mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-05 23:02:27 +00:00
[mlir][DialectUtils] Cleanup IndexingUtils and provide more affine variants while reusing implementations
Differential Revision: https://reviews.llvm.org/D145784
This commit is contained in:
parent
c113d0b766
commit
203fad476b
@ -23,35 +23,68 @@
|
||||
namespace mlir {
|
||||
class ArrayAttr;
|
||||
|
||||
/// Computes and returns the linearized index of 'offsets' w.r.t. 'basis'.
|
||||
int64_t linearize(ArrayRef<int64_t> offsets, ArrayRef<int64_t> basis);
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Utils that operate on static integer values.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Given the strides together with a linear index in the dimension
|
||||
/// space, returns the vector-space offsets in each dimension for a
|
||||
/// de-linearized index.
|
||||
SmallVector<int64_t> delinearize(ArrayRef<int64_t> strides,
|
||||
int64_t linearIndex);
|
||||
/// Given a set of sizes, return the suffix product.
|
||||
///
|
||||
/// When applied to slicing, this is the calculation needed to derive the
|
||||
/// strides (i.e. the number of linear indices to skip along the (k-1) most
|
||||
/// minor dimensions to get the next k-slice).
|
||||
///
|
||||
/// This is the basis to linearize an n-D offset confined to `[0 ... sizes]`.
|
||||
///
|
||||
/// Assuming `sizes` is `[s0, .. sn]`, return the vector<int64_t>
|
||||
/// `[s1 * ... * sn, s2 * ... * sn, ..., sn, 1]`.
|
||||
///
|
||||
/// `sizes` elements are asserted to be non-negative.
|
||||
///
|
||||
/// Return an empty vector if `sizes` is empty.
|
||||
SmallVector<int64_t> computeSuffixProduct(ArrayRef<int64_t> sizes);
|
||||
inline SmallVector<int64_t> computeStrides(ArrayRef<int64_t> sizes) {
|
||||
return computeSuffixProduct(sizes);
|
||||
}
|
||||
|
||||
/// Given a set of sizes, compute and return the strides (i.e. the number of
|
||||
/// linear incides to skip along the (k-1) most minor dimensions to get the next
|
||||
/// k-slice). This is also the basis that one can use to linearize an n-D offset
|
||||
/// confined to `[0 .. sizes]`.
|
||||
SmallVector<int64_t> computeStrides(ArrayRef<int64_t> sizes);
|
||||
|
||||
/// Return a vector containing llvm::zip of v1 and v2 multiplied elementwise.
|
||||
/// Return a vector containing llvm::zip_equal(v1, v2) multiplied elementwise.
|
||||
///
|
||||
/// Return an empty vector if `v1` and `v2` are empty.
|
||||
SmallVector<int64_t> computeElementwiseMul(ArrayRef<int64_t> v1,
|
||||
ArrayRef<int64_t> v2);
|
||||
|
||||
/// Compute and return the multi-dimensional integral ratio of `subShape` to
|
||||
/// the trailing dimensions of `shape`. This represents how many times
|
||||
/// `subShape` fits within `shape`.
|
||||
/// If integral division is not possible, return std::nullopt.
|
||||
/// Return the number of elements of basis (i.e. the max linear index).
|
||||
/// Return `0` if `basis` is empty.
|
||||
///
|
||||
/// `basis` elements are asserted to be non-negative.
|
||||
///
|
||||
/// Return `0` if `basis` is empty.
|
||||
int64_t computeMaxLinearIndex(ArrayRef<int64_t> basis);
|
||||
|
||||
/// Return the linearized index of 'offsets' w.r.t. 'basis'.
|
||||
///
|
||||
/// `basis` elements are asserted to be non-negative.
|
||||
int64_t linearize(ArrayRef<int64_t> offsets, ArrayRef<int64_t> basis);
|
||||
|
||||
/// Given the strides together with a linear index in the dimension space,
|
||||
/// return the vector-space offsets in each dimension for a de-linearized index.
|
||||
/// `strides` elements are asserted to be non-negative.
|
||||
///
|
||||
/// Let `li = linearIndex`, assuming `strides` are `[s0, .. sn]`, return the
|
||||
/// vector of int64_t
|
||||
/// `[li % s0, (li / s0) % s1, ..., (li / s0 / .. / sn-1) % sn]`
|
||||
SmallVector<int64_t> delinearize(int64_t linearIndex,
|
||||
ArrayRef<int64_t> strides);
|
||||
|
||||
/// Return the multi-dimensional integral ratio of `subShape` to the trailing
|
||||
/// dimensions of `shape`. This represents how many times `subShape` fits
|
||||
/// within `shape`. If integral division is not possible, return std::nullopt.
|
||||
/// The trailing `subShape.size()` entries of both shapes are assumed (and
|
||||
/// enforced) to only contain noonnegative values.
|
||||
/// enforced) to only contain non-negative values.
|
||||
///
|
||||
/// Examples:
|
||||
/// - shapeRatio({3, 5, 8}, {2, 5, 2}) returns {3, 2, 1}.
|
||||
/// - shapeRatio({3, 8}, {2, 5, 2}) returns std::nullopt (subshape has higher
|
||||
/// - shapeRatio({3, 8}, {2, 5, 2}) returns std::nullopt (subshape has
|
||||
/// higher
|
||||
/// rank).
|
||||
/// - shapeRatio({42, 2, 10, 32}, {2, 5, 2}) returns {42, 1, 2, 16} which is
|
||||
/// derived as {42(leading shape dim), 2/2, 10/5, 32/2}.
|
||||
@ -60,14 +93,96 @@ SmallVector<int64_t> computeElementwiseMul(ArrayRef<int64_t> v1,
|
||||
std::optional<SmallVector<int64_t>>
|
||||
computeShapeRatio(ArrayRef<int64_t> shape, ArrayRef<int64_t> subShape);
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Utils that operate on AffineExpr.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Given a set of sizes, return the suffix product.
|
||||
///
|
||||
/// When applied to slicing, this is the calculation needed to derive the
|
||||
/// strides (i.e. the number of linear indices to skip along the (k-1) most
|
||||
/// minor dimensions to get the next k-slice).
|
||||
///
|
||||
/// This is the basis to linearize an n-D offset confined to `[0 ... sizes]`.
|
||||
///
|
||||
/// Assuming `sizes` is `[s0, .. sn]`, return the vector<AffineExpr>
|
||||
/// `[s1 * ... * sn, s2 * ... * sn, ..., sn, 1]`.
|
||||
///
|
||||
/// It is the caller's responsibility to pass proper AffineExpr kind that
|
||||
/// result in valid AffineExpr (i.e. cannot multiply 2 AffineDimExpr or divide
|
||||
/// by an AffineDimExpr).
|
||||
///
|
||||
/// `sizes` elements are expected to bind to non-negative values.
|
||||
///
|
||||
/// Return an empty vector if `sizes` is empty.
|
||||
SmallVector<AffineExpr> computeSuffixProduct(ArrayRef<AffineExpr> sizes);
|
||||
inline SmallVector<AffineExpr> computeStrides(ArrayRef<AffineExpr> sizes) {
|
||||
return computeSuffixProduct(sizes);
|
||||
}
|
||||
|
||||
/// Return a vector containing llvm::zip_equal(v1, v2) multiplied elementwise.
|
||||
///
|
||||
/// It is the caller's responsibility to pass proper AffineExpr kind that
|
||||
/// result in valid AffineExpr (i.e. cannot multiply 2 AffineDimExpr or divide
|
||||
/// by an AffineDimExpr).
|
||||
///
|
||||
/// Return an empty vector if `v1` and `v2` are empty.
|
||||
SmallVector<AffineExpr> computeElementwiseMul(ArrayRef<AffineExpr> v1,
|
||||
ArrayRef<AffineExpr> v2);
|
||||
|
||||
/// Return the number of elements of basis (i.e. the max linear index).
|
||||
/// Return `0` if `basis` is empty.
|
||||
int64_t computeMaxLinearIndex(ArrayRef<int64_t> basis);
|
||||
///
|
||||
/// It is the caller's responsibility to pass proper AffineExpr kind that
|
||||
/// result in valid AffineExpr (i.e. cannot multiply 2 AffineDimExpr or divide
|
||||
/// by an AffineDimExpr).
|
||||
///
|
||||
/// `basis` elements are expected to bind to non-negative values.
|
||||
///
|
||||
/// Return the `0` AffineConstantExpr if `basis` is empty.
|
||||
AffineExpr computeMaxLinearIndex(MLIRContext *ctx, ArrayRef<AffineExpr> basis);
|
||||
|
||||
/// Return the linearized index of 'offsets' w.r.t. 'basis'.
|
||||
///
|
||||
/// Assuming `offsets` is `[o0, .. on]` and `basis` is `[b0, .. bn]`, return the
|
||||
/// AffineExpr `o0 * b0 + .. + on * bn`.
|
||||
///
|
||||
/// It is the caller's responsibility to pass proper AffineExpr kind that result
|
||||
/// in valid AffineExpr (i.e. cannot multiply 2 AffineDimExpr or divide by an
|
||||
/// AffineDimExpr).
|
||||
///
|
||||
/// `basis` elements are expected to bind to non-negative values.
|
||||
AffineExpr linearize(MLIRContext *ctx, ArrayRef<AffineExpr> offsets,
|
||||
ArrayRef<AffineExpr> basis);
|
||||
AffineExpr linearize(MLIRContext *ctx, ArrayRef<AffineExpr> offsets,
|
||||
ArrayRef<int64_t> basis);
|
||||
|
||||
/// Given the strides together with a linear index in the dimension space,
|
||||
/// return the vector-space offsets in each dimension for a de-linearized index.
|
||||
///
|
||||
/// Let `li = linearIndex`, assuming `strides` are `[s0, .. sn]`, return the
|
||||
/// vector of AffineExpr
|
||||
/// `[li % s0, (li / s0) % s1, ..., (li / s0 / .. / sn-1) % sn]`
|
||||
///
|
||||
/// It is the caller's responsibility to pass proper AffineExpr kind that result
|
||||
/// in valid AffineExpr (i.e. cannot multiply 2 AffineDimExpr or divide by an
|
||||
/// AffineDimExpr).
|
||||
///
|
||||
/// `strides` elements are expected to bind to non-negative values.
|
||||
SmallVector<AffineExpr> delinearize(AffineExpr linearIndex,
|
||||
ArrayRef<AffineExpr> strides);
|
||||
SmallVector<AffineExpr> delinearize(AffineExpr linearIndex,
|
||||
ArrayRef<int64_t> strides);
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Permutation utils.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Apply the permutation defined by `permutation` to `inVec`.
|
||||
/// Element `i` in `inVec` is mapped to location `j = permutation[i]`.
|
||||
/// E.g.: for an input vector `inVec = ['a', 'b', 'c']` and a permutation vector
|
||||
/// `permutation = [2, 0, 1]`, this function leaves `inVec = ['c', 'a', 'b']`.
|
||||
/// E.g.: for an input vector `inVec = ['a', 'b', 'c']` and a permutation
|
||||
/// vector `permutation = [2, 0, 1]`, this function leaves `inVec = ['c', 'a',
|
||||
/// 'b']`.
|
||||
template <typename T, unsigned N>
|
||||
void applyPermutationToVector(SmallVector<T, N> &inVec,
|
||||
ArrayRef<int64_t> permutation) {
|
||||
@ -83,18 +198,11 @@ SmallVector<int64_t> invertPermutationVector(ArrayRef<int64_t> permutation);
|
||||
/// Method to check if an interchange vector is a permutation.
|
||||
bool isPermutationVector(ArrayRef<int64_t> interchange);
|
||||
|
||||
/// Helper that returns a subset of `arrayAttr` as a vector of int64_t.
|
||||
/// Helper to return a subset of `arrayAttr` as a vector of int64_t.
|
||||
// TODO: Port everything relevant to DenseArrayAttr and drop this util.
|
||||
SmallVector<int64_t> getI64SubArray(ArrayAttr arrayAttr, unsigned dropFront = 0,
|
||||
unsigned dropBack = 0);
|
||||
|
||||
/// Computes and returns linearized affine expression w.r.t. `basis`.
|
||||
mlir::AffineExpr getLinearAffineExpr(ArrayRef<int64_t> basis, mlir::Builder &b);
|
||||
|
||||
/// Given the strides in the dimension space, returns the affine expressions for
|
||||
/// vector-space offsets in each dimension for a de-linearized index.
|
||||
SmallVector<mlir::AffineExpr>
|
||||
getDelinearizedAffineExpr(ArrayRef<int64_t> strides, mlir::Builder &b);
|
||||
|
||||
} // namespace mlir
|
||||
|
||||
#endif // MLIR_DIALECT_UTILS_INDEXINGUTILS_H
|
||||
|
@ -321,13 +321,6 @@ void bindSymbols(MLIRContext *ctx, AffineExprTy &e, AffineExprTy2 &...exprs) {
|
||||
bindSymbols<N + 1, AffineExprTy2 &...>(ctx, exprs...);
|
||||
}
|
||||
|
||||
template <typename AffineExprTy>
|
||||
void bindSymbolsList(MLIRContext *ctx, SmallVectorImpl<AffineExprTy> &exprs) {
|
||||
int idx = 0;
|
||||
for (AffineExprTy &e : exprs)
|
||||
e = getAffineSymbolExpr(idx++, ctx);
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
/// Bind a list of AffineExpr references to DimExpr at positions:
|
||||
@ -337,6 +330,13 @@ void bindDims(MLIRContext *ctx, AffineExprTy &...exprs) {
|
||||
detail::bindDims<0>(ctx, exprs...);
|
||||
}
|
||||
|
||||
template <typename AffineExprTy>
|
||||
void bindDimsList(MLIRContext *ctx, MutableArrayRef<AffineExprTy> exprs) {
|
||||
int idx = 0;
|
||||
for (AffineExprTy &e : exprs)
|
||||
e = getAffineDimExpr(idx++, ctx);
|
||||
}
|
||||
|
||||
/// Bind a list of AffineExpr references to SymbolExpr at positions:
|
||||
/// [0 .. sizeof...(exprs)]
|
||||
template <typename... AffineExprTy>
|
||||
@ -344,6 +344,13 @@ void bindSymbols(MLIRContext *ctx, AffineExprTy &...exprs) {
|
||||
detail::bindSymbols<0>(ctx, exprs...);
|
||||
}
|
||||
|
||||
template <typename AffineExprTy>
|
||||
void bindSymbolsList(MLIRContext *ctx, MutableArrayRef<AffineExprTy> exprs) {
|
||||
int idx = 0;
|
||||
for (AffineExprTy &e : exprs)
|
||||
e = getAffineSymbolExpr(idx++, ctx);
|
||||
}
|
||||
|
||||
} // namespace mlir
|
||||
|
||||
namespace llvm {
|
||||
|
@ -103,7 +103,7 @@ VecOpToScalarOp<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
|
||||
loc, DenseElementsAttr::get(vecType, initValueAttr));
|
||||
SmallVector<int64_t> strides = computeStrides(shape);
|
||||
for (int64_t linearIndex = 0; linearIndex < numElements; ++linearIndex) {
|
||||
SmallVector<int64_t> positions = delinearize(strides, linearIndex);
|
||||
SmallVector<int64_t> positions = delinearize(linearIndex, strides);
|
||||
SmallVector<Value> operands;
|
||||
for (Value input : op->getOperands())
|
||||
operands.push_back(
|
||||
|
@ -89,7 +89,7 @@ VecOpToScalarOp<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
|
||||
vecType, FloatAttr::get(vecType.getElementType(), 0.0)));
|
||||
SmallVector<int64_t> strides = computeStrides(shape);
|
||||
for (auto linearIndex = 0; linearIndex < numElements; ++linearIndex) {
|
||||
SmallVector<int64_t> positions = delinearize(strides, linearIndex);
|
||||
SmallVector<int64_t> positions = delinearize(linearIndex, strides);
|
||||
SmallVector<Value> operands;
|
||||
for (auto input : op->getOperands())
|
||||
operands.push_back(
|
||||
|
@ -134,7 +134,7 @@ handleMultidimensionalVectors(ImplicitLocOpBuilder &builder,
|
||||
SmallVector<Value> results(maxIndex);
|
||||
|
||||
for (int64_t i = 0; i < maxIndex; ++i) {
|
||||
auto offsets = delinearize(strides, i);
|
||||
auto offsets = delinearize(i, strides);
|
||||
|
||||
SmallVector<Value> extracted(expandedOperands.size());
|
||||
for (const auto &tuple : llvm::enumerate(expandedOperands))
|
||||
@ -152,7 +152,7 @@ handleMultidimensionalVectors(ImplicitLocOpBuilder &builder,
|
||||
|
||||
for (int64_t i = 0; i < maxIndex; ++i)
|
||||
result = builder.create<vector::InsertOp>(results[i], result,
|
||||
delinearize(strides, i));
|
||||
delinearize(i, strides));
|
||||
|
||||
// Reshape back to the original vector shape.
|
||||
return builder.create<vector::ShapeCastOp>(
|
||||
|
@ -75,7 +75,7 @@ public:
|
||||
SmallVector<OpFoldResult> values(2 * sourceRank + 1);
|
||||
SmallVector<AffineExpr> symbols(2 * sourceRank + 1);
|
||||
|
||||
detail::bindSymbolsList(rewriter.getContext(), symbols);
|
||||
bindSymbolsList(rewriter.getContext(), MutableArrayRef{symbols});
|
||||
AffineExpr expr = symbols.front();
|
||||
values[0] = ShapedType::isDynamic(sourceOffset)
|
||||
? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
|
||||
@ -262,10 +262,9 @@ SmallVector<OpFoldResult> getExpandedStrides(memref::ExpandShapeOp expandShape,
|
||||
auto sourceType = source.getType().cast<MemRefType>();
|
||||
auto [strides, offset] = getStridesAndOffset(sourceType);
|
||||
|
||||
OpFoldResult origStride =
|
||||
ShapedType::isDynamic(strides[groupId])
|
||||
? origStrides[groupId]
|
||||
: builder.getIndexAttr(strides[groupId]);
|
||||
OpFoldResult origStride = ShapedType::isDynamic(strides[groupId])
|
||||
? origStrides[groupId]
|
||||
: builder.getIndexAttr(strides[groupId]);
|
||||
|
||||
// Apply the original stride to all the strides.
|
||||
int64_t doneStrideIdx = 0;
|
||||
|
@ -18,6 +18,7 @@
|
||||
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
||||
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
||||
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
||||
#include "mlir/IR/AffineExpr.h"
|
||||
#include "mlir/IR/BuiltinTypes.h"
|
||||
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
||||
#include "llvm/ADT/SmallBitVector.h"
|
||||
@ -54,24 +55,25 @@ resolveSourceIndicesExpandShape(Location loc, PatternRewriter &rewriter,
|
||||
memref::ExpandShapeOp expandShapeOp,
|
||||
ValueRange indices,
|
||||
SmallVectorImpl<Value> &sourceIndices) {
|
||||
for (SmallVector<int64_t, 2> groups :
|
||||
expandShapeOp.getReassociationIndices()) {
|
||||
MLIRContext *ctx = rewriter.getContext();
|
||||
for (ArrayRef<int64_t> groups : expandShapeOp.getReassociationIndices()) {
|
||||
assert(!groups.empty() && "association indices groups cannot be empty");
|
||||
unsigned groupSize = groups.size();
|
||||
SmallVector<int64_t> suffixProduct(groupSize);
|
||||
// Calculate suffix product of dimension sizes for all dimensions of expand
|
||||
// shape op result.
|
||||
suffixProduct[groupSize - 1] = 1;
|
||||
for (unsigned i = groupSize - 1; i > 0; i--)
|
||||
suffixProduct[i - 1] =
|
||||
suffixProduct[i] *
|
||||
expandShapeOp.getType().cast<MemRefType>().getDimSize(groups[i]);
|
||||
SmallVector<Value> dynamicIndices(groupSize);
|
||||
for (unsigned i = 0; i < groupSize; i++)
|
||||
dynamicIndices[i] = indices[groups[i]];
|
||||
int64_t groupSize = groups.size();
|
||||
|
||||
// Construct the expression for the index value w.r.t to expand shape op
|
||||
// source corresponding the indices wrt to expand shape op result.
|
||||
AffineExpr srcIndexExpr = getLinearAffineExpr(suffixProduct, rewriter);
|
||||
SmallVector<int64_t> sizes(groupSize);
|
||||
for (int64_t i = 0; i < groupSize; ++i)
|
||||
sizes[i] = expandShapeOp.getResultType().getDimSize(groups[i]);
|
||||
SmallVector<int64_t> suffixProduct = computeSuffixProduct(sizes);
|
||||
SmallVector<AffineExpr> dims(groupSize);
|
||||
bindDimsList(ctx, MutableArrayRef{dims});
|
||||
AffineExpr srcIndexExpr = linearize(ctx, dims, suffixProduct);
|
||||
|
||||
/// Apply permutation and create AffineApplyOp.
|
||||
SmallVector<Value> dynamicIndices(groupSize);
|
||||
for (int64_t i = 0; i < groupSize; i++)
|
||||
dynamicIndices[i] = indices[groups[i]];
|
||||
sourceIndices.push_back(rewriter.create<AffineApplyOp>(
|
||||
loc,
|
||||
AffineMap::get(/*numDims=*/groupSize, /*numSymbols=*/0, srcIndexExpr),
|
||||
@ -98,35 +100,39 @@ resolveSourceIndicesCollapseShape(Location loc, PatternRewriter &rewriter,
|
||||
memref::CollapseShapeOp collapseShapeOp,
|
||||
ValueRange indices,
|
||||
SmallVectorImpl<Value> &sourceIndices) {
|
||||
unsigned cnt = 0;
|
||||
int64_t cnt = 0;
|
||||
SmallVector<Value> tmp(indices.size());
|
||||
SmallVector<Value> dynamicIndices;
|
||||
for (SmallVector<int64_t, 2> groups :
|
||||
collapseShapeOp.getReassociationIndices()) {
|
||||
for (ArrayRef<int64_t> groups : collapseShapeOp.getReassociationIndices()) {
|
||||
assert(!groups.empty() && "association indices groups cannot be empty");
|
||||
dynamicIndices.push_back(indices[cnt++]);
|
||||
unsigned groupSize = groups.size();
|
||||
SmallVector<int64_t> suffixProduct(groupSize);
|
||||
int64_t groupSize = groups.size();
|
||||
|
||||
// Calculate suffix product for all collapse op source dimension sizes.
|
||||
suffixProduct[groupSize - 1] = 1;
|
||||
for (unsigned i = groupSize - 1; i > 0; i--)
|
||||
suffixProduct[i - 1] =
|
||||
suffixProduct[i] * collapseShapeOp.getSrcType().getDimSize(groups[i]);
|
||||
SmallVector<int64_t> sizes(groupSize);
|
||||
for (int64_t i = 0; i < groupSize; ++i)
|
||||
sizes[i] = collapseShapeOp.getSrcType().getDimSize(groups[i]);
|
||||
SmallVector<int64_t> suffixProduct = computeSuffixProduct(sizes);
|
||||
|
||||
// Derive the index values along all dimensions of the source corresponding
|
||||
// to the index wrt to collapsed shape op output.
|
||||
SmallVector<AffineExpr, 4> srcIndexExpr =
|
||||
getDelinearizedAffineExpr(suffixProduct, rewriter);
|
||||
for (unsigned i = 0; i < groupSize; i++)
|
||||
auto d0 = rewriter.getAffineDimExpr(0);
|
||||
SmallVector<AffineExpr> delinearizingExprs = delinearize(d0, suffixProduct);
|
||||
|
||||
// Construct the AffineApplyOp for each delinearizingExpr.
|
||||
for (int64_t i = 0; i < groupSize; i++)
|
||||
sourceIndices.push_back(rewriter.create<AffineApplyOp>(
|
||||
loc, AffineMap::get(/*numDims=*/1, /*numSymbols=*/0, srcIndexExpr[i]),
|
||||
loc,
|
||||
AffineMap::get(/*numDims=*/1, /*numSymbols=*/0,
|
||||
delinearizingExprs[i]),
|
||||
dynamicIndices));
|
||||
dynamicIndices.clear();
|
||||
}
|
||||
if (collapseShapeOp.getReassociationIndices().empty()) {
|
||||
auto zeroAffineMap = rewriter.getConstantAffineMap(0);
|
||||
unsigned srcRank =
|
||||
int64_t srcRank =
|
||||
collapseShapeOp.getViewSource().getType().cast<MemRefType>().getRank();
|
||||
for (unsigned i = 0; i < srcRank; i++)
|
||||
for (int64_t i = 0; i < srcRank; i++)
|
||||
sourceIndices.push_back(
|
||||
rewriter.create<AffineApplyOp>(loc, zeroAffineMap, dynamicIndices));
|
||||
}
|
||||
@ -157,9 +163,9 @@ resolveSourceIndicesSubView(Location loc, PatternRewriter &rewriter,
|
||||
SmallVector<Value> useIndices;
|
||||
// Check if this is rank-reducing case. Then for every unit-dim size add a
|
||||
// zero to the indices.
|
||||
unsigned resultDim = 0;
|
||||
int64_t resultDim = 0;
|
||||
llvm::SmallBitVector unusedDims = subViewOp.getDroppedDims();
|
||||
for (auto dim : llvm::seq<unsigned>(0, subViewOp.getSourceType().getRank())) {
|
||||
for (auto dim : llvm::seq<int64_t>(0, subViewOp.getSourceType().getRank())) {
|
||||
if (unusedDims.test(dim))
|
||||
useIndices.push_back(rewriter.create<arith::ConstantIndexOp>(loc, 0));
|
||||
else
|
||||
@ -171,7 +177,7 @@ resolveSourceIndicesSubView(Location loc, PatternRewriter &rewriter,
|
||||
for (auto index : llvm::seq<size_t>(0, mixedOffsets.size())) {
|
||||
SmallVector<Value> dynamicOperands;
|
||||
AffineExpr expr = rewriter.getAffineDimExpr(0);
|
||||
unsigned numSymbols = 0;
|
||||
int64_t numSymbols = 0;
|
||||
dynamicOperands.push_back(useIndices[index]);
|
||||
|
||||
// Multiply the stride;
|
||||
@ -378,7 +384,7 @@ LogicalResult LoadOpOfSubViewOpFolder<OpTy>::matchAndRewrite(
|
||||
affineMap, indices, loadOp.getLoc(), rewriter);
|
||||
indices.assign(expandedIndices.begin(), expandedIndices.end());
|
||||
}
|
||||
SmallVector<Value, 4> sourceIndices;
|
||||
SmallVector<Value> sourceIndices;
|
||||
if (failed(resolveSourceIndicesSubView(loadOp.getLoc(), rewriter, subViewOp,
|
||||
indices, sourceIndices)))
|
||||
return failure();
|
||||
@ -424,7 +430,7 @@ LogicalResult LoadOpOfExpandShapeOpFolder<OpTy>::matchAndRewrite(
|
||||
affineMap, indices, loadOp.getLoc(), rewriter);
|
||||
indices.assign(expandedIndices.begin(), expandedIndices.end());
|
||||
}
|
||||
SmallVector<Value, 4> sourceIndices;
|
||||
SmallVector<Value> sourceIndices;
|
||||
if (failed(resolveSourceIndicesExpandShape(
|
||||
loadOp.getLoc(), rewriter, expandShapeOp, indices, sourceIndices)))
|
||||
return failure();
|
||||
@ -456,7 +462,7 @@ LogicalResult LoadOpOfCollapseShapeOpFolder<OpTy>::matchAndRewrite(
|
||||
affineMap, indices, loadOp.getLoc(), rewriter);
|
||||
indices.assign(expandedIndices.begin(), expandedIndices.end());
|
||||
}
|
||||
SmallVector<Value, 4> sourceIndices;
|
||||
SmallVector<Value> sourceIndices;
|
||||
if (failed(resolveSourceIndicesCollapseShape(
|
||||
loadOp.getLoc(), rewriter, collapseShapeOp, indices, sourceIndices)))
|
||||
return failure();
|
||||
@ -488,7 +494,7 @@ LogicalResult StoreOpOfSubViewOpFolder<OpTy>::matchAndRewrite(
|
||||
affineMap, indices, storeOp.getLoc(), rewriter);
|
||||
indices.assign(expandedIndices.begin(), expandedIndices.end());
|
||||
}
|
||||
SmallVector<Value, 4> sourceIndices;
|
||||
SmallVector<Value> sourceIndices;
|
||||
if (failed(resolveSourceIndicesSubView(storeOp.getLoc(), rewriter, subViewOp,
|
||||
indices, sourceIndices)))
|
||||
return failure();
|
||||
@ -533,7 +539,7 @@ LogicalResult StoreOpOfExpandShapeOpFolder<OpTy>::matchAndRewrite(
|
||||
affineMap, indices, storeOp.getLoc(), rewriter);
|
||||
indices.assign(expandedIndices.begin(), expandedIndices.end());
|
||||
}
|
||||
SmallVector<Value, 4> sourceIndices;
|
||||
SmallVector<Value> sourceIndices;
|
||||
if (failed(resolveSourceIndicesExpandShape(
|
||||
storeOp.getLoc(), rewriter, expandShapeOp, indices, sourceIndices)))
|
||||
return failure();
|
||||
@ -566,7 +572,7 @@ LogicalResult StoreOpOfCollapseShapeOpFolder<OpTy>::matchAndRewrite(
|
||||
affineMap, indices, storeOp.getLoc(), rewriter);
|
||||
indices.assign(expandedIndices.begin(), expandedIndices.end());
|
||||
}
|
||||
SmallVector<Value, 4> sourceIndices;
|
||||
SmallVector<Value> sourceIndices;
|
||||
if (failed(resolveSourceIndicesCollapseShape(
|
||||
storeOp.getLoc(), rewriter, collapseShapeOp, indices, sourceIndices)))
|
||||
return failure();
|
||||
|
@ -11,27 +11,100 @@
|
||||
#include "mlir/IR/AffineExpr.h"
|
||||
#include "mlir/IR/Builders.h"
|
||||
#include "mlir/IR/BuiltinAttributes.h"
|
||||
#include "mlir/IR/MLIRContext.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
|
||||
#include <numeric>
|
||||
#include <optional>
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
SmallVector<int64_t> mlir::computeStrides(ArrayRef<int64_t> sizes) {
|
||||
SmallVector<int64_t> strides(sizes.size(), 1);
|
||||
template <typename ExprType>
|
||||
SmallVector<ExprType> computeSuffixProductImpl(ArrayRef<ExprType> sizes,
|
||||
ExprType unit) {
|
||||
if (sizes.empty())
|
||||
return {};
|
||||
SmallVector<ExprType> strides(sizes.size(), unit);
|
||||
for (int64_t r = strides.size() - 2; r >= 0; --r)
|
||||
strides[r] = strides[r + 1] * sizes[r + 1];
|
||||
return strides;
|
||||
}
|
||||
|
||||
SmallVector<int64_t> mlir::computeElementwiseMul(ArrayRef<int64_t> v1,
|
||||
ArrayRef<int64_t> v2) {
|
||||
SmallVector<int64_t> result;
|
||||
for (auto it : llvm::zip(v1, v2))
|
||||
template <typename ExprType>
|
||||
SmallVector<ExprType> computeElementwiseMulImpl(ArrayRef<ExprType> v1,
|
||||
ArrayRef<ExprType> v2) {
|
||||
// Early exit if both are empty, let zip_equal fail if only 1 is empty.
|
||||
if (v1.empty() && v2.empty())
|
||||
return {};
|
||||
SmallVector<ExprType> result;
|
||||
for (auto it : llvm::zip_equal(v1, v2))
|
||||
result.push_back(std::get<0>(it) * std::get<1>(it));
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename ExprType>
|
||||
ExprType linearizeImpl(ArrayRef<ExprType> offsets, ArrayRef<ExprType> basis,
|
||||
ExprType zero) {
|
||||
assert(offsets.size() == basis.size());
|
||||
ExprType linearIndex = zero;
|
||||
for (unsigned idx = 0, e = basis.size(); idx < e; ++idx)
|
||||
linearIndex = linearIndex + offsets[idx] * basis[idx];
|
||||
return linearIndex;
|
||||
}
|
||||
|
||||
template <typename ExprType, typename DivOpTy>
|
||||
SmallVector<ExprType> delinearizeImpl(ExprType linearIndex,
|
||||
ArrayRef<ExprType> strides,
|
||||
DivOpTy divOp) {
|
||||
int64_t rank = strides.size();
|
||||
SmallVector<ExprType> offsets(rank);
|
||||
for (int64_t r = 0; r < rank; ++r) {
|
||||
offsets[r] = divOp(linearIndex, strides[r]);
|
||||
linearIndex = linearIndex % strides[r];
|
||||
}
|
||||
return offsets;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Utils that operate on static integer values.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
SmallVector<int64_t> mlir::computeSuffixProduct(ArrayRef<int64_t> sizes) {
|
||||
assert(llvm::all_of(sizes, [](int64_t s) { return s > 0; }) &&
|
||||
"sizes must be nonnegative");
|
||||
int64_t unit = 1;
|
||||
return ::computeSuffixProductImpl(sizes, unit);
|
||||
}
|
||||
|
||||
SmallVector<int64_t> mlir::computeElementwiseMul(ArrayRef<int64_t> v1,
|
||||
ArrayRef<int64_t> v2) {
|
||||
return computeElementwiseMulImpl(v1, v2);
|
||||
}
|
||||
|
||||
int64_t mlir::computeMaxLinearIndex(ArrayRef<int64_t> basis) {
|
||||
assert(llvm::all_of(basis, [](int64_t s) { return s > 0; }) &&
|
||||
"basis must be nonnegative");
|
||||
if (basis.empty())
|
||||
return 0;
|
||||
return std::accumulate(basis.begin(), basis.end(), 1,
|
||||
std::multiplies<int64_t>());
|
||||
}
|
||||
|
||||
int64_t mlir::linearize(ArrayRef<int64_t> offsets, ArrayRef<int64_t> basis) {
|
||||
assert(llvm::all_of(basis, [](int64_t s) { return s > 0; }) &&
|
||||
"basis must be nonnegative");
|
||||
int64_t zero = 0;
|
||||
return linearizeImpl(offsets, basis, zero);
|
||||
}
|
||||
|
||||
SmallVector<int64_t> mlir::delinearize(int64_t linearIndex,
|
||||
ArrayRef<int64_t> strides) {
|
||||
assert(llvm::all_of(strides, [](int64_t s) { return s > 0; }) &&
|
||||
"strides must be nonnegative");
|
||||
return delinearizeImpl(linearIndex, strides,
|
||||
[](int64_t e1, int64_t e2) { return e1 / e2; });
|
||||
}
|
||||
|
||||
std::optional<SmallVector<int64_t>>
|
||||
mlir::computeShapeRatio(ArrayRef<int64_t> shape, ArrayRef<int64_t> subShape) {
|
||||
if (shape.size() < subShape.size())
|
||||
@ -60,35 +133,67 @@ mlir::computeShapeRatio(ArrayRef<int64_t> shape, ArrayRef<int64_t> subShape) {
|
||||
return SmallVector<int64_t>{result.rbegin(), result.rend()};
|
||||
}
|
||||
|
||||
int64_t mlir::linearize(ArrayRef<int64_t> offsets, ArrayRef<int64_t> basis) {
|
||||
assert(offsets.size() == basis.size());
|
||||
int64_t linearIndex = 0;
|
||||
for (unsigned idx = 0, e = basis.size(); idx < e; ++idx)
|
||||
linearIndex += offsets[idx] * basis[idx];
|
||||
return linearIndex;
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Utils that operate on AffineExpr.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
SmallVector<AffineExpr> mlir::computeSuffixProduct(ArrayRef<AffineExpr> sizes) {
|
||||
if (sizes.empty())
|
||||
return {};
|
||||
AffineExpr unit = getAffineConstantExpr(1, sizes.front().getContext());
|
||||
return ::computeSuffixProductImpl(sizes, unit);
|
||||
}
|
||||
|
||||
llvm::SmallVector<int64_t> mlir::delinearize(ArrayRef<int64_t> sliceStrides,
|
||||
int64_t index) {
|
||||
int64_t rank = sliceStrides.size();
|
||||
SmallVector<int64_t> vectorOffsets(rank);
|
||||
for (int64_t r = 0; r < rank; ++r) {
|
||||
assert(sliceStrides[r] > 0);
|
||||
vectorOffsets[r] = index / sliceStrides[r];
|
||||
index %= sliceStrides[r];
|
||||
}
|
||||
return vectorOffsets;
|
||||
SmallVector<AffineExpr> mlir::computeElementwiseMul(ArrayRef<AffineExpr> v1,
|
||||
ArrayRef<AffineExpr> v2) {
|
||||
return computeElementwiseMulImpl(v1, v2);
|
||||
}
|
||||
|
||||
int64_t mlir::computeMaxLinearIndex(ArrayRef<int64_t> basis) {
|
||||
AffineExpr mlir::computeMaxLinearIndex(MLIRContext *ctx,
|
||||
ArrayRef<AffineExpr> basis) {
|
||||
if (basis.empty())
|
||||
return 0;
|
||||
return std::accumulate(basis.begin(), basis.end(), 1,
|
||||
std::multiplies<int64_t>());
|
||||
return getAffineConstantExpr(0, ctx);
|
||||
return std::accumulate(basis.begin(), basis.end(),
|
||||
getAffineConstantExpr(1, ctx),
|
||||
std::multiplies<AffineExpr>());
|
||||
}
|
||||
|
||||
llvm::SmallVector<int64_t>
|
||||
AffineExpr mlir::linearize(MLIRContext *ctx, ArrayRef<AffineExpr> offsets,
|
||||
ArrayRef<AffineExpr> basis) {
|
||||
AffineExpr zero = getAffineConstantExpr(0, ctx);
|
||||
return linearizeImpl(offsets, basis, zero);
|
||||
}
|
||||
|
||||
AffineExpr mlir::linearize(MLIRContext *ctx, ArrayRef<AffineExpr> offsets,
|
||||
ArrayRef<int64_t> basis) {
|
||||
SmallVector<AffineExpr> basisExprs = llvm::to_vector(llvm::map_range(
|
||||
basis, [ctx](int64_t v) { return getAffineConstantExpr(v, ctx); }));
|
||||
return linearize(ctx, offsets, basisExprs);
|
||||
}
|
||||
|
||||
SmallVector<AffineExpr> mlir::delinearize(AffineExpr linearIndex,
|
||||
ArrayRef<AffineExpr> strides) {
|
||||
return delinearizeImpl(
|
||||
linearIndex, strides,
|
||||
[](AffineExpr e1, AffineExpr e2) { return e1.floorDiv(e2); });
|
||||
}
|
||||
|
||||
SmallVector<AffineExpr> mlir::delinearize(AffineExpr linearIndex,
|
||||
ArrayRef<int64_t> strides) {
|
||||
MLIRContext *ctx = linearIndex.getContext();
|
||||
SmallVector<AffineExpr> basisExprs = llvm::to_vector(llvm::map_range(
|
||||
strides, [ctx](int64_t v) { return getAffineConstantExpr(v, ctx); }));
|
||||
return delinearize(linearIndex, ArrayRef<AffineExpr>{basisExprs});
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Permutation utils.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
SmallVector<int64_t>
|
||||
mlir::invertPermutationVector(ArrayRef<int64_t> permutation) {
|
||||
assert(llvm::all_of(permutation, [](int64_t s) { return s >= 0; }) &&
|
||||
"permutation must be non-negative");
|
||||
SmallVector<int64_t> inversion(permutation.size());
|
||||
for (const auto &pos : llvm::enumerate(permutation)) {
|
||||
inversion[pos.value()] = pos.index();
|
||||
@ -97,6 +202,8 @@ mlir::invertPermutationVector(ArrayRef<int64_t> permutation) {
|
||||
}
|
||||
|
||||
bool mlir::isPermutationVector(ArrayRef<int64_t> interchange) {
|
||||
assert(llvm::all_of(interchange, [](int64_t s) { return s >= 0; }) &&
|
||||
"permutation must be non-negative");
|
||||
llvm::SmallDenseSet<int64_t, 4> seenVals;
|
||||
for (auto val : interchange) {
|
||||
if (seenVals.count(val))
|
||||
@ -106,9 +213,9 @@ bool mlir::isPermutationVector(ArrayRef<int64_t> interchange) {
|
||||
return seenVals.size() == interchange.size();
|
||||
}
|
||||
|
||||
llvm::SmallVector<int64_t> mlir::getI64SubArray(ArrayAttr arrayAttr,
|
||||
unsigned dropFront,
|
||||
unsigned dropBack) {
|
||||
SmallVector<int64_t> mlir::getI64SubArray(ArrayAttr arrayAttr,
|
||||
unsigned dropFront,
|
||||
unsigned dropBack) {
|
||||
assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
|
||||
auto range = arrayAttr.getAsRange<IntegerAttr>();
|
||||
SmallVector<int64_t> res;
|
||||
@ -118,26 +225,3 @@ llvm::SmallVector<int64_t> mlir::getI64SubArray(ArrayAttr arrayAttr,
|
||||
res.push_back((*it).getValue().getSExtValue());
|
||||
return res;
|
||||
}
|
||||
|
||||
mlir::AffineExpr mlir::getLinearAffineExpr(ArrayRef<int64_t> basis,
|
||||
mlir::Builder &b) {
|
||||
AffineExpr resultExpr = b.getAffineDimExpr(0);
|
||||
resultExpr = resultExpr * basis[0];
|
||||
for (unsigned i = 1; i < basis.size(); i++)
|
||||
resultExpr = resultExpr + b.getAffineDimExpr(i) * basis[i];
|
||||
return resultExpr;
|
||||
}
|
||||
|
||||
llvm::SmallVector<mlir::AffineExpr>
|
||||
mlir::getDelinearizedAffineExpr(mlir::ArrayRef<int64_t> strides, Builder &b) {
|
||||
AffineExpr resultExpr = b.getAffineDimExpr(0);
|
||||
int64_t rank = strides.size();
|
||||
SmallVector<AffineExpr> vectorOffsets(rank);
|
||||
vectorOffsets[0] = resultExpr.floorDiv(strides[0]);
|
||||
resultExpr = resultExpr % strides[0];
|
||||
for (unsigned i = 1; i < rank; i++) {
|
||||
vectorOffsets[i] = resultExpr.floorDiv(strides[i]);
|
||||
resultExpr = resultExpr % strides[i];
|
||||
}
|
||||
return vectorOffsets;
|
||||
}
|
||||
|
@ -1558,7 +1558,7 @@ static Value foldExtractFromShapeCast(ExtractOp extractOp) {
|
||||
getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
|
||||
}
|
||||
std::reverse(newStrides.begin(), newStrides.end());
|
||||
SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
|
||||
SmallVector<int64_t, 4> newPosition = delinearize(position, newStrides);
|
||||
// OpBuilder is only used as a helper to build an I64ArrayAttr.
|
||||
OpBuilder b(extractOp.getContext());
|
||||
extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
|
||||
|
@ -457,7 +457,7 @@ public:
|
||||
|
||||
for (int64_t linearIdx = 0; linearIdx < numTransposedElements;
|
||||
++linearIdx) {
|
||||
auto extractIdxs = delinearize(prunedInStrides, linearIdx);
|
||||
auto extractIdxs = delinearize(linearIdx, prunedInStrides);
|
||||
SmallVector<int64_t> insertIdxs(extractIdxs);
|
||||
applyPermutationToVector(insertIdxs, prunedTransp);
|
||||
Value extractOp =
|
||||
@ -588,8 +588,7 @@ public:
|
||||
loc, resType, rewriter.getZeroAttr(resType));
|
||||
for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) {
|
||||
auto pos = rewriter.getI64ArrayAttr(d);
|
||||
Value x =
|
||||
rewriter.create<vector::ExtractOp>(loc, op.getLhs(), pos);
|
||||
Value x = rewriter.create<vector::ExtractOp>(loc, op.getLhs(), pos);
|
||||
Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x);
|
||||
Value r = nullptr;
|
||||
if (acc)
|
||||
|
@ -31,7 +31,7 @@ using namespace mlir::vector;
|
||||
static SmallVector<int64_t> getVectorOffset(ArrayRef<int64_t> ratioStrides,
|
||||
int64_t index,
|
||||
ArrayRef<int64_t> targetShape) {
|
||||
return computeElementwiseMul(delinearize(ratioStrides, index), targetShape);
|
||||
return computeElementwiseMul(delinearize(index, ratioStrides), targetShape);
|
||||
}
|
||||
|
||||
/// A functor that accomplishes the same thing as `getVectorOffset` but
|
||||
|
Loading…
x
Reference in New Issue
Block a user