[llvm-exegesis][NFC] internal changes

Summary:
BitVectors are now cached to lower memory utilization.
Instructions have reference semantics.

Reviewers: courbet

Subscribers: sdardis, tschuett, jrtc27, atanasyan, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71653
This commit is contained in:
Guillaume Chatelet 2019-12-18 12:08:38 +01:00
parent d3d1ca14ce
commit 32d384c020
12 changed files with 203 additions and 135 deletions

View File

@ -15,8 +15,8 @@ CodeTemplate::CodeTemplate(CodeTemplate &&) = default;
CodeTemplate &CodeTemplate::operator=(CodeTemplate &&) = default;
InstructionTemplate::InstructionTemplate(const Instruction &Instr)
: Instr(Instr), VariableValues(Instr.Variables.size()) {}
InstructionTemplate::InstructionTemplate(const Instruction *Instr)
: Instr(Instr), VariableValues(Instr->Variables.size()) {}
InstructionTemplate::InstructionTemplate(InstructionTemplate &&) = default;
@ -29,7 +29,7 @@ InstructionTemplate &InstructionTemplate::
operator=(const InstructionTemplate &) = default;
unsigned InstructionTemplate::getOpcode() const {
return Instr.Description->getOpcode();
return Instr->Description.getOpcode();
}
MCOperand &InstructionTemplate::getValueFor(const Variable &Var) {
@ -41,23 +41,23 @@ const MCOperand &InstructionTemplate::getValueFor(const Variable &Var) const {
}
MCOperand &InstructionTemplate::getValueFor(const Operand &Op) {
return getValueFor(Instr.Variables[Op.getVariableIndex()]);
return getValueFor(Instr->Variables[Op.getVariableIndex()]);
}
const MCOperand &InstructionTemplate::getValueFor(const Operand &Op) const {
return getValueFor(Instr.Variables[Op.getVariableIndex()]);
return getValueFor(Instr->Variables[Op.getVariableIndex()]);
}
bool InstructionTemplate::hasImmediateVariables() const {
return any_of(Instr.Variables, [this](const Variable &Var) {
return Instr.getPrimaryOperand(Var).isImmediate();
return any_of(Instr->Variables, [this](const Variable &Var) {
return Instr->getPrimaryOperand(Var).isImmediate();
});
}
MCInst InstructionTemplate::build() const {
MCInst Result;
Result.setOpcode(Instr.Description->Opcode);
for (const auto &Op : Instr.Operands)
Result.setOpcode(Instr->Description.Opcode);
for (const auto &Op : Instr->Operands)
if (Op.isExplicit())
Result.addOperand(getValueFor(Op));
return Result;

View File

@ -23,7 +23,7 @@ namespace exegesis {
// A template for an Instruction holding values for each of its Variables.
struct InstructionTemplate {
InstructionTemplate(const Instruction &Instr);
InstructionTemplate(const Instruction *Instr);
InstructionTemplate(const InstructionTemplate &); // default
InstructionTemplate &operator=(const InstructionTemplate &); // default
@ -36,13 +36,16 @@ struct InstructionTemplate {
MCOperand &getValueFor(const Operand &Op);
const MCOperand &getValueFor(const Operand &Op) const;
bool hasImmediateVariables() const;
const Instruction &getInstr() const { return *Instr; }
ArrayRef<MCOperand> getVariableValues() const { return VariableValues; }
// Builds an MCInst from this InstructionTemplate setting its operands
// to the corresponding variable values. Precondition: All VariableValues must
// be set.
MCInst build() const;
Instruction Instr;
private:
const Instruction *Instr;
SmallVector<MCOperand, 4> VariableValues;
};

View File

@ -37,8 +37,8 @@ struct ExecutionClass {
static constexpr size_t kMaxAliasingInstructions = 10;
static std::vector<Instruction>
computeAliasingInstructions(const LLVMState &State, const Instruction &Instr,
static std::vector<const Instruction *>
computeAliasingInstructions(const LLVMState &State, const Instruction *Instr,
size_t MaxAliasingInstructions,
const BitVector &ForbiddenRegisters) {
// Randomly iterate the set of instructions.
@ -47,15 +47,15 @@ computeAliasingInstructions(const LLVMState &State, const Instruction &Instr,
std::iota(Opcodes.begin(), Opcodes.end(), 0U);
std::shuffle(Opcodes.begin(), Opcodes.end(), randomGenerator());
std::vector<Instruction> AliasingInstructions;
std::vector<const Instruction *> AliasingInstructions;
for (const unsigned OtherOpcode : Opcodes) {
if (OtherOpcode == Instr.Description->getOpcode())
if (OtherOpcode == Instr->Description.getOpcode())
continue;
const Instruction &OtherInstr = State.getIC().getInstr(OtherOpcode);
if (OtherInstr.hasMemoryOperands())
continue;
if (Instr.hasAliasingRegistersThrough(OtherInstr, ForbiddenRegisters))
AliasingInstructions.push_back(OtherInstr);
if (Instr->hasAliasingRegistersThrough(OtherInstr, ForbiddenRegisters))
AliasingInstructions.push_back(&OtherInstr);
if (AliasingInstructions.size() >= MaxAliasingInstructions)
break;
}
@ -81,7 +81,7 @@ static ExecutionMode getExecutionModes(const Instruction &Instr,
}
static void appendCodeTemplates(const LLVMState &State,
const Instruction &Instr,
const Instruction *Instr,
const BitVector &ForbiddenRegisters,
ExecutionMode ExecutionModeBit,
StringRef ExecutionClassDescription,
@ -109,7 +109,7 @@ static void appendCodeTemplates(const LLVMState &State,
case ExecutionMode::SERIAL_VIA_EXPLICIT_REGS: {
// Making the execution of this instruction serial by selecting one def
// register to alias with one use register.
const AliasingConfigurations SelfAliasing(Instr, Instr);
const AliasingConfigurations SelfAliasing(*Instr, *Instr);
assert(!SelfAliasing.empty() && !SelfAliasing.hasImplicitAliasing() &&
"Instr must alias itself explicitly");
InstructionTemplate IT(Instr);
@ -125,10 +125,10 @@ static void appendCodeTemplates(const LLVMState &State,
}
case ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR: {
// Select back-to-back non-memory instruction.
for (const auto OtherInstr : computeAliasingInstructions(
for (const auto *OtherInstr : computeAliasingInstructions(
State, Instr, kMaxAliasingInstructions, ForbiddenRegisters)) {
const AliasingConfigurations Forward(Instr, OtherInstr);
const AliasingConfigurations Back(OtherInstr, Instr);
const AliasingConfigurations Forward(*Instr, *OtherInstr);
const AliasingConfigurations Back(*OtherInstr, *Instr);
InstructionTemplate ThisIT(Instr);
InstructionTemplate OtherIT(OtherInstr);
if (!Forward.hasImplicitAliasing())
@ -158,7 +158,7 @@ LatencySnippetGenerator::generateCodeTemplates(
const ExecutionMode EM = getExecutionModes(Instr, ForbiddenRegisters);
for (const auto EC : kExecutionClasses) {
for (const auto ExecutionModeBit : getExecutionModeBits(EM & EC.Mask))
appendCodeTemplates(State, Instr, ForbiddenRegisters, ExecutionModeBit,
appendCodeTemplates(State, &Instr, ForbiddenRegisters, ExecutionModeBit,
EC.Description, Results);
if (!Results.empty())
break;

View File

@ -17,10 +17,7 @@
namespace llvm {
namespace exegesis {
unsigned Variable::getIndex() const {
assert(Index >= 0 && "Index must be set");
return Index;
}
unsigned Variable::getIndex() const { return *Index; }
unsigned Variable::getPrimaryOperandIndex() const {
assert(!TiedOperands.empty());
@ -36,10 +33,7 @@ bool Variable::hasTiedOperands() const {
return TiedOperands.size() > 1;
}
unsigned Operand::getIndex() const {
assert(Index >= 0 && "Index must be set");
return Index;
}
unsigned Operand::getIndex() const { return *Index; }
bool Operand::isExplicit() const { return Info; }
@ -53,9 +47,9 @@ bool Operand::isUse() const { return !IsDef; }
bool Operand::isReg() const { return Tracker; }
bool Operand::isTied() const { return TiedToIndex >= 0; }
bool Operand::isTied() const { return TiedToIndex.hasValue(); }
bool Operand::isVariable() const { return VariableIndex >= 0; }
bool Operand::isVariable() const { return VariableIndex.hasValue(); }
bool Operand::isMemory() const {
return isExplicit() &&
@ -67,17 +61,9 @@ bool Operand::isImmediate() const {
getExplicitOperandInfo().OperandType == MCOI::OPERAND_IMMEDIATE;
}
unsigned Operand::getTiedToIndex() const {
assert(isTied() && "Operand must be tied to get the tied index");
assert(TiedToIndex >= 0 && "TiedToIndex must be set");
return TiedToIndex;
}
unsigned Operand::getTiedToIndex() const { return *TiedToIndex; }
unsigned Operand::getVariableIndex() const {
assert(isVariable() && "Operand must be variable to get the Variable index");
assert(VariableIndex >= 0 && "VariableIndex must be set");
return VariableIndex;
}
unsigned Operand::getVariableIndex() const { return *VariableIndex; }
unsigned Operand::getImplicitReg() const {
assert(ImplicitReg);
@ -94,11 +80,36 @@ const MCOperandInfo &Operand::getExplicitOperandInfo() const {
return *Info;
}
Instruction::Instruction(const MCInstrInfo &InstrInfo,
const RegisterAliasingTrackerCache &RATC,
unsigned Opcode)
: Description(&InstrInfo.get(Opcode)), Name(InstrInfo.getName(Opcode)) {
const BitVector *BitVectorCache::getUnique(BitVector &&BV) const {
for (const auto &Entry : Cache)
if (*Entry == BV)
return Entry.get();
Cache.push_back(std::make_unique<BitVector>());
auto &Entry = Cache.back();
Entry->swap(BV);
return Entry.get();
}
Instruction::Instruction(const MCInstrDesc *Description, StringRef Name,
SmallVector<Operand, 8> Operands,
SmallVector<Variable, 4> Variables,
const BitVector *ImplDefRegs,
const BitVector *ImplUseRegs,
const BitVector *AllDefRegs,
const BitVector *AllUseRegs)
: Description(*Description), Name(Name), Operands(std::move(Operands)),
Variables(std::move(Variables)), ImplDefRegs(*ImplDefRegs),
ImplUseRegs(*ImplUseRegs), AllDefRegs(*AllDefRegs),
AllUseRegs(*AllUseRegs) {}
std::unique_ptr<Instruction>
Instruction::create(const MCInstrInfo &InstrInfo,
const RegisterAliasingTrackerCache &RATC,
const BitVectorCache &BVC, unsigned Opcode) {
const llvm::MCInstrDesc *const Description = &InstrInfo.get(Opcode);
unsigned OpIndex = 0;
SmallVector<Operand, 8> Operands;
SmallVector<Variable, 4> Variables;
for (; OpIndex < Description->getNumOperands(); ++OpIndex) {
const auto &OpInfo = Description->opInfo_begin()[OpIndex];
Operand Operand;
@ -107,8 +118,11 @@ Instruction::Instruction(const MCInstrInfo &InstrInfo,
// TODO(gchatelet): Handle isLookupPtrRegClass.
if (OpInfo.RegClass >= 0)
Operand.Tracker = &RATC.getRegisterClass(OpInfo.RegClass);
Operand.TiedToIndex =
Description->getOperandConstraint(OpIndex, MCOI::TIED_TO);
int TiedToIndex = Description->getOperandConstraint(OpIndex, MCOI::TIED_TO);
assert(TiedToIndex == -1 ||
TiedToIndex < std::numeric_limits<uint8_t>::max());
if (TiedToIndex >= 0)
Operand.TiedToIndex = TiedToIndex;
Operand.Info = &OpInfo;
Operands.push_back(Operand);
}
@ -130,28 +144,29 @@ Instruction::Instruction(const MCInstrInfo &InstrInfo,
Operand.ImplicitReg = MCPhysReg;
Operands.push_back(Operand);
}
// Assigning Variables to non tied explicit operands.
Variables.reserve(Operands.size()); // Variables.size() <= Operands.size()
// Assigning Variables to non tied explicit operands.
for (auto &Op : Operands)
if (Op.isExplicit() && !Op.isTied()) {
const size_t VariableIndex = Variables.size();
assert(VariableIndex < std::numeric_limits<uint8_t>::max());
Op.VariableIndex = VariableIndex;
Variables.emplace_back();
Variables.back().Index = VariableIndex;
}
// Assigning Variables to tied operands.
for (auto &Op : Operands)
if (Op.isTied())
if (Op.isExplicit() && Op.isTied())
Op.VariableIndex = Operands[Op.getTiedToIndex()].getVariableIndex();
// Assigning Operands to Variables.
for (auto &Op : Operands)
if (Op.isVariable())
Variables[Op.getVariableIndex()].TiedOperands.push_back(Op.getIndex());
// Processing Aliasing.
ImplDefRegs = RATC.emptyRegisters();
ImplUseRegs = RATC.emptyRegisters();
AllDefRegs = RATC.emptyRegisters();
AllUseRegs = RATC.emptyRegisters();
BitVector ImplDefRegs = RATC.emptyRegisters();
BitVector ImplUseRegs = RATC.emptyRegisters();
BitVector AllDefRegs = RATC.emptyRegisters();
BitVector AllUseRegs = RATC.emptyRegisters();
for (const auto &Op : Operands) {
if (Op.isReg()) {
const auto &AliasingBits = Op.getRegisterAliasing().aliasedBits();
@ -165,6 +180,13 @@ Instruction::Instruction(const MCInstrInfo &InstrInfo,
ImplUseRegs |= AliasingBits;
}
}
// Can't use make_unique because constructor is private.
return std::unique_ptr<Instruction>(new Instruction(
Description, InstrInfo.getName(Opcode), std::move(Operands),
std::move(Variables), BVC.getUnique(std::move(ImplDefRegs)),
BVC.getUnique(std::move(ImplUseRegs)),
BVC.getUnique(std::move(AllDefRegs)),
BVC.getUnique(std::move(AllUseRegs))));
}
const Operand &Instruction::getPrimaryOperand(const Variable &Var) const {
@ -284,7 +306,7 @@ InstructionsCache::InstructionsCache(const MCInstrInfo &InstrInfo,
const Instruction &InstructionsCache::getInstr(unsigned Opcode) const {
auto &Found = Instructions[Opcode];
if (!Found)
Found.reset(new Instruction(InstrInfo, RATC, Opcode));
Found = Instruction::create(InstrInfo, RATC, BVC, Opcode);
return *Found;
}

View File

@ -18,6 +18,7 @@
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_MCINSTRDESCVIEW_H
#define LLVM_TOOLS_LLVM_EXEGESIS_MCINSTRDESCVIEW_H
#include <memory>
#include <random>
#include <unordered_map>
@ -48,7 +49,7 @@ struct Variable {
// The index of this Variable in Instruction.Variables and its associated
// Value in InstructionBuilder.VariableValues.
int Index = -1;
Optional<uint8_t> Index;
};
// MCOperandInfo can only represents Explicit operands. This object gives a
@ -81,20 +82,40 @@ struct Operand {
const MCOperandInfo &getExplicitOperandInfo() const;
// Please use the accessors above and not the following fields.
int Index = -1;
Optional<uint8_t> Index;
bool IsDef = false;
const RegisterAliasingTracker *Tracker = nullptr; // Set for Register Op.
const MCOperandInfo *Info = nullptr; // Set for Explicit Op.
int TiedToIndex = -1; // Set for Reg&Explicit Op.
Optional<uint8_t> TiedToIndex; // Set for Reg&Explicit Op.
const MCPhysReg *ImplicitReg = nullptr; // Set for Implicit Op.
int VariableIndex = -1; // Set for Explicit Op.
Optional<uint8_t> VariableIndex; // Set for Explicit Op.
};
/// A cache of BitVector to reuse between Instructions.
/// The cache will only be exercised during Instruction initialization.
/// For X86, this is ~160 unique vectors for all of the ~15K Instructions.
struct BitVectorCache {
// Finds or allocates the provided BitVector in the cache and retrieves it's
// unique instance.
const BitVector *getUnique(BitVector &&BV) const;
private:
mutable std::vector<std::unique_ptr<BitVector>> Cache;
};
// A view over an MCInstrDesc offering a convenient interface to compute
// Register aliasing.
struct Instruction {
Instruction(const MCInstrInfo &InstrInfo,
const RegisterAliasingTrackerCache &RATC, unsigned Opcode);
// Create an instruction for a particular Opcode.
static std::unique_ptr<Instruction>
create(const MCInstrInfo &InstrInfo, const RegisterAliasingTrackerCache &RATC,
const BitVectorCache &BVC, unsigned Opcode);
// Prevent copy or move, instructions are allocated once and cached.
Instruction(const Instruction &) = delete;
Instruction(Instruction &&) = delete;
Instruction &operator=(const Instruction &) = delete;
Instruction &operator=(Instruction &&) = delete;
// Returns the Operand linked to this Variable.
// In case the Variable is tied, the primary (i.e. Def) Operand is returned.
@ -133,14 +154,20 @@ struct Instruction {
const RegisterAliasingTrackerCache &RATC,
raw_ostream &Stream) const;
const MCInstrDesc *Description; // Never nullptr.
StringRef Name; // The name of this instruction.
SmallVector<Operand, 8> Operands;
SmallVector<Variable, 4> Variables;
BitVector ImplDefRegs; // The set of aliased implicit def registers.
BitVector ImplUseRegs; // The set of aliased implicit use registers.
BitVector AllDefRegs; // The set of all aliased def registers.
BitVector AllUseRegs; // The set of all aliased use registers.
const MCInstrDesc &Description;
const StringRef Name; // The name of this instruction.
const SmallVector<Operand, 8> Operands;
const SmallVector<Variable, 4> Variables;
const BitVector &ImplDefRegs; // The set of aliased implicit def registers.
const BitVector &ImplUseRegs; // The set of aliased implicit use registers.
const BitVector &AllDefRegs; // The set of all aliased def registers.
const BitVector &AllUseRegs; // The set of all aliased use registers.
private:
Instruction(const MCInstrDesc *Description, StringRef Name,
SmallVector<Operand, 8> Operands,
SmallVector<Variable, 4> Variables, const BitVector *ImplDefRegs,
const BitVector *ImplUseRegs, const BitVector *AllDefRegs,
const BitVector *AllUseRegs);
};
// Instructions are expensive to instantiate. This class provides a cache of
@ -157,6 +184,7 @@ private:
const RegisterAliasingTrackerCache &RATC;
mutable std::unordered_map<unsigned, std::unique_ptr<Instruction>>
Instructions;
const BitVectorCache BVC;
};
// Represents the assignment of a Register to an Operand.

View File

@ -112,7 +112,7 @@ std::vector<RegisterValue> SnippetGenerator::computeRegisterInitialValues(
return 0;
};
// Collect used registers that have never been def'ed.
for (const Operand &Op : IT.Instr.Operands) {
for (const Operand &Op : IT.getInstr().Operands) {
if (Op.isUse()) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0 && !DefinedRegs.test(Reg)) {
@ -122,7 +122,7 @@ std::vector<RegisterValue> SnippetGenerator::computeRegisterInitialValues(
}
}
// Mark defs as having been def'ed.
for (const Operand &Op : IT.Instr.Operands) {
for (const Operand &Op : IT.getInstr().Operands) {
if (Op.isDef()) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0)
@ -141,7 +141,7 @@ generateSelfAliasingCodeTemplates(const Instruction &Instr) {
std::vector<CodeTemplate> Result;
Result.emplace_back();
CodeTemplate &CT = Result.back();
InstructionTemplate IT(Instr);
InstructionTemplate IT(&Instr);
if (SelfAliasing.hasImplicitAliasing()) {
CT.Info = "implicit Self cycles, picking random values.";
} else {
@ -160,7 +160,7 @@ generateUnconstrainedCodeTemplates(const Instruction &Instr, StringRef Msg) {
Result.emplace_back();
CodeTemplate &CT = Result.back();
CT.Info = formatv("{0}, repeating an unconstrained assignment", Msg);
CT.Instructions.emplace_back(Instr);
CT.Instructions.emplace_back(&Instr);
return std::move(Result);
}
@ -218,10 +218,11 @@ void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
void randomizeUnsetVariables(const ExegesisTarget &Target,
const BitVector &ForbiddenRegs,
InstructionTemplate &IT) {
for (const Variable &Var : IT.Instr.Variables) {
for (const Variable &Var : IT.getInstr().Variables) {
MCOperand &AssignedValue = IT.getValueFor(Var);
if (!AssignedValue.isValid())
Target.randomizeMCOperand(IT.Instr, Var, AssignedValue, ForbiddenRegs);
Target.randomizeMCOperand(IT.getInstr(), Var, AssignedValue,
ForbiddenRegs);
}
}

View File

@ -127,7 +127,7 @@ static std::vector<InstructionTemplate> generateSnippetUsingStaticRenaming(
std::vector<BitVector> PossibleRegsForVar;
for (const Variable *Var : TiedVariables) {
assert(Var);
const Operand &Op = IT.Instr.getPrimaryOperand(*Var);
const Operand &Op = IT.getInstr().getPrimaryOperand(*Var);
assert(Op.isReg());
BitVector PossibleRegs = Op.getRegisterAliasing().sourceBits();
remove(PossibleRegs, ForbiddenRegisters);
@ -166,7 +166,7 @@ Expected<std::vector<CodeTemplate>> UopsSnippetGenerator::generateCodeTemplates(
State.getTargetMachine().getTargetTriple())
: 0;
const AliasingConfigurations SelfAliasing(Instr, Instr);
InstructionTemplate IT(Instr);
InstructionTemplate IT(&Instr);
if (SelfAliasing.empty()) {
CT.Info = "instruction is parallel, repeating a random one.";
CT.Instructions.push_back(std::move(IT));

View File

@ -25,7 +25,7 @@ namespace exegesis {
// Returns an error if we cannot handle the memory references in this
// instruction.
static Error isInvalidMemoryInstr(const Instruction &Instr) {
switch (Instr.Description->TSFlags & X86II::FormMask) {
switch (Instr.Description.TSFlags & X86II::FormMask) {
default:
llvm_unreachable("Unknown FormMask value");
// These have no memory access.
@ -114,10 +114,10 @@ static Error isInvalidMemoryInstr(const Instruction &Instr) {
case X86II::RawFrmImm8:
return Error::success();
case X86II::AddRegFrm:
return (Instr.Description->Opcode == X86::POP16r ||
Instr.Description->Opcode == X86::POP32r ||
Instr.Description->Opcode == X86::PUSH16r ||
Instr.Description->Opcode == X86::PUSH32r)
return (Instr.Description.Opcode == X86::POP16r ||
Instr.Description.Opcode == X86::POP32r ||
Instr.Description.Opcode == X86::PUSH16r ||
Instr.Description.Opcode == X86::PUSH32r)
? make_error<Failure>(
"unsupported opcode: unsupported memory access")
: Error::success();
@ -150,7 +150,7 @@ static Error isInvalidMemoryInstr(const Instruction &Instr) {
static Error IsInvalidOpcode(const Instruction &Instr) {
const auto OpcodeName = Instr.Name;
if ((Instr.Description->TSFlags & X86II::FormMask) == X86II::Pseudo)
if ((Instr.Description.TSFlags & X86II::FormMask) == X86II::Pseudo)
return make_error<Failure>("unsupported opcode: pseudo instruction");
if (OpcodeName.startswith("POPF") || OpcodeName.startswith("PUSHF") ||
OpcodeName.startswith("ADJCALLSTACK"))
@ -172,13 +172,13 @@ static Error IsInvalidOpcode(const Instruction &Instr) {
}
static unsigned getX86FPFlags(const Instruction &Instr) {
return Instr.Description->TSFlags & X86II::FPTypeMask;
return Instr.Description.TSFlags & X86II::FPTypeMask;
}
// Helper to fill a memory operand with a value.
static void setMemOp(InstructionTemplate &IT, int OpIdx,
const MCOperand &OpVal) {
const auto Op = IT.Instr.Operands[OpIdx];
const auto Op = IT.getInstr().Operands[OpIdx];
assert(Op.isExplicit() && "invalid memory pattern");
IT.getValueFor(Op) = OpVal;
}
@ -190,7 +190,7 @@ static Expected<std::vector<CodeTemplate>> generateLEATemplatesCommon(
const LLVMState &State, const SnippetGenerator::Options &Opts,
std::function<unsigned(unsigned, unsigned)> GetDestReg) {
assert(Instr.Operands.size() == 6 && "invalid LEA");
assert(X86II::getMemoryOperandNo(Instr.Description->TSFlags) == 1 &&
assert(X86II::getMemoryOperandNo(Instr.Description.TSFlags) == 1 &&
"invalid LEA");
constexpr const int kDestOp = 0;
@ -213,7 +213,7 @@ static Expected<std::vector<CodeTemplate>> generateLEATemplatesCommon(
for (int LogScale = 0; LogScale <= 3; ++LogScale) {
// FIXME: Add an option for controlling how we explore immediates.
for (const int Disp : {0, 42}) {
InstructionTemplate IT(Instr);
InstructionTemplate IT(&Instr);
const int64_t Scale = 1ull << LogScale;
setMemOp(IT, 1, MCOperand::createReg(BaseReg));
setMemOp(IT, 2, MCOperand::createImm(Scale));
@ -259,7 +259,7 @@ X86LatencySnippetGenerator::generateCodeTemplates(
return std::move(E);
// LEA gets special attention.
const auto Opcode = Instr.Description->getOpcode();
const auto Opcode = Instr.Description.getOpcode();
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r) {
return generateLEATemplatesCommon(Instr, ForbiddenRegisters, State, Opts,
[](unsigned BaseReg, unsigned IndexReg) {
@ -310,7 +310,7 @@ X86UopsSnippetGenerator::generateCodeTemplates(
return std::move(E);
// LEA gets special attention.
const auto Opcode = Instr.Description->getOpcode();
const auto Opcode = Instr.Description.getOpcode();
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r) {
// Any destination register that is not used for adddressing is fine.
auto PossibleDestRegs =
@ -648,13 +648,13 @@ void ExegesisX86Target::randomizeMCOperand(
void ExegesisX86Target::fillMemoryOperands(InstructionTemplate &IT,
unsigned Reg,
unsigned Offset) const {
assert(!isInvalidMemoryInstr(IT.Instr) &&
assert(!isInvalidMemoryInstr(IT.getInstr()) &&
"fillMemoryOperands requires a valid memory instruction");
int MemOpIdx = X86II::getMemoryOperandNo(IT.Instr.Description->TSFlags);
int MemOpIdx = X86II::getMemoryOperandNo(IT.getInstr().Description.TSFlags);
assert(MemOpIdx >= 0 && "invalid memory operand index");
// getMemoryOperandNo() ignores tied operands, so we have to add them back.
for (unsigned I = 0; I <= static_cast<unsigned>(MemOpIdx); ++I) {
const auto &Op = IT.Instr.Operands[I];
const auto &Op = IT.getInstr().Operands[I];
if (Op.isTied() && Op.getTiedToIndex() < I) {
++MemOpIdx;
}

View File

@ -208,7 +208,7 @@ static Expected<std::vector<BenchmarkCode>>
generateSnippets(const LLVMState &State, unsigned Opcode,
const BitVector &ForbiddenRegs) {
const Instruction &Instr = State.getIC().getInstr(Opcode);
const MCInstrDesc &InstrDesc = *Instr.Description;
const MCInstrDesc &InstrDesc = Instr.Description;
// Ignore instructions that we cannot run.
if (InstrDesc.isPseudo())
return make_error<Failure>("Unsupported opcode: isPseudo");

View File

@ -81,8 +81,8 @@ TEST_F(LatencySnippetGeneratorTest, ImplicitSelfDependencyThroughExplicitRegs) {
ASSERT_THAT(CT.Instructions, SizeIs(1));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(3));
EXPECT_THAT(IT.VariableValues,
ASSERT_THAT(IT.getVariableValues(), SizeIs(3));
EXPECT_THAT(IT.getVariableValues(),
AnyOf(ElementsAre(IsReg(), IsInvalid(), IsReg()),
ElementsAre(IsReg(), IsReg(), IsInvalid())))
<< "Op0 is either set to Op1 or to Op2";

View File

@ -86,8 +86,8 @@ TEST_F(LatencySnippetGeneratorTest, ImplicitSelfDependencyThroughImplicitReg) {
ASSERT_THAT(CT.Instructions, SizeIs(1));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(1)); // Imm.
EXPECT_THAT(IT.VariableValues[0], IsInvalid()) << "Immediate is not set";
ASSERT_THAT(IT.getVariableValues(), SizeIs(1)); // Imm.
EXPECT_THAT(IT.getVariableValues()[0], IsInvalid()) << "Immediate is not set";
}
TEST_F(LatencySnippetGeneratorTest, ImplicitSelfDependencyThroughTiedRegs) {
@ -109,9 +109,9 @@ TEST_F(LatencySnippetGeneratorTest, ImplicitSelfDependencyThroughTiedRegs) {
ASSERT_THAT(CT.Instructions, SizeIs(1));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(2));
EXPECT_THAT(IT.VariableValues[0], IsInvalid()) << "Operand 1 is not set";
EXPECT_THAT(IT.VariableValues[1], IsInvalid()) << "Operand 2 is not set";
ASSERT_THAT(IT.getVariableValues(), SizeIs(2));
EXPECT_THAT(IT.getVariableValues()[0], IsInvalid()) << "Operand 1 is not set";
EXPECT_THAT(IT.getVariableValues()[1], IsInvalid()) << "Operand 2 is not set";
}
TEST_F(LatencySnippetGeneratorTest, ImplicitSelfDependencyThroughExplicitRegs) {
@ -131,8 +131,8 @@ TEST_F(LatencySnippetGeneratorTest, ImplicitSelfDependencyThroughExplicitRegs) {
ASSERT_THAT(CT.Instructions, SizeIs(1));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(3));
EXPECT_THAT(IT.VariableValues,
ASSERT_THAT(IT.getVariableValues(), SizeIs(3));
EXPECT_THAT(IT.getVariableValues(),
AnyOf(ElementsAre(IsReg(), IsInvalid(), IsReg()),
ElementsAre(IsReg(), IsReg(), IsInvalid())))
<< "Op0 is either set to Op1 or to Op2";
@ -173,9 +173,10 @@ TEST_F(LatencySnippetGeneratorTest, DependencyThroughOtherOpcode) {
ASSERT_THAT(CT.Instructions, SizeIs(2));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(2));
EXPECT_THAT(IT.VariableValues, AnyOf(ElementsAre(IsReg(), IsInvalid()),
ElementsAre(IsInvalid(), IsReg())));
ASSERT_THAT(IT.getVariableValues(), SizeIs(2));
EXPECT_THAT(IT.getVariableValues(),
AnyOf(ElementsAre(IsReg(), IsInvalid()),
ElementsAre(IsInvalid(), IsReg())));
EXPECT_THAT(CT.Instructions[1].getOpcode(), Not(Opcode));
// TODO: check that the two instructions alias each other.
}
@ -193,7 +194,7 @@ TEST_F(LatencySnippetGeneratorTest, LAHF) {
ASSERT_THAT(CT.Instructions, SizeIs(2));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(0));
ASSERT_THAT(IT.getVariableValues(), SizeIs(0));
}
}
@ -212,9 +213,9 @@ TEST_F(UopsSnippetGeneratorTest, ParallelInstruction) {
ASSERT_THAT(CT.Instructions, SizeIs(1));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(2));
EXPECT_THAT(IT.VariableValues[0], IsInvalid());
EXPECT_THAT(IT.VariableValues[1], IsInvalid());
ASSERT_THAT(IT.getVariableValues(), SizeIs(2));
EXPECT_THAT(IT.getVariableValues()[0], IsInvalid());
EXPECT_THAT(IT.getVariableValues()[1], IsInvalid());
}
TEST_F(UopsSnippetGeneratorTest, SerialInstruction) {
@ -233,7 +234,7 @@ TEST_F(UopsSnippetGeneratorTest, SerialInstruction) {
ASSERT_THAT(CT.Instructions, SizeIs(1));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(0));
ASSERT_THAT(IT.getVariableValues(), SizeIs(0));
}
TEST_F(UopsSnippetGeneratorTest, StaticRenaming) {
@ -260,8 +261,8 @@ TEST_F(UopsSnippetGeneratorTest, StaticRenaming) {
ASSERT_THAT(CT.Instructions, SizeIs(kInstructionCount));
std::unordered_set<unsigned> AllDefRegisters;
for (const auto &IT : CT.Instructions) {
ASSERT_THAT(IT.VariableValues, SizeIs(3));
AllDefRegisters.insert(IT.VariableValues[0].getReg());
ASSERT_THAT(IT.getVariableValues(), SizeIs(3));
AllDefRegisters.insert(IT.getVariableValues()[0].getReg());
}
EXPECT_THAT(AllDefRegisters, SizeIs(kInstructionCount))
<< "Each instruction writes to a different register";
@ -291,12 +292,14 @@ TEST_F(UopsSnippetGeneratorTest, NoTiedVariables) {
ASSERT_THAT(CT.Instructions, SizeIs(1));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(4));
EXPECT_THAT(IT.VariableValues[0].getReg(), Not(IT.VariableValues[1].getReg()))
ASSERT_THAT(IT.getVariableValues(), SizeIs(4));
EXPECT_THAT(IT.getVariableValues()[0].getReg(),
Not(IT.getVariableValues()[1].getReg()))
<< "Def is different from first Use";
EXPECT_THAT(IT.VariableValues[0].getReg(), Not(IT.VariableValues[2].getReg()))
EXPECT_THAT(IT.getVariableValues()[0].getReg(),
Not(IT.getVariableValues()[2].getReg()))
<< "Def is different from second Use";
EXPECT_THAT(IT.VariableValues[3], IsInvalid());
EXPECT_THAT(IT.getVariableValues()[3], IsInvalid());
}
TEST_F(UopsSnippetGeneratorTest, MemoryUse) {
@ -326,11 +329,11 @@ TEST_F(UopsSnippetGeneratorTest, MemoryUse) {
SizeIs(UopsSnippetGenerator::kMinNumDifferentAddresses));
const InstructionTemplate &IT = CT.Instructions[0];
EXPECT_THAT(IT.getOpcode(), Opcode);
ASSERT_THAT(IT.VariableValues, SizeIs(6));
EXPECT_EQ(IT.VariableValues[2].getImm(), 1);
EXPECT_EQ(IT.VariableValues[3].getReg(), 0u);
EXPECT_EQ(IT.VariableValues[4].getImm(), 0);
EXPECT_EQ(IT.VariableValues[5].getReg(), 0u);
ASSERT_THAT(IT.getVariableValues(), SizeIs(6));
EXPECT_EQ(IT.getVariableValues()[2].getImm(), 1);
EXPECT_EQ(IT.getVariableValues()[3].getReg(), 0u);
EXPECT_EQ(IT.getVariableValues()[4].getImm(), 0);
EXPECT_EQ(IT.getVariableValues()[5].getReg(), 0u);
}
class FakeSnippetGenerator : public SnippetGenerator {
@ -338,10 +341,14 @@ public:
FakeSnippetGenerator(const LLVMState &State, const Options &Opts)
: SnippetGenerator(State, Opts) {}
Instruction createInstruction(unsigned Opcode) {
const Instruction &getInstr(unsigned Opcode) {
return State.getIC().getInstr(Opcode);
}
InstructionTemplate getInstructionTemplate(unsigned Opcode) {
return {&getInstr(Opcode)};
}
private:
Expected<std::vector<CodeTemplate>>
generateCodeTemplates(const Instruction &, const BitVector &) const override {
@ -389,8 +396,8 @@ TEST_F(FakeSnippetGeneratorTest, ComputeRegisterInitialValuesAdd16ri) {
// explicit use 1 : reg RegClass=GR16 | TIED_TO:0
// explicit use 2 : imm
// implicit def : EFLAGS
InstructionTemplate IT(Generator.createInstruction(X86::ADD16ri));
IT.getValueFor(IT.Instr.Variables[0]) = MCOperand::createReg(X86::AX);
InstructionTemplate IT = Generator.getInstructionTemplate(X86::ADD16ri);
IT.getValueFor(IT.getInstr().Variables[0]) = MCOperand::createReg(X86::AX);
std::vector<InstructionTemplate> Snippet;
Snippet.push_back(std::move(IT));
const auto RIV = Generator.computeRegisterInitialValues(Snippet);
@ -404,15 +411,18 @@ TEST_F(FakeSnippetGeneratorTest, ComputeRegisterInitialValuesAdd64rr) {
// -> only rbx needs defining.
std::vector<InstructionTemplate> Snippet;
{
InstructionTemplate Mov(Generator.createInstruction(X86::MOV64ri));
Mov.getValueFor(Mov.Instr.Variables[0]) = MCOperand::createReg(X86::RAX);
Mov.getValueFor(Mov.Instr.Variables[1]) = MCOperand::createImm(42);
InstructionTemplate Mov = Generator.getInstructionTemplate(X86::MOV64ri);
Mov.getValueFor(Mov.getInstr().Variables[0]) =
MCOperand::createReg(X86::RAX);
Mov.getValueFor(Mov.getInstr().Variables[1]) = MCOperand::createImm(42);
Snippet.push_back(std::move(Mov));
}
{
InstructionTemplate Add(Generator.createInstruction(X86::ADD64rr));
Add.getValueFor(Add.Instr.Variables[0]) = MCOperand::createReg(X86::RAX);
Add.getValueFor(Add.Instr.Variables[1]) = MCOperand::createReg(X86::RBX);
InstructionTemplate Add = Generator.getInstructionTemplate(X86::ADD64rr);
Add.getValueFor(Add.getInstr().Variables[0]) =
MCOperand::createReg(X86::RAX);
Add.getValueFor(Add.getInstr().Variables[1]) =
MCOperand::createReg(X86::RBX);
Snippet.push_back(std::move(Add));
}

View File

@ -119,6 +119,10 @@ protected:
Value);
}
const Instruction &getInstr(unsigned OpCode) {
return State.getIC().getInstr(OpCode);
}
LLVMState State;
};
@ -355,8 +359,8 @@ TEST_F(Core2TargetTest, SetRegToFP1_4Bits) {
}
TEST_F(Core2Avx512TargetTest, FillMemoryOperands_ADD64rm) {
Instruction I(State.getInstrInfo(), State.getRATC(), X86::ADD64rm);
InstructionTemplate IT(I);
const Instruction &I = getInstr(X86::ADD64rm);
InstructionTemplate IT(&I);
constexpr const int kOffset = 42;
State.getExegesisTarget().fillMemoryOperands(IT, X86::RDI, kOffset);
// Memory is operands 2-6.
@ -368,8 +372,8 @@ TEST_F(Core2Avx512TargetTest, FillMemoryOperands_ADD64rm) {
}
TEST_F(Core2Avx512TargetTest, FillMemoryOperands_VGATHERDPSZ128rm) {
Instruction I(State.getInstrInfo(), State.getRATC(), X86::VGATHERDPSZ128rm);
InstructionTemplate IT(I);
const Instruction &I = getInstr(X86::VGATHERDPSZ128rm);
InstructionTemplate IT(&I);
constexpr const int kOffset = 42;
State.getExegesisTarget().fillMemoryOperands(IT, X86::RDI, kOffset);
// Memory is operands 4-8.