[mlir] Move common reshapeops-related code to ReshapeOpsUtils.h.

This is a first step to move (Tensor)Expand/CollapseShapeOp to tensor/memref
dialects.

Differential Revision: https://reviews.llvm.org/D105547
This commit is contained in:
Alexander Belyaev 2021-07-07 13:45:33 +02:00
parent d0b282e10b
commit 6412a13539
7 changed files with 496 additions and 437 deletions

View File

@ -12,6 +12,7 @@
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
@ -52,16 +53,6 @@ using LoopRangeBuilder =
/// provide an op-specified hook so that Linalg ops may override the behavior.
LoopRangeBuilder defaultLoopRangesBuilder(LinalgOp op);
using ReassociationIndices = SmallVector<int64_t, 2>;
using ReassociationIndicesRef = ArrayRef<int64_t>;
using ReassociationExprs = SmallVector<AffineExpr, 2>;
/// Return the reassociations maps to use to reshape given the source type and
/// the target type when possible. Return llvm::None when this computation
/// failed.
Optional<SmallVector<ReassociationIndices>>
getReassociationIndicesForReshape(ShapedType sourceType, ShapedType targetType);
/// Returns the name mangled library call name to disambiguate between different
/// overloads at the C level. The name mangling scheme is basic and uses MLIR
/// type names:

View File

@ -0,0 +1,266 @@
//===- RehshapeOpsUtils.h - Utilities used by reshape ops --*- C++ -*------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This header file defines utilities and common canonicalization patterns for
// reshape operations.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_UTILS_RESHAPEOPSUTILS_H
#define MLIR_DIALECT_UTILS_RESHAPEOPSUTILS_H
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/StringRef.h"
namespace mlir {
using ReassociationIndices = SmallVector<int64_t, 2>;
using ReassociationIndicesRef = ArrayRef<int64_t>;
using ReassociationExprs = SmallVector<AffineExpr, 2>;
/// Attribute name for the ArrayAttr which encodes reassociation indices.
constexpr StringRef getReassociationAttrName();
/// Collapse reassociation maps that are used in pair of reshape ops where one
/// is a producer and other is the consumer. Only valid to use this method when
/// both the producer and consumer are collapsing dimensions or both are
/// expanding dimensions.
///
/// For example,
/// mapsProducer = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1)>,
/// affine_map<(d0, d1, d2, d3, d4) -> (d2)>,
/// affine_map<(d0, d1, d2, d3, d4) -> (d3, d4)>]
/// mapsConsumer = [affine_map<(d0, d1, d2) -> (d0, d1)>,
/// affine_map<(d0, d1, d2) -> (d2)>]
///
/// is folded into
///
/// result = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2, d3, d4) -> (d3, d4)>]
/// TODO: Use reassociation indices instead of affine maps here.
Optional<SmallVector<ReassociationIndices>>
collapseReassociationIndices(ArrayRef<AffineMap> mapsProducer,
ArrayRef<AffineMap> mapsConsumer,
MLIRContext *context);
/// Return the reassociations maps to use to reshape given the source type and
/// the target type when possible. Return llvm::None when this computation
/// failed.
Optional<SmallVector<ReassociationIndices>>
getReassociationIndicesForReshape(ShapedType sourceType, ShapedType targetType);
/// Return true if the reassociation specification is valid, false otherwise.
/// When false, the `invalidIndex` integer pointer is optionally filled with the
/// index of the offending reassociation map.
bool isReassociationValid(ArrayRef<AffineMap> reassociation,
int *invalidIndex = nullptr);
/// Parse a reshape-like op, i.e. linalg::(Tensor)ExpandShapeOp,
/// linalg::(Tensor)CollapseShapeOp.
ParseResult parseReshapeLikeOp(OpAsmParser &parser, OperationState &result);
/// Print a reshape-like op, i.e. linalg::(Tensor)ExpandShapeOp,
/// linalg::(Tensor)CollapseShapeOp.
template <typename ReshapeLikeOp>
void printReshapeOp(OpAsmPrinter &p, ReshapeLikeOp op) {
p << op.getOperationName() << ' ' << op.src() << " [";
llvm::interleaveComma(op.reassociation(), p, [&](const Attribute &attr) {
p << '[';
auto arrayAttr = attr.template cast<ArrayAttr>();
llvm::interleaveComma(arrayAttr, p, [&](const Attribute &attr) {
p << attr.cast<IntegerAttr>().getInt();
});
p << ']';
});
p << "] ";
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{op.getReassociationAttrName()});
p << ": " << op.src().getType() << " into " << op.getType();
}
template <typename ReshapeOpTy, typename InverseReshapeOpTy>
static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp,
ArrayRef<Attribute> operands) {
// Fold producer-consumer reshape ops that where the operand type of the
// producer is same as the return type of the consumer.
auto reshapeSrcOp =
reshapeOp.src().template getDefiningOp<InverseReshapeOpTy>();
if (reshapeSrcOp && reshapeSrcOp.getSrcType() == reshapeOp.getResultType())
return reshapeSrcOp.src();
// Reshape of a constant can be replaced with a new constant.
if (auto elements = operands.front().dyn_cast_or_null<DenseElementsAttr>()) {
return elements.reshape(
reshapeOp.getResult().getType().template cast<ShapedType>());
}
return nullptr;
}
/// Common verifier for reshape-like types. Fills `expandedType` and
///`collapsedType` with the proper `src` or `result` type.
template <typename Op, typename T>
static LogicalResult verifyReshapeLikeTypes(Op op, T expandedType,
T collapsedType, bool isExpansion) {
unsigned expandedRank = expandedType.getRank();
unsigned collapsedRank = collapsedType.getRank();
if (expandedRank < collapsedRank)
return op.emitOpError("expected the type ")
<< expandedType
<< " to have higher rank than the type = " << collapsedType;
if (expandedRank == 0)
return op.emitOpError("expected non-zero memref ranks");
if (expandedRank == collapsedRank)
return op.emitOpError("expected to collapse or expand dims");
if (collapsedRank == 0) {
// If collapsed rank is 0, then expanded type must be static shaped and of
// sizes 1.
if (llvm::any_of(expandedType.getShape(),
[](int64_t dim) -> bool { return dim != 1; }))
return op.emitOpError("invalid to reshape tensor/memref with non-unit "
"extent dimensions to zero-rank tensor/memref");
return success();
}
if (collapsedRank != op.reassociation().size())
return op.emitOpError("expected rank of the collapsed type(")
<< collapsedRank << ") to be the number of reassociation maps("
<< op.reassociation().size() << ")";
auto maps = op.getReassociationMaps();
for (auto it : llvm::enumerate(maps))
if (it.value().getNumDims() != expandedRank)
return op.emitOpError("expected reassociation map #")
<< it.index() << " of same rank as expanded memref("
<< expandedRank << "), but got " << it.value().getNumDims();
int invalidIdx = 0;
if (!isReassociationValid(maps, &invalidIdx))
return op.emitOpError("expected reassociation map #")
<< invalidIdx << " to be valid and contiguous";
return verifyReshapeLikeShapes(op, collapsedType, expandedType, isExpansion);
}
/// Verify that shapes of the reshaped types using following rules
/// 1) if a dimension in the collapsed type is static, then the corresponding
/// dimensions in the expanded shape should be
/// a) static
/// b) the product should be same as the collaped shape.
/// 2) if a dimension in the collaped type is dynamic, one and only one of the
/// corresponding dimensions in the expanded type should be dynamic. This
/// rule is only needed with reshape operations that are expanding.
template <typename OpTy>
static LogicalResult verifyReshapeLikeShapes(OpTy op, ShapedType collapsedType,
ShapedType expandedType,
bool isExpandingReshape) {
ArrayRef<int64_t> collapsedShape = collapsedType.getShape();
ArrayRef<int64_t> expandedShape = expandedType.getShape();
unsigned expandedDimStart = 0;
for (auto map : llvm::enumerate(op.getReassociationMaps())) {
Optional<int64_t> dynamicShape;
int64_t linearizedStaticShape = 1;
for (auto dim : llvm::enumerate(expandedShape.slice(
expandedDimStart, map.value().getNumResults()))) {
if (ShapedType::isDynamic(dim.value())) {
if (isExpandingReshape && dynamicShape) {
return op->emitOpError("invalid to have a single dimension (")
<< map.index() << ") expanded into multiple dynamic dims ("
<< expandedDimStart + dynamicShape.getValue() << ","
<< expandedDimStart + dim.index() << ")";
}
dynamicShape = dim.index();
} else {
linearizedStaticShape *= dim.value();
}
}
if (dynamicShape) {
if (!ShapedType::isDynamic(collapsedShape[map.index()])) {
return op->emitOpError("expected dimension ")
<< map.index()
<< " of collapsed type to be dynamic since one or more of the "
"corresponding dimensions in the expanded type is dynamic";
}
} else {
if (collapsedShape[map.index()] != linearizedStaticShape) {
return op->emitOpError("expected dimension ")
<< map.index() << " of collapsed type to be static value of "
<< linearizedStaticShape << " ";
}
}
expandedDimStart += map.value().getNumResults();
}
return success();
}
/// Pattern to collapse producer/consumer reshape ops that are both collapsing
/// dimensions or are both expanding dimensions.
template <typename ReshapeOpTy>
struct CollapseReshapeOps : public OpRewritePattern<ReshapeOpTy> {
using OpRewritePattern<ReshapeOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(ReshapeOpTy reshapeOp,
PatternRewriter &rewriter) const override {
auto srcReshapeOp = reshapeOp.src().template getDefiningOp<ReshapeOpTy>();
if (!srcReshapeOp)
return failure();
ShapedType resultType = reshapeOp.getResultType();
Optional<SmallVector<ReassociationIndices>> reassociationIndices =
collapseReassociationIndices(srcReshapeOp.getReassociationMaps(),
reshapeOp.getReassociationMaps(),
rewriter.getContext());
if (!reassociationIndices)
return failure();
rewriter.replaceOpWithNewOp<ReshapeOpTy>(
reshapeOp, resultType, srcReshapeOp.src(), *reassociationIndices);
return success();
}
};
/// Pattern to collapse producer/consumer reshape ops that are both collapsing
/// dimensions or are both expanding dimensions.
template <typename ReshapeOpTy, typename InverseReshapeOpTy>
struct CollapseMixedReshapeOps : public OpRewritePattern<ReshapeOpTy> {
using OpRewritePattern<ReshapeOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(ReshapeOpTy reshapeOp,
PatternRewriter &rewriter) const override {
auto srcReshapeOp =
reshapeOp.src().template getDefiningOp<InverseReshapeOpTy>();
if (!srcReshapeOp)
return failure();
ShapedType srcReshapeSrcType = srcReshapeOp.getSrcType();
ShapedType intermediateType = reshapeOp.getSrcType();
ShapedType resultType = reshapeOp.getResultType();
// If the source reshape can be collapsed/expanded into the target reshape
// they can still be folded. This can only be reasoned about statically
// for cases where
// - either all shapes are static, or
// - The number of dynamic dimensions matches in the source of source and
// result with all other dimensions being 1.
Optional<SmallVector<ReassociationIndices>> reassociationIndices =
getReassociationIndicesForReshape(srcReshapeSrcType, resultType);
if (!reassociationIndices)
return failure();
bool originalOpExpands =
intermediateType.getRank() > srcReshapeSrcType.getRank();
bool resultingOpExpands =
resultType.getRank() > srcReshapeSrcType.getRank();
if (!(resultingOpExpands ^ originalOpExpands))
rewriter.replaceOpWithNewOp<InverseReshapeOpTy>(
reshapeOp, resultType, srcReshapeOp.src(), *reassociationIndices);
else
rewriter.replaceOpWithNewOp<ReshapeOpTy>(
reshapeOp, resultType, srcReshapeOp.src(), *reassociationIndices);
return success();
}
};
} // namespace mlir
#endif // MLIR_DIALECT_UTILS_RESHAPEOPSUTILS_H

View File

@ -10,6 +10,7 @@ add_mlir_conversion_library(MLIRTosaToLinalg
MLIRConversionPassIncGen
LINK_LIBS PUBLIC
MLIRDialectUtils
MLIRIR
MLIRLinalg
MLIRLinalgUtils

View File

@ -16,6 +16,7 @@
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/DialectConversion.h"
@ -1120,8 +1121,7 @@ public:
(operandTy.getRank() > resultTy.getRank() ? resultTy.getShape()
: operandTy.getShape());
unsigned currSrcDim = 0, currDstDim = 0;
SmallVector<linalg::ReassociationExprs, 4> reassociationMap(
collapsedShape.size());
SmallVector<ReassociationExprs, 4> reassociationMap(collapsedShape.size());
// First scan all dimensions in the source shapes to see whether we have a
// perfect case where consecutive dimensions in source are collapsed. For
@ -1176,11 +1176,11 @@ public:
std::accumulate(expandedShape.begin(), expandedShape.end(), 1,
std::multiplies<int64_t>());
auto elemTy = operandTy.getElementType();
SmallVector<linalg::ReassociationExprs, 4> collapsingMap = {
SmallVector<ReassociationExprs, 4> collapsingMap = {
// Use operandTy here because we need to collapse all operands
// dimensions.
getIdentityExprs(operandTy.getShape().size())};
SmallVector<linalg::ReassociationExprs, 4> expandingMap = {
SmallVector<ReassociationExprs, 4> expandingMap = {
// Use resultTy here because we need to expand to all result
// dimensions.
getIdentityExprs(resultTy.getShape().size())};

View File

@ -1069,338 +1069,20 @@ OpFoldResult PadTensorOp::fold(ArrayRef<Attribute>) {
// ReshapeOp
//===----------------------------------------------------------------------===//
Optional<SmallVector<ReassociationIndices>>
mlir::linalg::getReassociationIndicesForReshape(ShapedType sourceType,
ShapedType targetType) {
// Make the sourceType greater rank than the targetType. If they are same
// rank, then its an unsupported reshape op.
if (sourceType.getRank() == targetType.getRank())
return llvm::None;
if (sourceType.getRank() < targetType.getRank())
std::swap(sourceType, targetType);
ArrayRef<int64_t> sourceShape = sourceType.getShape();
ArrayRef<int64_t> targetShape = targetType.getShape();
unsigned sourceDim = 0;
SmallVector<ReassociationIndices> reassociationMap;
reassociationMap.reserve(targetType.getRank());
ReassociationIndices currIndices;
int64_t prodOfCollapsedDims = 1;
while (sourceDim < sourceShape.size()) {
unsigned targetDim = reassociationMap.size();
// If all the dimensions of the targetShape are exhausted, then the
// remaining dims in the source shape must be all 1s. So for such cases, set
// 1 as the target shape. The actual reassociation indices will be handled
// later.
int64_t currTargetShape =
(targetDim < targetType.getRank() ? targetShape[targetDim] : 1);
while (sourceShape[sourceDim] != ShapedType::kDynamicSize &&
prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape &&
sourceDim < sourceShape.size()) {
prodOfCollapsedDims *= sourceShape[sourceDim];
currIndices.push_back(sourceDim++);
}
// If the current expanded dimension is dynamic, then the collapsed
// dimensions should also be dynamic and product of all previous unprocessed
// dimensions of the expanded shape should be 1.
if (sourceShape[sourceDim] == ShapedType::kDynamicSize &&
(currTargetShape != ShapedType::kDynamicSize ||
prodOfCollapsedDims != 1))
return llvm::None;
// If the collapsed dim is dynamic, the current expanded dim should also
// be dynamic.
if (currTargetShape == ShapedType::kDynamicSize &&
sourceShape[sourceDim] != ShapedType::kDynamicSize)
return llvm::None;
// For static shapes, if the product of dimensions of the expanded shape
// should match the collapsed dimension shape.
if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape)
return llvm::None;
currIndices.push_back(sourceDim++);
// If the reassociation is empty but the currIndices is not, this by
// definition is folding unit-dimensions with the result being scalar type.
// So only append the `currIndices` if reassociation map is not empty.
if (targetDim == targetShape.size()) {
if (!reassociationMap.empty() && !currIndices.empty())
reassociationMap.back().append(currIndices.begin(), currIndices.end());
// Break out of the loops. We should be done here.
break;
}
reassociationMap.emplace_back(ReassociationIndices{});
std::swap(reassociationMap.back(), currIndices);
prodOfCollapsedDims = 1;
}
// All the dimensions in the two shapes must have been processed.
if (reassociationMap.size() != targetShape.size() ||
sourceDim != sourceShape.size())
return llvm::None;
return reassociationMap;
}
template <typename ReshapeLikeOp>
static void print(OpAsmPrinter &p, ReshapeLikeOp op) {
p << op.getOperationName() << ' ' << op.src() << " [";
llvm::interleaveComma(op.reassociation(), p, [&](const Attribute &attr) {
p << '[';
auto arrayAttr = attr.template cast<ArrayAttr>();
llvm::interleaveComma(arrayAttr, p, [&](const Attribute &attr) {
p << attr.cast<IntegerAttr>().getInt();
});
p << ']';
});
p << "] ";
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{op.getReassociationAttrName()});
p << ": " << op.src().getType() << " into " << op.getType();
}
static void print(OpAsmPrinter &p, linalg::ExpandShapeOp op) {
print<linalg::ExpandShapeOp>(p, op);
::mlir::printReshapeOp<linalg::ExpandShapeOp>(p, op);
}
static void print(OpAsmPrinter &p, linalg::CollapseShapeOp op) {
print<linalg::CollapseShapeOp>(p, op);
::mlir::printReshapeOp<linalg::CollapseShapeOp>(p, op);
}
static void print(OpAsmPrinter &p, linalg::TensorExpandShapeOp op) {
print<linalg::TensorExpandShapeOp>(p, op);
::mlir::printReshapeOp<linalg::TensorExpandShapeOp>(p, op);
}
static void print(OpAsmPrinter &p, linalg::TensorCollapseShapeOp op) {
print<linalg::TensorCollapseShapeOp>(p, op);
}
static constexpr StringRef getReassociationAttrName() {
return "reassociation";
}
static ParseResult parseReshapeLikeOp(OpAsmParser &parser,
OperationState &result) {
// Parse the operand.
OpAsmParser::OperandType src;
if (parser.parseOperand(src))
return failure();
// Parse reassociation indices.
Builder &b = parser.getBuilder();
SmallVector<Attribute, 4> reassociation;
if (parser.parseLSquare())
return failure();
while (true) {
if (succeeded(parser.parseOptionalRSquare()))
break;
if (parser.parseLSquare())
return failure();
SmallVector<int64_t> indices;
while (true) {
int64_t index;
if (parser.parseInteger(index))
return failure();
indices.push_back(index);
if (succeeded(parser.parseOptionalComma()))
continue;
if (failed(parser.parseRSquare()))
return failure();
break;
}
reassociation.push_back(b.getI64ArrayAttr(indices));
if (succeeded(parser.parseOptionalComma()))
continue;
if (failed(parser.parseRSquare()))
return failure();
break;
}
result.addAttribute(getReassociationAttrName(),
b.getArrayAttr(reassociation));
// Parse optional attributes.
parser.parseOptionalAttrDict(result.attributes);
// Parse types.
Type srcType;
Type resultType;
if (parser.parseColon() || parser.parseType(srcType) ||
parser.resolveOperand(src, srcType, result.operands) ||
parser.parseKeyword("into") || parser.parseType(resultType))
return failure();
result.addTypes(resultType);
return success();
}
/// Collapse reassociation maps that are used in pair of reshape ops where one
/// is a producer and other is the consumer. Only valid to use this method when
/// both the producer and consumer are collapsing dimensions or both are
/// expanding dimensions.
///
/// For example,
/// mapsProducer = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1)>,
/// affine_map<(d0, d1, d2, d3, d4) -> (d2)>,
/// affine_map<(d0, d1, d2, d3, d4) -> (d3, d4)>]
/// mapsConsumer = [affine_map<(d0, d1, d2) -> (d0, d1)>,
/// affine_map<(d0, d1, d2) -> (d2)>]
///
/// is folded into
///
/// result = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2, d3, d4) -> (d3, d4)>]
static Optional<SmallVector<ReassociationIndices>>
collapseReassociationIndices(ArrayRef<AffineMap> mapsProducer,
ArrayRef<AffineMap> mapsConsumer,
MLIRContext *context) {
// Make the producer the larger sized vector. If they are of same size, the
// resulting reshape is not a supported reshape op.
if (mapsProducer.size() == mapsConsumer.size())
return llvm::None;
if (mapsProducer.size() < mapsConsumer.size())
std::swap(mapsProducer, mapsConsumer);
// Handle the corner case of the result being a rank 0 shaped type. Return an
// empty reassociation.
if (mapsConsumer.empty())
return SmallVector<ReassociationIndices>{};
if (mapsProducer.size() != mapsConsumer[0].getNumDims())
return llvm::None;
unsigned currDim = 0;
SmallVector<ReassociationIndices> reassociationMaps;
for (AffineMap rhs : mapsConsumer) {
ReassociationIndices reassociations;
for (AffineExpr rhsExpr : rhs.getResults()) {
AffineDimExpr dimExpr = rhsExpr.cast<AffineDimExpr>();
for (int i = 0, e = mapsProducer[dimExpr.getPosition()].getNumResults();
i < e; ++i)
reassociations.push_back(currDim++);
}
reassociationMaps.push_back(std::move(reassociations));
}
return reassociationMaps;
}
namespace {
/// Pattern to collapse producer/consumer reshape ops that are both collapsing
/// dimensions or are both expanding dimensions.
template <typename ReshapeOpTy>
struct CollapseReshapeOps : public OpRewritePattern<ReshapeOpTy> {
using OpRewritePattern<ReshapeOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(ReshapeOpTy reshapeOp,
PatternRewriter &rewriter) const override {
auto srcReshapeOp = reshapeOp.src().template getDefiningOp<ReshapeOpTy>();
if (!srcReshapeOp)
return failure();
ShapedType resultType = reshapeOp.getResultType();
Optional<SmallVector<ReassociationIndices>> reassociationIndices =
collapseReassociationIndices(srcReshapeOp.getReassociationMaps(),
reshapeOp.getReassociationMaps(),
rewriter.getContext());
if (!reassociationIndices)
return failure();
rewriter.replaceOpWithNewOp<ReshapeOpTy>(
reshapeOp, resultType, srcReshapeOp.src(), *reassociationIndices);
return success();
}
};
/// Pattern to collapse producer/consumer reshape ops that are both collapsing
/// dimensions or are both expanding dimensions.
template <typename ReshapeOpTy, typename InverseReshapeOpTy>
struct CollapseMixedReshapeOps : public OpRewritePattern<ReshapeOpTy> {
using OpRewritePattern<ReshapeOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(ReshapeOpTy reshapeOp,
PatternRewriter &rewriter) const override {
auto srcReshapeOp =
reshapeOp.src().template getDefiningOp<InverseReshapeOpTy>();
if (!srcReshapeOp)
return failure();
ShapedType srcReshapeSrcType = srcReshapeOp.getSrcType();
ShapedType intermediateType = reshapeOp.getSrcType();
ShapedType resultType = reshapeOp.getResultType();
// If the source reshape can be collapsed/expanded into the target reshape
// they can still be folded. This can only be reasoned about statically
// for cases where
// - either all shapes are static, or
// - The number of dynamic dimensions matches in the source of source and
// result with all other dimensions being 1.
Optional<SmallVector<ReassociationIndices>> reassociationIndices =
getReassociationIndicesForReshape(srcReshapeSrcType, resultType);
if (!reassociationIndices)
return failure();
bool originalOpExpands =
intermediateType.getRank() > srcReshapeSrcType.getRank();
bool resultingOpExpands =
resultType.getRank() > srcReshapeSrcType.getRank();
if (!(resultingOpExpands ^ originalOpExpands))
rewriter.replaceOpWithNewOp<InverseReshapeOpTy>(
reshapeOp, resultType, srcReshapeOp.src(), *reassociationIndices);
else
rewriter.replaceOpWithNewOp<ReshapeOpTy>(
reshapeOp, resultType, srcReshapeOp.src(), *reassociationIndices);
return success();
}
};
} // namespace
template <typename ReshapeOpTy, typename InverseReshapeOpTy>
static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp,
ArrayRef<Attribute> operands) {
// Fold producer-consumer reshape ops that where the operand type of the
// producer is same as the return type of the consumer.
auto reshapeSrcOp =
reshapeOp.src().template getDefiningOp<InverseReshapeOpTy>();
if (reshapeSrcOp && reshapeSrcOp.getSrcType() == reshapeOp.getResultType())
return reshapeSrcOp.src();
// Reshape of a constant can be replaced with a new constant.
if (auto elements = operands.front().dyn_cast_or_null<DenseElementsAttr>()) {
return elements.reshape(
reshapeOp.getResult().getType().template cast<ShapedType>());
}
return nullptr;
}
/// Return true if the reassociation specification is valid, false otherwise.
/// When false, the `invalidIndex` integer pointer is optionally filled with the
/// index of the offending reassociation map.
static bool isReassociationValid(ArrayRef<AffineMap> reassociation,
int *invalidIndex = nullptr) {
if (reassociation.empty())
return true;
unsigned nDims = reassociation[0].getNumDims();
unsigned nextExpectedDim = 0;
for (auto it : llvm::enumerate(reassociation)) {
auto m = it.value();
if (m.getNumDims() != nDims || m.getNumSymbols() != 0) {
if (invalidIndex)
*invalidIndex = it.index();
return false;
}
for (auto e : m.getResults()) {
auto d = e.dyn_cast<AffineDimExpr>();
if (!d || d.getPosition() != nextExpectedDim++) {
if (invalidIndex)
*invalidIndex = it.index();
return false;
}
}
}
if (nextExpectedDim != nDims) {
if (invalidIndex)
*invalidIndex = reassociation.size() - 1;
return false;
}
return true;
::mlir::printReshapeOp<linalg::TensorCollapseShapeOp>(p, op);
}
/// Detect whether memref dims [dim, dim + extent) can be reshaped without
@ -1736,106 +1418,12 @@ void mlir::linalg::CollapseShapeOp::build(
Value mlir::linalg::CollapseShapeOp::getViewSource() { return src(); }
/// Verify that shapes of the reshaped types using following rules
/// 1) if a dimension in the collapsed type is static, then the corresponding
/// dimensions in the expanded shape should be
/// a) static
/// b) the product should be same as the collaped shape.
/// 2) if a dimension in the collaped type is dynamic, one and only one of the
/// corresponding dimensions in the expanded type should be dynamic. This
/// rule is only needed with reshape operations that are expanding.
template <typename OpTy>
static LogicalResult verifyReshapeLikeShapes(OpTy op, ShapedType collapsedType,
ShapedType expandedType,
bool isExpandingReshape) {
ArrayRef<int64_t> collapsedShape = collapsedType.getShape();
ArrayRef<int64_t> expandedShape = expandedType.getShape();
unsigned expandedDimStart = 0;
for (auto map : llvm::enumerate(op.getReassociationMaps())) {
Optional<int64_t> dynamicShape;
int64_t linearizedStaticShape = 1;
for (auto dim : llvm::enumerate(expandedShape.slice(
expandedDimStart, map.value().getNumResults()))) {
if (ShapedType::isDynamic(dim.value())) {
if (isExpandingReshape && dynamicShape) {
return op->emitOpError("invalid to have a single dimension (")
<< map.index() << ") expanded into multiple dynamic dims ("
<< expandedDimStart + dynamicShape.getValue() << ","
<< expandedDimStart + dim.index() << ")";
}
dynamicShape = dim.index();
} else {
linearizedStaticShape *= dim.value();
}
}
if (dynamicShape) {
if (!ShapedType::isDynamic(collapsedShape[map.index()])) {
return op->emitOpError("expected dimension ")
<< map.index()
<< " of collapsed type to be dynamic since one or more of the "
"corresponding dimensions in the expanded type is dynamic";
}
} else {
if (collapsedShape[map.index()] != linearizedStaticShape) {
return op->emitOpError("expected dimension ")
<< map.index() << " of collapsed type to be static value of "
<< linearizedStaticShape << " ";
}
}
expandedDimStart += map.value().getNumResults();
}
return success();
}
// Common verifier for reshape-like types. Fills `expandedType` and
// `collapsedType` with the proper `src` or `result` type.
template <typename Op, typename T,
bool isExpansion = std::is_same<Op, TensorExpandShapeOp>::value ||
std::is_same<Op, ExpandShapeOp>::value>
static LogicalResult verifyReshapeLikeTypes(Op op, T expandedType,
T collapsedType) {
unsigned expandedRank = expandedType.getRank();
unsigned collapsedRank = collapsedType.getRank();
if (expandedRank < collapsedRank)
return op.emitOpError("expected the type ")
<< expandedType
<< " to have higher rank than the type = " << collapsedType;
if (expandedRank == 0)
return op.emitOpError("expected non-zero memref ranks");
if (expandedRank == collapsedRank)
return op.emitOpError("expected to collapse or expand dims");
if (collapsedRank == 0) {
// If collapsed rank is 0, then expanded type must be static shaped and of
// sizes 1.
if (llvm::any_of(expandedType.getShape(),
[](int64_t dim) -> bool { return dim != 1; }))
return op.emitOpError("invalid to reshape tensor/memref with non-unit "
"extent dimensions to zero-rank tensor/memref");
return success();
}
if (collapsedRank != op.reassociation().size())
return op.emitOpError("expected rank of the collapsed type(")
<< collapsedRank << ") to be the number of reassociation maps("
<< op.reassociation().size() << ")";
auto maps = op.getReassociationMaps();
for (auto it : llvm::enumerate(maps))
if (it.value().getNumDims() != expandedRank)
return op.emitOpError("expected reassociation map #")
<< it.index() << " of same rank as expanded memref("
<< expandedRank << "), but got " << it.value().getNumDims();
int invalidIdx = 0;
if (!isReassociationValid(maps, &invalidIdx))
return op.emitOpError("expected reassociation map #")
<< invalidIdx << " to be valid and contiguous";
return verifyReshapeLikeShapes(op, collapsedType, expandedType, isExpansion);
}
template <typename TensorReshapeOp>
static LogicalResult verifyReshapeOp(TensorReshapeOp op,
MemRefType expandedType,
template <typename ReshapeOp,
bool isExpansion = std::is_same<ReshapeOp, ExpandShapeOp>::value>
static LogicalResult verifyReshapeOp(ReshapeOp op, MemRefType expandedType,
MemRefType collapsedType) {
if (failed(verifyReshapeLikeTypes(op, expandedType, collapsedType)))
if (failed(
verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion)))
return failure();
auto maps = op.getReassociationMaps();
MemRefType expectedType = computeReshapeCollapsedType(expandedType, maps);
@ -1923,11 +1511,14 @@ void mlir::linalg::TensorExpandShapeOp::build(
getReassociationIndicesAttribute(b, reassociation));
}
template <typename TensorReshapeOp>
template <typename TensorReshapeOp,
bool isExpansion =
std::is_same<TensorReshapeOp, TensorExpandShapeOp>::value>
static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op,
RankedTensorType expandedType,
RankedTensorType collapsedType) {
if (failed(verifyReshapeLikeTypes(op, expandedType, collapsedType)))
if (failed(
verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion)))
return failure();
auto maps = op.getReassociationMaps();

View File

@ -1,4 +1,5 @@
add_mlir_library(MLIRDialectUtils
ReshapeOpsUtils.cpp
StructuredOpsUtils.cpp
StaticValueUtils.cpp

View File

@ -0,0 +1,209 @@
//===- ReshapeOpsUtils.cpp - Utilities used by structured ops -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
using namespace mlir;
constexpr StringRef mlir::getReassociationAttrName() { return "reassociation"; }
Optional<SmallVector<ReassociationIndices>>
mlir::getReassociationIndicesForReshape(ShapedType sourceType,
ShapedType targetType) {
// Make the sourceType greater rank than the targetType. If they are same
// rank, then its an unsupported reshape op.
if (sourceType.getRank() == targetType.getRank())
return llvm::None;
if (sourceType.getRank() < targetType.getRank())
std::swap(sourceType, targetType);
ArrayRef<int64_t> sourceShape = sourceType.getShape();
ArrayRef<int64_t> targetShape = targetType.getShape();
unsigned sourceDim = 0;
SmallVector<ReassociationIndices> reassociationMap;
reassociationMap.reserve(targetType.getRank());
ReassociationIndices currIndices;
int64_t prodOfCollapsedDims = 1;
while (sourceDim < sourceShape.size()) {
unsigned targetDim = reassociationMap.size();
// If all the dimensions of the targetShape are exhausted, then the
// remaining dims in the source shape must be all 1s. So for such cases, set
// 1 as the target shape. The actual reassociation indices will be handled
// later.
int64_t currTargetShape =
(targetDim < targetType.getRank() ? targetShape[targetDim] : 1);
while (sourceShape[sourceDim] != ShapedType::kDynamicSize &&
prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape &&
sourceDim < sourceShape.size()) {
prodOfCollapsedDims *= sourceShape[sourceDim];
currIndices.push_back(sourceDim++);
}
// If the current expanded dimension is dynamic, then the collapsed
// dimensions should also be dynamic and product of all previous unprocessed
// dimensions of the expanded shape should be 1.
if (sourceShape[sourceDim] == ShapedType::kDynamicSize &&
(currTargetShape != ShapedType::kDynamicSize ||
prodOfCollapsedDims != 1))
return llvm::None;
// If the collapsed dim is dynamic, the current expanded dim should also
// be dynamic.
if (currTargetShape == ShapedType::kDynamicSize &&
sourceShape[sourceDim] != ShapedType::kDynamicSize)
return llvm::None;
// For static shapes, if the product of dimensions of the expanded shape
// should match the collapsed dimension shape.
if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape)
return llvm::None;
currIndices.push_back(sourceDim++);
// If the reassociation is empty but the currIndices is not, this by
// definition is folding unit-dimensions with the result being scalar type.
// So only append the `currIndices` if reassociation map is not empty.
if (targetDim == targetShape.size()) {
if (!reassociationMap.empty() && !currIndices.empty())
reassociationMap.back().append(currIndices.begin(), currIndices.end());
// Break out of the loops. We should be done here.
break;
}
reassociationMap.emplace_back(ReassociationIndices{});
std::swap(reassociationMap.back(), currIndices);
prodOfCollapsedDims = 1;
}
// All the dimensions in the two shapes must have been processed.
if (reassociationMap.size() != targetShape.size() ||
sourceDim != sourceShape.size())
return llvm::None;
return reassociationMap;
}
ParseResult mlir::parseReshapeLikeOp(OpAsmParser &parser,
OperationState &result) {
// Parse the operand.
OpAsmParser::OperandType src;
if (parser.parseOperand(src))
return failure();
// Parse reassociation indices.
Builder &b = parser.getBuilder();
SmallVector<Attribute, 4> reassociation;
if (parser.parseLSquare())
return failure();
while (true) {
if (succeeded(parser.parseOptionalRSquare()))
break;
if (parser.parseLSquare())
return failure();
SmallVector<int64_t> indices;
while (true) {
int64_t index;
if (parser.parseInteger(index))
return failure();
indices.push_back(index);
if (succeeded(parser.parseOptionalComma()))
continue;
if (failed(parser.parseRSquare()))
return failure();
break;
}
reassociation.push_back(b.getI64ArrayAttr(indices));
if (succeeded(parser.parseOptionalComma()))
continue;
if (failed(parser.parseRSquare()))
return failure();
break;
}
result.addAttribute(getReassociationAttrName(),
b.getArrayAttr(reassociation));
// Parse optional attributes.
parser.parseOptionalAttrDict(result.attributes);
// Parse types.
Type srcType;
Type resultType;
if (parser.parseColon() || parser.parseType(srcType) ||
parser.resolveOperand(src, srcType, result.operands) ||
parser.parseKeyword("into") || parser.parseType(resultType))
return failure();
result.addTypes(resultType);
return success();
}
Optional<SmallVector<ReassociationIndices>>
mlir::collapseReassociationIndices(ArrayRef<AffineMap> mapsProducer,
ArrayRef<AffineMap> mapsConsumer,
MLIRContext *context) {
// Make the producer the larger sized vector. If they are of same size, the
// resulting reshape is not a supported reshape op.
if (mapsProducer.size() == mapsConsumer.size())
return llvm::None;
if (mapsProducer.size() < mapsConsumer.size())
std::swap(mapsProducer, mapsConsumer);
// Handle the corner case of the result being a rank 0 shaped type. Return an
// empty reassociation.
if (mapsConsumer.empty())
return SmallVector<ReassociationIndices>{};
if (mapsProducer.size() != mapsConsumer[0].getNumDims())
return llvm::None;
unsigned currDim = 0;
SmallVector<ReassociationIndices> reassociationMaps;
for (AffineMap rhs : mapsConsumer) {
ReassociationIndices reassociations;
for (AffineExpr rhsExpr : rhs.getResults()) {
AffineDimExpr dimExpr = rhsExpr.cast<AffineDimExpr>();
for (int i = 0, e = mapsProducer[dimExpr.getPosition()].getNumResults();
i < e; ++i)
reassociations.push_back(currDim++);
}
reassociationMaps.push_back(std::move(reassociations));
}
return reassociationMaps;
}
bool mlir::isReassociationValid(ArrayRef<AffineMap> reassociation,
int *invalidIndex) {
if (reassociation.empty())
return true;
unsigned nDims = reassociation[0].getNumDims();
unsigned nextExpectedDim = 0;
for (auto it : llvm::enumerate(reassociation)) {
auto m = it.value();
if (m.getNumDims() != nDims || m.getNumSymbols() != 0) {
if (invalidIndex)
*invalidIndex = it.index();
return false;
}
for (auto e : m.getResults()) {
auto d = e.dyn_cast<AffineDimExpr>();
if (!d || d.getPosition() != nextExpectedDim++) {
if (invalidIndex)
*invalidIndex = it.index();
return false;
}
}
}
if (nextExpectedDim != nDims) {
if (invalidIndex)
*invalidIndex = reassociation.size() - 1;
return false;
}
return true;
}