[mlir][bufferization] Improve analysis for element-wise operations

Before this change, two equivalent operands that bufferize to a memory read and write, respectively, were always conflicting. This change improves the analysis for ops that bufferize to element-wise access. Such ops can bufferize in-place, because an original element value is not needed anymore after computing and writing an updated element value.

This change allows ops such as the following one to bufferize in-place:
```
  %0 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
      ins(%a, %b : tensor<5xf32>, tensor<5xf32>)
      outs(%a : tensor<5xf32>) -> tensor<5xf32>
```

Differential Revision: https://reviews.llvm.org/D156887
This commit is contained in:
Matthias Springer 2023-08-03 16:32:24 +02:00
parent 3feb63e112
commit 5468340553
4 changed files with 154 additions and 2 deletions

View File

@ -91,6 +91,56 @@ def BufferizableOpInterface : OpInterface<"BufferizableOpInterface"> {
llvm_unreachable("bufferizesToMemoryWrite not implemented");
}]
>,
InterfaceMethod<
/*desc=*/[{
Return `true` if the operation bufferizes to IR that performs only
element-wise accesses on all tensor operands. (All operands must have
the same shape.) The `bufferize` method must be implemented in such a
way that it is free of loop-carried dependences. I.e., all loads at a
position appear before all stores at the same position.
Example: Consider a hypothetical op element-wise op, where the "ins"
bufferize to a memory read and the "outs" bufferize to a memory write.
```
test.element_wise ins(%0), outs(%1) : tensor<3xf32>
```
The following is a valid access pattern:
```
load(%0[1])
store(%1[1])
load(%0[2])
store(%1[2])
load(%0[0])
store(%1[0])
```
The following would be an invalid (not element-wise) access pattern:
```
load(%0[1])
store(%0[1])
load(%0[1])
...
```
Element-wise ops can sometimes bufferize more efficiently: a RaW
conflict between two operands of the same op can be avoided if it is
guaranteed that an original element value is no longer needed after
writing a computed element value at the same location. E.g., such an
optimization is possible in the above example if %0 and %1 are
equivalent tensors. (It is not possible, if %0 and %1 are merely
aliasing. It is not necessary if %0 and %1 are not aliasing at all,
because there would be no conflict anyway.)
}],
/*retType=*/"bool",
/*methodName=*/"bufferizesToElementwiseAccess",
/*args=*/(ins "const ::mlir::bufferization::AnalysisState &":$state),
/*methodBody=*/"",
/*defaultImplementation=*/[{
// It is always safe to assume that the op is not element-wise.
return false;
}]
>,
InterfaceMethod<
/*desc=*/[{
Return `true` if the given OpResult bufferizes to a memory write.

View File

@ -542,6 +542,22 @@ hasReadAfterWriteInterference(const DenseSet<OpOperand *> &usesRead,
}
}
// Two equivalent operands of the same op are not conflicting if the op
// bufferizes to element-wise access. I.e., all loads at a position happen
// before all stores to the same position.
if (conflictingWritingOp == readingOp &&
state.areEquivalentBufferizedValues(uRead->get(),
uConflictingWrite->get())) {
if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) {
if (bufferizableOp.bufferizesToElementwiseAccess(state)) {
LLVM_DEBUG(
llvm::dbgs()
<< " no conflict: op bufferizes to element-wise access\n");
continue;
}
}
}
// No conflict if the op interface says so.
if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) {
if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) {

View File

@ -95,8 +95,8 @@ struct LinalgOpInterface
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
// Operand is read if it is used in the computation.
auto genericOp = cast<linalg::LinalgOp>(op);
return genericOp.payloadUsesValueFromOperand(&opOperand);
auto linalgOp = cast<linalg::LinalgOp>(op);
return linalgOp.payloadUsesValueFromOperand(&opOperand);
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
@ -106,6 +106,33 @@ struct LinalgOpInterface
return dpsOp.isDpsInit(&opOperand);
}
bool bufferizesToElementwiseAccess(Operation *op,
const AnalysisState &state) const {
auto linalgOp = cast<linalg::LinalgOp>(op);
// All loops must be parallel.
if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
return false;
// All index maps of tensors must be identity maps.
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray();
assert(linalgOp->getNumOperands() == indexingMaps.size() &&
"unexpected number of indexing maps");
for (auto [operand, map] :
llvm::zip(linalgOp->getOperands(), indexingMaps)) {
// Non-tensors do not participate in bufferization, so they can be
// ignored.
if (!isa<RankedTensorType, MemRefType>(operand.getType()))
continue;
// TODO: This could be generalized to other indexing maps. (All indexing
// must be the same.)
if (!map.isIdentity())
return false;
}
return true;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
return bufferizeDestinationStyleOpInterface(

View File

@ -0,0 +1,59 @@
// RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs bufferize-function-boundaries test-analysis-only" -split-input-file | FileCheck %s
// CHECK-LABEL: @elementwise_no_conflict
func.func @elementwise_no_conflict(%a: tensor<5xf32>,
%b: tensor<5xf32>) -> tensor<5xf32> {
// CHECK: linalg.elemwise_binary
// CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"], fun = #linalg.binary_fn<add>}
%0 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
ins(%a, %b : tensor<5xf32>, tensor<5xf32>)
outs(%a : tensor<5xf32>) -> tensor<5xf32>
return %0 : tensor<5xf32>
}
// -----
// CHECK-LABEL: @elementwise_no_conflict_2
func.func @elementwise_no_conflict_2(%a: tensor<5xf32>) -> tensor<5xf32> {
// CHECK: linalg.elemwise_binary
// CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"], fun = #linalg.binary_fn<add>}
%0 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
ins(%a, %a : tensor<5xf32>, tensor<5xf32>)
outs(%a : tensor<5xf32>) -> tensor<5xf32>
return %0 : tensor<5xf32>
}
// -----
// CHECK-LABEL: @elementwise_no_conflict_3
func.func @elementwise_no_conflict_3(%a: tensor<5xf32>) -> tensor<5xf32> {
%c0f = arith.constant 1.0 : f32
// CHECK: linalg.elemwise_binary
// CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "true"], fun = #linalg.binary_fn<add>}
%0 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
ins(%a, %c0f : tensor<5xf32>, f32)
outs(%a : tensor<5xf32>) -> tensor<5xf32>
return %0 : tensor<5xf32>
}
// -----
func.func @not_elementwise(%a: tensor<5x6xf32>) -> tensor<5x6xf32> {
%cst = arith.constant 5.0 : f32
// CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_operands_attr__ = ["false"]}
%b = tensor.extract_slice %a[0, 0] [1, 6] [1, 1]
: tensor<5x6xf32> to tensor<6xf32>
// CHECK: linalg.generic
// CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"]}
%0 = linalg.generic
{ iterator_types = ["parallel", "parallel"],
indexing_maps = [ affine_map<(d0, d1) -> (d1)>,
affine_map<(d0, d1) -> (d0, d1)>] }
ins(%b: tensor<6xf32>) outs(%a: tensor<5x6xf32>) {
^bb0(%arg0: f32, %arg1: f32):
%r = arith.addf %arg0, %arg1 : f32
linalg.yield %r : f32
} -> tensor<5x6xf32>
return %0 : tensor<5x6xf32>
}