diff --git a/llvm/include/llvm/Analysis/ScalarEvolutionExpressions.h b/llvm/include/llvm/Analysis/ScalarEvolutionExpressions.h index b468fcd025d8..01b034f8a011 100644 --- a/llvm/include/llvm/Analysis/ScalarEvolutionExpressions.h +++ b/llvm/include/llvm/Analysis/ScalarEvolutionExpressions.h @@ -362,14 +362,12 @@ namespace llvm { SmallVectorImpl &Terms) const; /// Return in Subscripts the access functions for each dimension in Sizes. - const SCEV * - computeAccessFunctions(ScalarEvolution &SE, - SmallVectorImpl &Subscripts, - SmallVectorImpl &Sizes) const; + void computeAccessFunctions(ScalarEvolution &SE, + SmallVectorImpl &Subscripts, + SmallVectorImpl &Sizes) const; /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the - /// subscripts and sizes of an array access. Returns the remainder of the - /// delinearization that is the offset start of the array. + /// subscripts and sizes of an array access. /// /// The delinearization is a 3 step process: the first two steps compute the /// sizes of each subscript and the third step computes the access functions @@ -432,10 +430,10 @@ namespace llvm { /// The subscript of the outermost dimension is the Quotient: [j+k]. /// /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i]. - const SCEV *delinearize(ScalarEvolution &SE, - SmallVectorImpl &Subscripts, - SmallVectorImpl &Sizes, - const SCEV *ElementSize) const; + void delinearize(ScalarEvolution &SE, + SmallVectorImpl &Subscripts, + SmallVectorImpl &Sizes, + const SCEV *ElementSize) const; }; //===--------------------------------------------------------------------===// diff --git a/llvm/lib/Analysis/Delinearization.cpp b/llvm/lib/Analysis/Delinearization.cpp index 6c8702787d47..9334cebe1802 100644 --- a/llvm/lib/Analysis/Delinearization.cpp +++ b/llvm/lib/Analysis/Delinearization.cpp @@ -95,26 +95,34 @@ void Delinearization::print(raw_ostream &O, const Module *) const { // Do not analyze memory accesses outside loops. for (Loop *L = LI->getLoopFor(BB); L != nullptr; L = L->getParentLoop()) { const SCEV *AccessFn = SE->getSCEVAtScope(getPointerOperand(*Inst), L); + + const SCEVUnknown *BasePointer = + dyn_cast(SE->getPointerBase(AccessFn)); + // Do not delinearize if we cannot find the base pointer. + if (!BasePointer) + break; + AccessFn = SE->getMinusSCEV(AccessFn, BasePointer); const SCEVAddRecExpr *AR = dyn_cast(AccessFn); // Do not try to delinearize memory accesses that are not AddRecs. if (!AR) break; + O << "\n"; O << "Inst:" << *Inst << "\n"; O << "In Loop with Header: " << L->getHeader()->getName() << "\n"; - O << "AddRec: " << *AR << "\n"; SmallVector Subscripts, Sizes; - const SCEV *Res = AR->delinearize(*SE, Subscripts, Sizes, SE->getElementSize(Inst)); + AR->delinearize(*SE, Subscripts, Sizes, SE->getElementSize(Inst)); if (Subscripts.size() == 0 || Sizes.size() == 0 || Subscripts.size() != Sizes.size()) { O << "failed to delinearize\n"; continue; } - O << "Base offset: " << *Res << "\n"; + + O << "Base offset: " << *BasePointer << "\n"; O << "ArrayDecl[UnknownSize]"; int Size = Subscripts.size(); for (int i = 0; i < Size - 1; i++) diff --git a/llvm/lib/Analysis/DependenceAnalysis.cpp b/llvm/lib/Analysis/DependenceAnalysis.cpp index 33cb20685c0c..d0784f1e678d 100644 --- a/llvm/lib/Analysis/DependenceAnalysis.cpp +++ b/llvm/lib/Analysis/DependenceAnalysis.cpp @@ -3184,6 +3184,17 @@ bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV, SmallVectorImpl &Pair, const SCEV *ElementSize) const { + const SCEVUnknown *SrcBase = + dyn_cast(SE->getPointerBase(SrcSCEV)); + const SCEVUnknown *DstBase = + dyn_cast(SE->getPointerBase(DstSCEV)); + + if (!SrcBase || !DstBase || SrcBase != DstBase) + return false; + + SrcSCEV = SE->getMinusSCEV(SrcSCEV, SrcBase); + DstSCEV = SE->getMinusSCEV(DstSCEV, DstBase); + const SCEVAddRecExpr *SrcAR = dyn_cast(SrcSCEV); const SCEVAddRecExpr *DstAR = dyn_cast(DstSCEV); if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine()) @@ -3200,20 +3211,14 @@ bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV, // Third step: compute the access functions for each subscript. SmallVector SrcSubscripts, DstSubscripts; - const SCEV *RemainderS = SrcAR->computeAccessFunctions(*SE, SrcSubscripts, Sizes); - const SCEV *RemainderD = DstAR->computeAccessFunctions(*SE, DstSubscripts, Sizes); + SrcAR->computeAccessFunctions(*SE, SrcSubscripts, Sizes); + DstAR->computeAccessFunctions(*SE, DstSubscripts, Sizes); // Fail when there is only a subscript: that's a linearized access function. if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 || SrcSubscripts.size() != DstSubscripts.size()) return false; - // When the difference in remainders is different than a constant it might be - // that the base address of the arrays is not the same. - const SCEV *DiffRemainders = SE->getMinusSCEV(RemainderS, RemainderD); - if (!isa(DiffRemainders)) - return false; - int size = SrcSubscripts.size(); DEBUG({ diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp index 4e4eb2143315..35a825ad0566 100644 --- a/llvm/lib/Analysis/ScalarEvolution.cpp +++ b/llvm/lib/Analysis/ScalarEvolution.cpp @@ -7458,16 +7458,15 @@ void ScalarEvolution::findArrayDimensions(SmallVectorImpl &Terms, /// Third step of delinearization: compute the access functions for the /// Subscripts based on the dimensions in Sizes. -const SCEV *SCEVAddRecExpr::computeAccessFunctions( +void SCEVAddRecExpr::computeAccessFunctions( ScalarEvolution &SE, SmallVectorImpl &Subscripts, SmallVectorImpl &Sizes) const { // Early exit in case this SCEV is not an affine multivariate function. if (Sizes.empty() || !this->isAffine()) - return nullptr; + return; - const SCEV *Zero = SE.getConstant(this->getType(), 0); - const SCEV *Res = this, *Remainder = Zero; + const SCEV *Res = this; int Last = Sizes.size() - 1; for (int i = Last; i >= 0; i--) { const SCEV *Q, *R; @@ -7488,10 +7487,12 @@ const SCEV *SCEVAddRecExpr::computeAccessFunctions( if (i == Last) { // Bail out if the remainder is too complex. - if (isa(R)) - return nullptr; + if (isa(R)) { + Subscripts.clear(); + Sizes.clear(); + return; + } - Remainder = R; continue; } @@ -7510,7 +7511,6 @@ const SCEV *SCEVAddRecExpr::computeAccessFunctions( for (const SCEV *S : Subscripts) dbgs() << *S << "\n"; }); - return Remainder; } /// Splits the SCEV into two vectors of SCEVs representing the subscripts and @@ -7562,27 +7562,28 @@ const SCEV *SCEVAddRecExpr::computeAccessFunctions( /// asking for the SCEV of the memory access with respect to all enclosing /// loops, calling SCEV->delinearize on that and printing the results. -const SCEV *SCEVAddRecExpr::delinearize( - ScalarEvolution &SE, SmallVectorImpl &Subscripts, - SmallVectorImpl &Sizes, const SCEV *ElementSize) const { +void SCEVAddRecExpr::delinearize(ScalarEvolution &SE, + SmallVectorImpl &Subscripts, + SmallVectorImpl &Sizes, + const SCEV *ElementSize) const { // First step: collect parametric terms. SmallVector Terms; collectParametricTerms(SE, Terms); if (Terms.empty()) - return nullptr; + return; // Second step: find subscript sizes. SE.findArrayDimensions(Terms, Sizes, ElementSize); if (Sizes.empty()) - return nullptr; + return; // Third step: compute the access functions for each subscript. - const SCEV *Remainder = computeAccessFunctions(SE, Subscripts, Sizes); + computeAccessFunctions(SE, Subscripts, Sizes); - if (!Remainder || Subscripts.empty()) - return nullptr; + if (Subscripts.empty()) + return; DEBUG({ dbgs() << "succeeded to delinearize " << *this << "\n"; @@ -7595,8 +7596,6 @@ const SCEV *SCEVAddRecExpr::delinearize( dbgs() << "[" << *S << "]"; dbgs() << "\n"; }); - - return Remainder; } //===----------------------------------------------------------------------===//