},
{-1, 1, -2},
// x + y = 2.
{1, 1, -2},
{-1, -1, 2}},
{})
.getSamplePointIfIntegral();
EXPECT_TRUE(maybeSample.hasValue());
EXPECT_THAT(*maybeSample, testing::ElementsAre(0, 2));
auto maybeSample2 = simplexFromConstraints(2,
{
{1, 0, 0}, // x >= 0.
{-1, 0, 0}, // x <= 0.
},
{
{0, 1, -2} // y = 2.
})
.getSamplePointIfIntegral();
EXPECT_TRUE(maybeSample2.hasValue());
EXPECT_THAT(*maybeSample2, testing::ElementsAre(0, 2));
EXPECT_FALSE(simplexFromConstraints(1,
{// 2x = 1. (no integer solutions)
{2, -1},
{-2, +1}},
{})
.getSamplePointIfIntegral()
.hasValue());
}
} // namespace mlir

View File

@ -5,6 +5,7 @@ function(add_mlir_unittest test_dirname)
add_unittest(MLIRUnitTests ${test_dirname} ${ARGN})
endfunction()
add_subdirectory(Analysis)
add_subdirectory(Dialect)
add_subdirectory(IR)
add_subdirectory(Pass)