mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-11-23 05:40:09 +00:00
[MLIR][Presburger] Implement function to evaluate the number of terms in a generating function. (#78078)
We implement `computeNumTerms()`, which counts the number of terms in a generating function by substituting the unit vector in it. This is the main function in Barvinok's algorithm – the number of points in a polytope is given by the number of terms in the generating function corresponding to it. We also modify the GeneratingFunction class to have `const` getters and improve the simplification of QuasiPolynomials.
This commit is contained in:
parent
5fb39efe68
commit
68a5261d26
@ -99,6 +99,12 @@ QuasiPolynomial getCoefficientInRationalFunction(unsigned power,
|
||||
ArrayRef<QuasiPolynomial> num,
|
||||
ArrayRef<Fraction> den);
|
||||
|
||||
/// Find the number of terms in a generating function, as
|
||||
/// a quasipolynomial in the parameter space of the input function.
|
||||
/// The generating function must be such that for all values of the
|
||||
/// parameters, the number of terms is finite.
|
||||
QuasiPolynomial computeNumTerms(const GeneratingFunction &gf);
|
||||
|
||||
} // namespace detail
|
||||
} // namespace presburger
|
||||
} // namespace mlir
|
||||
|
@ -62,13 +62,15 @@ public:
|
||||
#endif // NDEBUG
|
||||
}
|
||||
|
||||
unsigned getNumParams() { return numParam; }
|
||||
unsigned getNumParams() const { return numParam; }
|
||||
|
||||
SmallVector<int> getSigns() { return signs; }
|
||||
SmallVector<int> getSigns() const { return signs; }
|
||||
|
||||
std::vector<ParamPoint> getNumerators() { return numerators; }
|
||||
std::vector<ParamPoint> getNumerators() const { return numerators; }
|
||||
|
||||
std::vector<std::vector<Point>> getDenominators() { return denominators; }
|
||||
std::vector<std::vector<Point>> getDenominators() const {
|
||||
return denominators;
|
||||
}
|
||||
|
||||
GeneratingFunction operator+(GeneratingFunction &gf) const {
|
||||
assert(numParam == gf.getNumParams() &&
|
||||
|
@ -59,9 +59,14 @@ public:
|
||||
QuasiPolynomial operator*(const QuasiPolynomial &x) const;
|
||||
QuasiPolynomial operator/(const Fraction x) const;
|
||||
|
||||
// Removes terms which evaluate to zero from the expression.
|
||||
// Removes terms which evaluate to zero from the expression
|
||||
// and folds affine functions which are constant into the
|
||||
// constant coefficients.
|
||||
QuasiPolynomial simplify();
|
||||
|
||||
// Group together like terms in the expression.
|
||||
QuasiPolynomial collectTerms();
|
||||
|
||||
Fraction getConstantTerm();
|
||||
|
||||
private:
|
||||
|
@ -281,6 +281,11 @@ SmallVector<MPInt, 8> getComplementIneq(ArrayRef<MPInt> ineq);
|
||||
/// The vectors must have the same sizes.
|
||||
Fraction dotProduct(ArrayRef<Fraction> a, ArrayRef<Fraction> b);
|
||||
|
||||
/// Find the product of two polynomials, each given by an array of
|
||||
/// coefficients.
|
||||
std::vector<Fraction> multiplyPolynomials(ArrayRef<Fraction> a,
|
||||
ArrayRef<Fraction> b);
|
||||
|
||||
} // namespace presburger
|
||||
} // namespace mlir
|
||||
|
||||
|
@ -7,6 +7,7 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Analysis/Presburger/Barvinok.h"
|
||||
#include "mlir/Analysis/Presburger/Utils.h"
|
||||
#include "llvm/ADT/Sequence.h"
|
||||
#include <algorithm>
|
||||
|
||||
@ -245,3 +246,241 @@ QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction(
|
||||
}
|
||||
return coefficients[power].simplify();
|
||||
}
|
||||
|
||||
/// Substitute x_i = t^μ_i in one term of a generating function, returning
|
||||
/// a quasipolynomial which represents the exponent of the numerator
|
||||
/// of the result, and a vector which represents the exponents of the
|
||||
/// denominator of the result.
|
||||
/// If the returned value is {num, dens}, it represents the function
|
||||
/// t^num / \prod_j (1 - t^dens[j]).
|
||||
/// v represents the affine functions whose floors are multiplied by the
|
||||
/// generators, and ds represents the list of generators.
|
||||
std::pair<QuasiPolynomial, std::vector<Fraction>>
|
||||
substituteMuInTerm(unsigned numParams, ParamPoint v, std::vector<Point> ds,
|
||||
Point mu) {
|
||||
unsigned numDims = mu.size();
|
||||
for (const Point &d : ds)
|
||||
assert(d.size() == numDims &&
|
||||
"μ has to have the same number of dimensions as the generators!");
|
||||
|
||||
// First, the exponent in the numerator becomes
|
||||
// - (μ • u_1) * (floor(first col of v))
|
||||
// - (μ • u_2) * (floor(second col of v)) - ...
|
||||
// - (μ • u_d) * (floor(d'th col of v))
|
||||
// So we store the negation of the dot products.
|
||||
|
||||
// We have d terms, each of whose coefficient is the negative dot product.
|
||||
SmallVector<Fraction> coefficients;
|
||||
coefficients.reserve(numDims);
|
||||
for (const Point &d : ds)
|
||||
coefficients.push_back(-dotProduct(mu, d));
|
||||
|
||||
// Then, the affine function is a single floor expression, given by the
|
||||
// corresponding column of v.
|
||||
ParamPoint vTranspose = v.transpose();
|
||||
std::vector<std::vector<SmallVector<Fraction>>> affine;
|
||||
affine.reserve(numDims);
|
||||
for (unsigned j = 0; j < numDims; ++j)
|
||||
affine.push_back({SmallVector<Fraction>(vTranspose.getRow(j))});
|
||||
|
||||
QuasiPolynomial num(numParams, coefficients, affine);
|
||||
num = num.simplify();
|
||||
|
||||
std::vector<Fraction> dens;
|
||||
dens.reserve(ds.size());
|
||||
// Similarly, each term in the denominator has exponent
|
||||
// given by the dot product of μ with u_i.
|
||||
for (const Point &d : ds) {
|
||||
// This term in the denominator is
|
||||
// (1 - t^dens.back())
|
||||
dens.push_back(dotProduct(d, mu));
|
||||
}
|
||||
|
||||
return {num, dens};
|
||||
}
|
||||
|
||||
/// Normalize all denominator exponents `dens` to their absolute values
|
||||
/// by multiplying and dividing by the inverses, in a function of the form
|
||||
/// sign * t^num / prod_j (1 - t^dens[j]).
|
||||
/// Here, sign = ± 1,
|
||||
/// num is a QuasiPolynomial, and
|
||||
/// each dens[j] is a Fraction.
|
||||
void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num,
|
||||
std::vector<Fraction> &dens) {
|
||||
// We track the number of exponents that are negative in the
|
||||
// denominator, and convert them to their absolute values.
|
||||
unsigned numNegExps = 0;
|
||||
Fraction sumNegExps(0, 1);
|
||||
for (unsigned j = 0, e = dens.size(); j < e; ++j) {
|
||||
if (dens[j] < 0) {
|
||||
numNegExps += 1;
|
||||
sumNegExps += dens[j];
|
||||
}
|
||||
}
|
||||
|
||||
// If we have (1 - t^-c) in the denominator, for positive c,
|
||||
// multiply and divide by t^c.
|
||||
// We convert all negative-exponent terms at once; therefore
|
||||
// we multiply and divide by t^sumNegExps.
|
||||
// Then we get
|
||||
// -(1 - t^c) in the denominator,
|
||||
// increase the numerator by c, and
|
||||
// flip the sign of the function.
|
||||
if (numNegExps % 2 == 1)
|
||||
sign = -sign;
|
||||
num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps);
|
||||
}
|
||||
|
||||
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
|
||||
/// where n is a QuasiPolynomial.
|
||||
std::vector<QuasiPolynomial> getBinomialCoefficients(QuasiPolynomial n,
|
||||
unsigned r) {
|
||||
unsigned numParams = n.getNumInputs();
|
||||
std::vector<QuasiPolynomial> coefficients;
|
||||
coefficients.reserve(r + 1);
|
||||
coefficients.push_back(QuasiPolynomial(numParams, 1));
|
||||
for (unsigned j = 1; j <= r; ++j)
|
||||
// We use the recursive formula for binomial coefficients here and below.
|
||||
coefficients.push_back(
|
||||
(coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) /
|
||||
Fraction(j, 1))
|
||||
.simplify());
|
||||
return coefficients;
|
||||
}
|
||||
|
||||
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
|
||||
/// where n is a QuasiPolynomial.
|
||||
std::vector<Fraction> getBinomialCoefficients(Fraction n, Fraction r) {
|
||||
std::vector<Fraction> coefficients;
|
||||
coefficients.reserve((int64_t)floor(r));
|
||||
coefficients.push_back(1);
|
||||
for (unsigned j = 1; j <= r; ++j)
|
||||
coefficients.push_back(coefficients[j - 1] * (n - (j - 1)) / (j));
|
||||
return coefficients;
|
||||
}
|
||||
|
||||
/// We have a generating function of the form
|
||||
/// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij})
|
||||
///
|
||||
/// where sign_i is ±1,
|
||||
/// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the
|
||||
/// floors of d affine functions on p parameters.
|
||||
/// d_{ij} \in Q^d are vectors.
|
||||
///
|
||||
/// We need to find the number of terms of the form x^t in the expansion of
|
||||
/// this function.
|
||||
/// However, direct substitution (x = (1, ..., 1)) causes the denominator
|
||||
/// to become zero.
|
||||
///
|
||||
/// We therefore use the following procedure instead:
|
||||
/// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating
|
||||
/// function a function of a scalar s.
|
||||
/// 2. Write each term in this function as P(s)/Q(s), where P and Q are
|
||||
/// polynomials. P has coefficients as quasipolynomials in d parameters, while
|
||||
/// Q has coefficients as scalars.
|
||||
/// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is
|
||||
/// equivalent to substituting s = 0.
|
||||
///
|
||||
/// Verdoolaege, Sven, et al. "Counting integer points in parametric
|
||||
/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
|
||||
/// 37-66.
|
||||
QuasiPolynomial
|
||||
mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) {
|
||||
// Step (1) We need to find a μ such that we can substitute x_i =
|
||||
// (s+1)^μ_i. After this substitution, the exponent of (s+1) in the
|
||||
// denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become
|
||||
// zero. Hence we find a vector μ that is not orthogonal to any of the
|
||||
// d_{ij} and substitute x accordingly.
|
||||
std::vector<Point> allDenominators;
|
||||
for (ArrayRef<Point> den : gf.getDenominators())
|
||||
allDenominators.insert(allDenominators.end(), den.begin(), den.end());
|
||||
Point mu = getNonOrthogonalVector(allDenominators);
|
||||
|
||||
unsigned numParams = gf.getNumParams();
|
||||
const std::vector<std::vector<Point>> &ds = gf.getDenominators();
|
||||
QuasiPolynomial totalTerm(numParams, 0);
|
||||
for (unsigned i = 0, e = ds.size(); i < e; ++i) {
|
||||
int sign = gf.getSigns()[i];
|
||||
|
||||
// Compute the new exponents of (s+1) for the numerator and the
|
||||
// denominator after substituting μ.
|
||||
auto [numExp, dens] =
|
||||
substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu);
|
||||
// Now the numerator is (s+1)^numExp
|
||||
// and the denominator is \prod_j (1 - (s+1)^dens[j]).
|
||||
|
||||
// Step (2) We need to express the terms in the function as quotients of
|
||||
// polynomials. Each term is now of the form
|
||||
// sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j]))
|
||||
// For the i'th term, we first normalize the denominator to have only
|
||||
// positive exponents. We convert all the dens[j] to their
|
||||
// absolute values and change the sign and exponent in the numerator.
|
||||
normalizeDenominatorExponents(sign, numExp, dens);
|
||||
|
||||
// Then, using the formula for geometric series, we replace each (1 -
|
||||
// (s+1)^(dens[j])) with
|
||||
// (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k).
|
||||
for (unsigned j = 0, e = dens.size(); j < e; ++j)
|
||||
dens[j] = abs(dens[j]) - 1;
|
||||
// Note that at this point, the semantics of `dens[j]` changes to mean
|
||||
// a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before,
|
||||
// a product of these terms.
|
||||
|
||||
// Since the -s are taken out, the sign changes if there is an odd number
|
||||
// of such terms.
|
||||
unsigned r = dens.size();
|
||||
if (dens.size() % 2 == 1)
|
||||
sign = -sign;
|
||||
|
||||
// Thus the term overall now has the form
|
||||
// sign'_i * (s+1)^numExp /
|
||||
// (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)).
|
||||
// This means that
|
||||
// the numerator is a polynomial in s, with coefficients as
|
||||
// quasipolynomials (given by binomial coefficients), and the denominator
|
||||
// is a polynomial in s, with integral coefficients (given by taking the
|
||||
// convolution over all j).
|
||||
|
||||
// Step (3) We need to find the constant term in the expansion of each
|
||||
// term. Since each term has s^r as a factor in the denominator, we avoid
|
||||
// substituting s = 0 directly; instead, we find the coefficient of s^r in
|
||||
// sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)),
|
||||
// Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...),
|
||||
// we need to find the coefficient of s^r in P(s)/Q(s),
|
||||
// for which we use the `getCoefficientInRationalFunction()` function.
|
||||
|
||||
// First, we compute the coefficients of P(s), which are binomial
|
||||
// coefficients.
|
||||
// We only need the first r+1 of these, as higher-order terms do not
|
||||
// contribute to the coefficient of s^r.
|
||||
std::vector<QuasiPolynomial> numeratorCoefficients =
|
||||
getBinomialCoefficients(numExp, r);
|
||||
|
||||
// Then we compute the coefficients of each individual term in Q(s),
|
||||
// which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i].
|
||||
std::vector<std::vector<Fraction>> eachTermDenCoefficients;
|
||||
std::vector<Fraction> singleTermDenCoefficients;
|
||||
eachTermDenCoefficients.reserve(r);
|
||||
for (const Fraction &den : dens) {
|
||||
singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1);
|
||||
eachTermDenCoefficients.push_back(
|
||||
ArrayRef<Fraction>(singleTermDenCoefficients).slice(1));
|
||||
}
|
||||
|
||||
// Now we find the coefficients in Q(s) itself
|
||||
// by taking the convolution of the coefficients
|
||||
// of all the terms.
|
||||
std::vector<Fraction> denominatorCoefficients;
|
||||
denominatorCoefficients = eachTermDenCoefficients[0];
|
||||
for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j)
|
||||
denominatorCoefficients = multiplyPolynomials(denominatorCoefficients,
|
||||
eachTermDenCoefficients[j]);
|
||||
|
||||
totalTerm =
|
||||
totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients,
|
||||
denominatorCoefficients) *
|
||||
QuasiPolynomial(numParams, sign);
|
||||
}
|
||||
|
||||
return totalTerm.simplify();
|
||||
}
|
@ -97,10 +97,18 @@ QuasiPolynomial QuasiPolynomial::operator/(const Fraction x) const {
|
||||
return qp;
|
||||
}
|
||||
|
||||
// Removes terms which evaluate to zero from the expression.
|
||||
// Removes terms which evaluate to zero from the expression and
|
||||
// integrate affine functions which are constants into the
|
||||
// coefficients.
|
||||
QuasiPolynomial QuasiPolynomial::simplify() {
|
||||
Fraction newCoeff = 0;
|
||||
SmallVector<Fraction> newCoeffs({});
|
||||
|
||||
std::vector<SmallVector<Fraction>> newAffineTerm({});
|
||||
std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
|
||||
|
||||
unsigned numParam = getNumInputs();
|
||||
|
||||
for (unsigned i = 0, e = coefficients.size(); i < e; i++) {
|
||||
// A term is zero if its coefficient is zero, or
|
||||
if (coefficients[i] == Fraction(0, 1))
|
||||
@ -114,9 +122,46 @@ QuasiPolynomial QuasiPolynomial::simplify() {
|
||||
});
|
||||
if (product_is_zero)
|
||||
continue;
|
||||
|
||||
// Now, we know the term is nonzero.
|
||||
|
||||
// We now eliminate the affine functions which are constant
|
||||
// by merging them into the coefficients.
|
||||
newAffineTerm = {};
|
||||
newCoeff = coefficients[i];
|
||||
for (ArrayRef<Fraction> term : affine[i]) {
|
||||
bool allCoeffsZero = llvm::all_of(
|
||||
term.slice(0, numParam), [](const Fraction c) { return c == 0; });
|
||||
if (allCoeffsZero)
|
||||
newCoeff *= term[numParam];
|
||||
else
|
||||
newAffineTerm.push_back(SmallVector<Fraction>(term));
|
||||
}
|
||||
|
||||
newCoeffs.push_back(newCoeff);
|
||||
newAffine.push_back(newAffineTerm);
|
||||
}
|
||||
return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
|
||||
}
|
||||
|
||||
QuasiPolynomial QuasiPolynomial::collectTerms() {
|
||||
SmallVector<Fraction> newCoeffs({});
|
||||
std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
|
||||
|
||||
for (unsigned i = 0, e = affine.size(); i < e; i++) {
|
||||
bool alreadyPresent = false;
|
||||
for (unsigned j = 0, f = newAffine.size(); j < f; j++) {
|
||||
if (affine[i] == newAffine[j]) {
|
||||
newCoeffs[j] += coefficients[i];
|
||||
alreadyPresent = true;
|
||||
}
|
||||
}
|
||||
if (alreadyPresent)
|
||||
continue;
|
||||
newCoeffs.push_back(coefficients[i]);
|
||||
newAffine.push_back(affine[i]);
|
||||
}
|
||||
|
||||
return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
|
||||
}
|
||||
|
||||
|
@ -537,4 +537,31 @@ Fraction presburger::dotProduct(ArrayRef<Fraction> a, ArrayRef<Fraction> b) {
|
||||
for (unsigned i = 0, e = a.size(); i < e; i++)
|
||||
sum += a[i] * b[i];
|
||||
return sum;
|
||||
}
|
||||
|
||||
/// Find the product of two polynomials, each given by an array of
|
||||
/// coefficients, by taking the convolution.
|
||||
std::vector<Fraction> presburger::multiplyPolynomials(ArrayRef<Fraction> a,
|
||||
ArrayRef<Fraction> b) {
|
||||
// The length of the convolution is the sum of the lengths
|
||||
// of the two sequences. We pad the shorter one with zeroes.
|
||||
unsigned len = a.size() + b.size() - 1;
|
||||
|
||||
// We define accessors to avoid out-of-bounds errors.
|
||||
auto getCoeff = [](ArrayRef<Fraction> arr, unsigned i) -> Fraction {
|
||||
if (i < arr.size())
|
||||
return arr[i];
|
||||
else
|
||||
return 0;
|
||||
};
|
||||
|
||||
std::vector<Fraction> convolution;
|
||||
convolution.reserve(len);
|
||||
for (unsigned k = 0; k < len; ++k) {
|
||||
Fraction sum(0, 1);
|
||||
for (unsigned l = 0; l <= k; ++l)
|
||||
sum += getCoeff(a, l) * getCoeff(b, k - l);
|
||||
convolution.push_back(sum);
|
||||
}
|
||||
return convolution;
|
||||
}
|
@ -124,3 +124,113 @@ TEST(BarvinokTest, getCoefficientInRationalFunction) {
|
||||
coeff = getCoefficientInRationalFunction(3, numerator, denominator);
|
||||
EXPECT_EQ(coeff.getConstantTerm(), Fraction(55, 64));
|
||||
}
|
||||
|
||||
TEST(BarvinokTest, computeNumTerms) {
|
||||
// The following test is taken from
|
||||
// Verdoolaege, Sven, et al. "Counting integer points in parametric
|
||||
// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
|
||||
// 37-66.
|
||||
// It represents a right-angled triangle with right angle at the origin,
|
||||
// with height and base lengths (p/2).
|
||||
GeneratingFunction gf(
|
||||
1, {1, 1, 1},
|
||||
{makeFracMatrix(2, 2, {{0, Fraction(1, 2)}, {0, 0}}),
|
||||
makeFracMatrix(2, 2, {{0, Fraction(1, 2)}, {0, 0}}),
|
||||
makeFracMatrix(2, 2, {{0, 0}, {0, 0}})},
|
||||
{{{-1, 1}, {-1, 0}}, {{1, -1}, {0, -1}}, {{1, 0}, {0, 1}}});
|
||||
|
||||
QuasiPolynomial numPoints = computeNumTerms(gf).collectTerms();
|
||||
|
||||
// First, we make sure that all the affine functions are of the form ⌊p/2⌋.
|
||||
for (const std::vector<SmallVector<Fraction>> &term : numPoints.getAffine()) {
|
||||
for (const SmallVector<Fraction> &aff : term) {
|
||||
EXPECT_EQ(aff.size(), 2u);
|
||||
EXPECT_EQ(aff[0], Fraction(1, 2));
|
||||
EXPECT_EQ(aff[1], Fraction(0, 1));
|
||||
}
|
||||
}
|
||||
|
||||
// Now, we can gather the like terms because we know there's only
|
||||
// either ⌊p/2⌋^2, ⌊p/2⌋, or constants.
|
||||
// The total coefficient of ⌊p/2⌋^2 is the sum of coefficients of all
|
||||
// terms with 2 affine functions, and
|
||||
// the coefficient of total ⌊p/2⌋ is the sum of coefficients of all
|
||||
// terms with 1 affine function,
|
||||
Fraction pSquaredCoeff = 0, pCoeff = 0, constantTerm = 0;
|
||||
SmallVector<Fraction> coefficients = numPoints.getCoefficients();
|
||||
for (unsigned i = 0; i < numPoints.getCoefficients().size(); i++)
|
||||
if (numPoints.getAffine()[i].size() == 2)
|
||||
pSquaredCoeff = pSquaredCoeff + coefficients[i];
|
||||
else if (numPoints.getAffine()[i].size() == 1)
|
||||
pCoeff = pCoeff + coefficients[i];
|
||||
|
||||
// We expect the answer to be (1/2)⌊p/2⌋^2 + (3/2)⌊p/2⌋ + 1.
|
||||
EXPECT_EQ(pSquaredCoeff, Fraction(1, 2));
|
||||
EXPECT_EQ(pCoeff, Fraction(3, 2));
|
||||
EXPECT_EQ(numPoints.getConstantTerm(), Fraction(1, 1));
|
||||
|
||||
// The following generating function corresponds to a cuboid
|
||||
// with length M (x-axis), width N (y-axis), and height P (z-axis).
|
||||
// There are eight terms.
|
||||
gf = GeneratingFunction(
|
||||
3, {1, 1, 1, 1, 1, 1, 1, 1},
|
||||
{makeFracMatrix(4, 3, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}),
|
||||
makeFracMatrix(4, 3, {{1, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}),
|
||||
makeFracMatrix(4, 3, {{0, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 0}}),
|
||||
makeFracMatrix(4, 3, {{0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 0, 0}}),
|
||||
makeFracMatrix(4, 3, {{1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 0}}),
|
||||
makeFracMatrix(4, 3, {{1, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 0, 0}}),
|
||||
makeFracMatrix(4, 3, {{0, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0}}),
|
||||
makeFracMatrix(4, 3, {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0}})},
|
||||
{{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
|
||||
{{-1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
|
||||
{{1, 0, 0}, {0, -1, 0}, {0, 0, 1}},
|
||||
{{1, 0, 0}, {0, 1, 0}, {0, 0, -1}},
|
||||
{{-1, 0, 0}, {0, -1, 0}, {0, 0, 1}},
|
||||
{{-1, 0, 0}, {0, 1, 0}, {0, 0, -1}},
|
||||
{{1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
|
||||
{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}}});
|
||||
|
||||
numPoints = computeNumTerms(gf);
|
||||
numPoints = numPoints.collectTerms().simplify();
|
||||
|
||||
// First, we make sure all the affine functions are either
|
||||
// M, N, P, or 1.
|
||||
for (const std::vector<SmallVector<Fraction>> &term : numPoints.getAffine()) {
|
||||
for (const SmallVector<Fraction> &aff : term) {
|
||||
// First, ensure that the coefficients are all nonnegative integers.
|
||||
for (const Fraction &c : aff) {
|
||||
EXPECT_TRUE(c >= 0);
|
||||
EXPECT_EQ(c, c.getAsInteger());
|
||||
}
|
||||
// Now, if the coefficients add up to 1, we can be sure the term is
|
||||
// either M, N, P, or 1.
|
||||
EXPECT_EQ(aff[0] + aff[1] + aff[2] + aff[3], 1);
|
||||
}
|
||||
}
|
||||
|
||||
// We store the coefficients of M, N and P in this array.
|
||||
Fraction count[2][2][2];
|
||||
coefficients = numPoints.getCoefficients();
|
||||
for (unsigned i = 0, e = coefficients.size(); i < e; i++) {
|
||||
unsigned mIndex = 0, nIndex = 0, pIndex = 0;
|
||||
for (const SmallVector<Fraction> &aff : numPoints.getAffine()[i]) {
|
||||
if (aff[0] == 1)
|
||||
mIndex = 1;
|
||||
if (aff[1] == 1)
|
||||
nIndex = 1;
|
||||
if (aff[2] == 1)
|
||||
pIndex = 1;
|
||||
EXPECT_EQ(aff[3], 0);
|
||||
}
|
||||
count[mIndex][nIndex][pIndex] += coefficients[i];
|
||||
}
|
||||
|
||||
// We expect the answer to be
|
||||
// (⌊M⌋ + 1)(⌊N⌋ + 1)(⌊P⌋ + 1) =
|
||||
// ⌊M⌋⌊N⌋⌊P⌋ + ⌊M⌋⌊N⌋ + ⌊N⌋⌊P⌋ + ⌊M⌋⌊P⌋ + ⌊M⌋ + ⌊N⌋ + ⌊P⌋ + 1.
|
||||
for (unsigned i = 0; i < 2; i++)
|
||||
for (unsigned j = 0; j < 2; j++)
|
||||
for (unsigned k = 0; k < 2; k++)
|
||||
EXPECT_EQ(count[i][j][k], 1);
|
||||
}
|
@ -66,3 +66,22 @@ TEST(UtilsTest, DivisionReprNormalizeTest) {
|
||||
checkEqual(a, b);
|
||||
checkEqual(c, d);
|
||||
}
|
||||
|
||||
TEST(UtilsTest, convolution) {
|
||||
std::vector<Fraction> aVals({1, 2, 3, 4});
|
||||
std::vector<Fraction> bVals({7, 3, 1, 6});
|
||||
ArrayRef<Fraction> a(aVals);
|
||||
ArrayRef<Fraction> b(bVals);
|
||||
|
||||
std::vector<Fraction> conv = multiplyPolynomials(a, b);
|
||||
|
||||
EXPECT_EQ(conv, std::vector<Fraction>({7, 17, 28, 45, 27, 22, 24}));
|
||||
|
||||
aVals = {3, 6, 0, 2, 5};
|
||||
bVals = {2, 0, 6};
|
||||
a = aVals;
|
||||
b = bVals;
|
||||
|
||||
conv = multiplyPolynomials(a, b);
|
||||
EXPECT_EQ(conv, std::vector<Fraction>({6, 12, 18, 40, 10, 12, 30}));
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user