[LLDB] Add more helper functions to CompilerType class. (#73467)

This adds 23 new helper functions to LLDB's CompilerType class, things
like IsSmartPtrType, IsPromotableIntegerType,
GetNumberofNonEmptyBaseClasses, and GetTemplateArgumentType (to name a
few).

These helper functions are needed as part of the implementation for the
Data Inspection Language, (see
https://discourse.llvm.org/t/rfc-data-inspection-language/69893).
This commit is contained in:
cmtice 2023-11-26 16:37:39 -08:00 committed by GitHub
parent 897141449e
commit 42d669f82c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 320 additions and 21 deletions

View File

@ -112,9 +112,7 @@ public:
/// Tests.
/// \{
explicit operator bool() const {
return m_type_system.lock() && m_type;
}
explicit operator bool() const { return m_type_system.lock() && m_type; }
bool IsValid() const { return (bool)*this; }
@ -194,6 +192,54 @@ public:
bool IsTypedefType() const;
bool IsVoidType() const;
bool IsSmartPtrType() const;
bool IsInteger() const;
bool IsFloat() const;
bool IsEnumerationType() const;
bool IsUnscopedEnumerationType() const;
bool IsIntegerOrUnscopedEnumerationType() const;
bool IsSigned() const;
bool IsNullPtrType() const;
bool IsBoolean() const;
bool IsEnumerationIntegerTypeSigned() const;
bool IsScalarOrUnscopedEnumerationType() const;
bool IsPromotableIntegerType() const;
bool IsPointerToVoid() const;
bool IsRecordType() const;
bool IsVirtualBase(CompilerType target_base, CompilerType *virtual_base,
bool carry_virtual = false) const;
bool IsContextuallyConvertibleToBool() const;
bool IsBasicType() const;
std::string TypeDescription();
bool CompareTypes(CompilerType rhs) const;
const char *GetTypeTag();
uint32_t GetNumberOfNonEmptyBaseClasses();
CompilerType GetTemplateArgumentType(uint32_t idx);
CompilerType GetSmartPtrPointeeType();
/// \}
/// Type Completion.
@ -436,8 +482,8 @@ public:
ExecutionContextScope *exe_scope);
/// Dump to stdout.
void DumpTypeDescription(lldb::DescriptionLevel level =
lldb::eDescriptionLevelFull) const;
void DumpTypeDescription(
lldb::DescriptionLevel level = lldb::eDescriptionLevelFull) const;
/// Print a description of the type to a stream. The exact implementation
/// varies, but the expectation is that eDescriptionLevelFull returns a

View File

@ -54,7 +54,7 @@ bool CompilerType::IsArrayType(CompilerType *element_type_ptr, uint64_t *size,
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->IsArrayType(m_type, element_type_ptr, size,
is_incomplete);
is_incomplete);
if (element_type_ptr)
element_type_ptr->Clear();
@ -157,7 +157,8 @@ bool CompilerType::IsBlockPointerType(
CompilerType *function_pointer_type_ptr) const {
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->IsBlockPointerType(m_type, function_pointer_type_ptr);
return type_system_sp->IsBlockPointerType(m_type,
function_pointer_type_ptr);
return false;
}
@ -249,7 +250,7 @@ bool CompilerType::IsPossibleDynamicType(CompilerType *dynamic_pointee_type,
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->IsPossibleDynamicType(m_type, dynamic_pointee_type,
check_cplusplus, check_objc);
check_cplusplus, check_objc);
return false;
}
@ -302,6 +303,256 @@ bool CompilerType::IsBeingDefined() const {
return false;
}
bool CompilerType::IsSmartPtrType() const {
// These regular expressions cover shared, unique and weak pointers both from
// stdlibc++ and libc+++.
static llvm::Regex k_libcxx_std_unique_ptr_regex(
"^std::__[[:alnum:]]+::unique_ptr<.+>(( )?&)?$");
static llvm::Regex k_libcxx_std_shared_ptr_regex(
"^std::__[[:alnum:]]+::shared_ptr<.+>(( )?&)?$");
static llvm::Regex k_libcxx_std_weak_ptr_regex(
"^std::__[[:alnum:]]+::weak_ptr<.+>(( )?&)?$");
//
static llvm::Regex k_libcxx_std_unique_ptr_regex_2(
"^std::unique_ptr<.+>(( )?&)?$");
static llvm::Regex k_libcxx_std_shared_ptr_regex_2(
"^std::shared_ptr<.+>(( )?&)?$");
static llvm::Regex k_libcxx_std_weak_ptr_regex_2(
"^std::weak_ptr<.+>(( )?&)?$");
//
llvm::StringRef name = GetTypeName();
return k_libcxx_std_unique_ptr_regex.match(name) ||
k_libcxx_std_shared_ptr_regex.match(name) ||
k_libcxx_std_weak_ptr_regex.match(name) ||
k_libcxx_std_unique_ptr_regex_2.match(name) ||
k_libcxx_std_shared_ptr_regex_2.match(name) ||
k_libcxx_std_weak_ptr_regex_2.match(name);
}
bool CompilerType::IsInteger() const {
// This is used when you don't care about the signedness of the integer.
bool is_signed;
return IsIntegerType(is_signed);
}
bool CompilerType::IsFloat() const {
uint32_t count = 0;
bool is_complex = false;
return IsFloatingPointType(count, is_complex);
}
bool CompilerType::IsEnumerationType() const {
// This is used when you don't care about the signedness of the enum.
bool is_signed;
return IsEnumerationType(is_signed);
}
bool CompilerType::IsUnscopedEnumerationType() const {
return IsEnumerationType() && !IsScopedEnumerationType();
}
bool CompilerType::IsIntegerOrUnscopedEnumerationType() const {
return IsInteger() || IsUnscopedEnumerationType();
}
bool CompilerType::IsSigned() const {
if (IsEnumerationType()) {
return IsEnumerationIntegerTypeSigned();
}
return GetTypeInfo() & lldb::eTypeIsSigned;
}
bool CompilerType::IsNullPtrType() const {
return GetCanonicalType().GetBasicTypeEnumeration() ==
lldb::eBasicTypeNullPtr;
}
bool CompilerType::IsBoolean() const {
return GetCanonicalType().GetBasicTypeEnumeration() == lldb::eBasicTypeBool;
}
bool CompilerType::IsEnumerationIntegerTypeSigned() const {
if (IsValid()) {
return GetEnumerationIntegerType().GetTypeInfo() & lldb::eTypeIsSigned;
}
return false;
}
bool CompilerType::IsScalarOrUnscopedEnumerationType() const {
return IsScalarType() || IsUnscopedEnumerationType();
}
bool CompilerType::IsPromotableIntegerType() const {
// Unscoped enums are always considered as promotable, even if their
// underlying type does not need to be promoted (e.g. "int").
if (IsUnscopedEnumerationType()) {
return true;
}
switch (GetCanonicalType().GetBasicTypeEnumeration()) {
case lldb::eBasicTypeBool:
case lldb::eBasicTypeChar:
case lldb::eBasicTypeSignedChar:
case lldb::eBasicTypeUnsignedChar:
case lldb::eBasicTypeShort:
case lldb::eBasicTypeUnsignedShort:
case lldb::eBasicTypeWChar:
case lldb::eBasicTypeSignedWChar:
case lldb::eBasicTypeUnsignedWChar:
case lldb::eBasicTypeChar16:
case lldb::eBasicTypeChar32:
return true;
default:
return false;
}
}
bool CompilerType::IsPointerToVoid() const {
if (!IsValid())
return false;
return IsPointerType() &&
GetPointeeType().GetBasicTypeEnumeration() == lldb::eBasicTypeVoid;
}
bool CompilerType::IsRecordType() const {
if (!IsValid())
return false;
return GetCanonicalType().GetTypeClass() &
(lldb::eTypeClassClass | lldb::eTypeClassStruct |
lldb::eTypeClassUnion);
}
// Checks whether `target_base` is a virtual base of `type` (direct or
// indirect). If it is, stores the first virtual base type on the path from
// `type` to `target_type`.
bool CompilerType::IsVirtualBase(CompilerType target_base,
CompilerType *virtual_base,
bool carry_virtual) const {
if (CompareTypes(target_base)) {
return carry_virtual;
}
if (!carry_virtual) {
uint32_t num_virtual_bases = GetNumVirtualBaseClasses();
for (uint32_t i = 0; i < num_virtual_bases; ++i) {
uint32_t bit_offset;
auto base = GetVirtualBaseClassAtIndex(i, &bit_offset);
if (base.IsVirtualBase(target_base, virtual_base,
/*carry_virtual*/ true)) {
if (virtual_base) {
*virtual_base = base;
}
return true;
}
}
}
uint32_t num_direct_bases = GetNumDirectBaseClasses();
for (uint32_t i = 0; i < num_direct_bases; ++i) {
uint32_t bit_offset;
auto base = GetDirectBaseClassAtIndex(i, &bit_offset);
if (base.IsVirtualBase(target_base, virtual_base, carry_virtual)) {
return true;
}
}
return false;
}
bool CompilerType::IsContextuallyConvertibleToBool() const {
return IsScalarType() || IsUnscopedEnumerationType() || IsPointerType() ||
IsNullPtrType() || IsArrayType();
}
bool CompilerType::IsBasicType() const {
return GetCanonicalType().GetBasicTypeEnumeration() !=
lldb::eBasicTypeInvalid;
}
std::string CompilerType::TypeDescription() {
auto name = GetTypeName();
auto canonical_name = GetCanonicalType().GetTypeName();
if (name.IsEmpty() || canonical_name.IsEmpty()) {
return "''"; // should not happen
}
if (name == canonical_name) {
return llvm::formatv("'{0}'", name);
}
return llvm::formatv("'{0}' (aka '{1}')", name, canonical_name);
}
bool CompilerType::CompareTypes(CompilerType rhs) const {
if (*this == rhs)
return true;
const ConstString name = GetFullyUnqualifiedType().GetTypeName();
const ConstString rhs_name = rhs.GetFullyUnqualifiedType().GetTypeName();
return name == rhs_name;
}
const char *CompilerType::GetTypeTag() {
switch (GetTypeClass()) {
// clang-format off
case lldb::eTypeClassClass: return "class";
case lldb::eTypeClassEnumeration: return "enum";
case lldb::eTypeClassStruct: return "struct";
case lldb::eTypeClassUnion: return "union";
// clang-format on
default:
return "unknown";
}
}
uint32_t CompilerType::GetNumberOfNonEmptyBaseClasses() {
// Go through the base classes and count non-empty ones.
uint32_t ret = 0;
uint32_t num_direct_bases = GetNumDirectBaseClasses();
for (uint32_t i = 0; i < num_direct_bases; ++i) {
uint32_t bit_offset;
CompilerType base_type = GetDirectBaseClassAtIndex(i, &bit_offset);
if (base_type.GetNumFields() > 0 ||
base_type.GetNumberOfNonEmptyBaseClasses() > 0) {
ret += 1;
}
}
return ret;
}
CompilerType CompilerType::GetTemplateArgumentType(uint32_t idx) {
CompilerType empty_type;
if (!IsValid())
return empty_type;
CompilerType type;
const bool expand_pack = true;
switch (GetTemplateArgumentKind(idx, true)) {
case lldb::eTemplateArgumentKindType:
type = GetTypeTemplateArgument(idx, expand_pack);
break;
case lldb::eTemplateArgumentKindIntegral:
type = GetIntegralTemplateArgument(idx, expand_pack)->type;
break;
default:
break;
}
if (type.IsValid())
return type;
return empty_type;
}
CompilerType CompilerType::GetSmartPtrPointeeType() {
assert(IsSmartPtrType() &&
"the type should be a smart pointer (std::unique_ptr, std::shared_ptr "
"or std::weak_ptr");
return GetTemplateArgumentType(0);
}
// Type Completion
bool CompilerType::GetCompleteType() const {
@ -336,9 +587,9 @@ ConstString CompilerType::GetDisplayTypeName() const {
uint32_t CompilerType::GetTypeInfo(
CompilerType *pointee_or_element_compiler_type) const {
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->GetTypeInfo(m_type,
pointee_or_element_compiler_type);
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->GetTypeInfo(m_type,
pointee_or_element_compiler_type);
return 0;
}
@ -362,8 +613,9 @@ void CompilerType::SetCompilerType(lldb::TypeSystemWP type_system,
m_type = type;
}
void CompilerType::SetCompilerType(CompilerType::TypeSystemSPWrapper type_system,
lldb::opaque_compiler_type_t type) {
void CompilerType::SetCompilerType(
CompilerType::TypeSystemSPWrapper type_system,
lldb::opaque_compiler_type_t type) {
m_type_system = type_system.GetSharedPointer();
m_type = type;
}
@ -589,7 +841,7 @@ uint32_t CompilerType::GetNumChildren(bool omit_empty_base_classes,
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->GetNumChildren(m_type, omit_empty_base_classes,
exe_ctx);
exe_ctx);
return 0;
}
@ -601,8 +853,7 @@ lldb::BasicType CompilerType::GetBasicTypeEnumeration() const {
}
void CompilerType::ForEachEnumerator(
std::function<bool(const CompilerType &integer_type,
ConstString name,
std::function<bool(const CompilerType &integer_type, ConstString name,
const llvm::APSInt &value)> const &callback) const {
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
@ -623,7 +874,8 @@ CompilerType CompilerType::GetFieldAtIndex(size_t idx, std::string &name,
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->GetFieldAtIndex(m_type, idx, name, bit_offset_ptr,
bitfield_bit_size_ptr, is_bitfield_ptr);
bitfield_bit_size_ptr,
is_bitfield_ptr);
return CompilerType();
}
@ -647,7 +899,7 @@ CompilerType::GetDirectBaseClassAtIndex(size_t idx,
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->GetDirectBaseClassAtIndex(m_type, idx,
bit_offset_ptr);
bit_offset_ptr);
return CompilerType();
}
@ -657,7 +909,7 @@ CompilerType::GetVirtualBaseClassAtIndex(size_t idx,
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->GetVirtualBaseClassAtIndex(m_type, idx,
bit_offset_ptr);
bit_offset_ptr);
return CompilerType();
}
@ -738,7 +990,7 @@ size_t CompilerType::GetIndexOfChildMemberWithName(
if (IsValid() && !name.empty()) {
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->GetIndexOfChildMemberWithName(
m_type, name, omit_empty_base_classes, child_indexes);
m_type, name, omit_empty_base_classes, child_indexes);
}
return 0;
}
@ -772,7 +1024,8 @@ std::optional<CompilerType::IntegralTemplateArgument>
CompilerType::GetIntegralTemplateArgument(size_t idx, bool expand_pack) const {
if (IsValid())
if (auto type_system_sp = GetTypeSystem())
return type_system_sp->GetIntegralTemplateArgument(m_type, idx, expand_pack);
return type_system_sp->GetIntegralTemplateArgument(m_type, idx,
expand_pack);
return std::nullopt;
}