diff --git a/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.cauchy/eval.pass.cpp b/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.cauchy/eval.pass.cpp index 3ab9d54ab48f..f88983701e3b 100644 --- a/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.cauchy/eval.pass.cpp +++ b/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.cauchy/eval.pass.cpp @@ -15,16 +15,64 @@ // template result_type operator()(_URNG& g); #include +#include +#include +#include + +double +f(double x, double a, double b) +{ + return 1/3.1415926535897932 * std::atan((x - a)/b) + .5; +} int main() { - typedef std::cauchy_distribution<> D; - typedef D::param_type P; - typedef std::mt19937 G; - G g; - D d(0.5, 2); - D::result_type v = d(g); - -// If anyone can figure out a better test than this, -// it would be more than welcome! + { + typedef std::cauchy_distribution<> D; + typedef D::param_type P; + typedef std::mt19937 G; + G g; + const double a = 10; + const double b = .5; + D d(a, b); + const int N = 1000000; + std::vector u; + for (int i = 0; i < N; ++i) + u.push_back(d(g)); + std::sort(u.begin(), u.end()); + for (int i = 0; i < N; ++i) + assert(std::abs(f(u[i], a, b) - double(i)/N) < .001); + } + { + typedef std::cauchy_distribution<> D; + typedef D::param_type P; + typedef std::mt19937 G; + G g; + const double a = -1.5; + const double b = 1; + D d(a, b); + const int N = 1000000; + std::vector u; + for (int i = 0; i < N; ++i) + u.push_back(d(g)); + std::sort(u.begin(), u.end()); + for (int i = 0; i < N; ++i) + assert(std::abs(f(u[i], a, b) - double(i)/N) < .001); + } + { + typedef std::cauchy_distribution<> D; + typedef D::param_type P; + typedef std::mt19937 G; + G g; + const double a = .5; + const double b = 2; + D d(a, b); + const int N = 1000000; + std::vector u; + for (int i = 0; i < N; ++i) + u.push_back(d(g)); + std::sort(u.begin(), u.end()); + for (int i = 0; i < N; ++i) + assert(std::abs(f(u[i], a, b) - double(i)/N) < .001); + } } diff --git a/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.cauchy/eval_param.pass.cpp b/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.cauchy/eval_param.pass.cpp index c9cdad49d66d..c4cfaef8e874 100644 --- a/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.cauchy/eval_param.pass.cpp +++ b/libcxx/test/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.cauchy/eval_param.pass.cpp @@ -15,17 +15,68 @@ // template result_type operator()(_URNG& g, const param_type& parm); #include +#include +#include +#include + +double +f(double x, double a, double b) +{ + return 1/3.1415926535897932 * std::atan((x - a)/b) + .5; +} + int main() { - typedef std::cauchy_distribution<> D; - typedef D::param_type P; - typedef std::mt19937 G; - G g; - D d(0.5, 2); - P p(3, 4); - D::result_type v = d(g, p); - -// If anyone can figure out a better test than this, -// it would be more than welcome! + { + typedef std::cauchy_distribution<> D; + typedef D::param_type P; + typedef std::mt19937 G; + G g; + const double a = 10; + const double b = .5; + D d; + P p(a, b); + const int N = 1000000; + std::vector u; + for (int i = 0; i < N; ++i) + u.push_back(d(g, p)); + std::sort(u.begin(), u.end()); + for (int i = 0; i < N; ++i) + assert(std::abs(f(u[i], a, b) - double(i)/N) < .001); + } + { + typedef std::cauchy_distribution<> D; + typedef D::param_type P; + typedef std::mt19937 G; + G g; + const double a = -1.5; + const double b = 1; + D d; + P p(a, b); + const int N = 1000000; + std::vector u; + for (int i = 0; i < N; ++i) + u.push_back(d(g, p)); + std::sort(u.begin(), u.end()); + for (int i = 0; i < N; ++i) + assert(std::abs(f(u[i], a, b) - double(i)/N) < .001); + } + { + typedef std::cauchy_distribution<> D; + typedef D::param_type P; + typedef std::mt19937 G; + G g; + const double a = .5; + const double b = 2; + D d; + P p(a, b); + const int N = 1000000; + std::vector u; + for (int i = 0; i < N; ++i) + u.push_back(d(g, p)); + std::sort(u.begin(), u.end()); + for (int i = 0; i < N; ++i) + assert(std::abs(f(u[i], a, b) - double(i)/N) < .001); + } }