[MLIR][Presburger] Implement function to evaluate the number of terms in a generating function. (#78078)

We implement `computeNumTerms()`, which counts the number of terms in a
generating function by substituting the unit vector in it.
This is the main function in Barvinok's algorithm – the number of points
in a polytope is given by the number of terms in the generating function
corresponding to it.
We also modify the GeneratingFunction class to have `const` getters and
improve the simplification of QuasiPolynomials.
This commit is contained in:
Abhinav271828 2024-01-22 14:22:01 +05:30 committed by GitHub
parent 5fb39efe68
commit 68a5261d26
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 464 additions and 6 deletions

View File

@ -99,6 +99,12 @@ QuasiPolynomial getCoefficientInRationalFunction(unsigned power,
ArrayRef<QuasiPolynomial> num,
ArrayRef<Fraction> den);
/// Find the number of terms in a generating function, as
/// a quasipolynomial in the parameter space of the input function.
/// The generating function must be such that for all values of the
/// parameters, the number of terms is finite.
QuasiPolynomial computeNumTerms(const GeneratingFunction &gf);
} // namespace detail
} // namespace presburger
} // namespace mlir

View File

@ -62,13 +62,15 @@ public:
#endif // NDEBUG
}
unsigned getNumParams() { return numParam; }
unsigned getNumParams() const { return numParam; }
SmallVector<int> getSigns() { return signs; }
SmallVector<int> getSigns() const { return signs; }
std::vector<ParamPoint> getNumerators() { return numerators; }
std::vector<ParamPoint> getNumerators() const { return numerators; }
std::vector<std::vector<Point>> getDenominators() { return denominators; }
std::vector<std::vector<Point>> getDenominators() const {
return denominators;
}
GeneratingFunction operator+(GeneratingFunction &gf) const {
assert(numParam == gf.getNumParams() &&

View File

@ -59,9 +59,14 @@ public:
QuasiPolynomial operator*(const QuasiPolynomial &x) const;
QuasiPolynomial operator/(const Fraction x) const;
// Removes terms which evaluate to zero from the expression.
// Removes terms which evaluate to zero from the expression
// and folds affine functions which are constant into the
// constant coefficients.
QuasiPolynomial simplify();
// Group together like terms in the expression.
QuasiPolynomial collectTerms();
Fraction getConstantTerm();
private:

View File

@ -281,6 +281,11 @@ SmallVector<MPInt, 8> getComplementIneq(ArrayRef<MPInt> ineq);
/// The vectors must have the same sizes.
Fraction dotProduct(ArrayRef<Fraction> a, ArrayRef<Fraction> b);
/// Find the product of two polynomials, each given by an array of
/// coefficients.
std::vector<Fraction> multiplyPolynomials(ArrayRef<Fraction> a,
ArrayRef<Fraction> b);
} // namespace presburger
} // namespace mlir

View File

@ -7,6 +7,7 @@
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Barvinok.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/ADT/Sequence.h"
#include <algorithm>
@ -245,3 +246,241 @@ QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction(
}
return coefficients[power].simplify();
}
/// Substitute x_i = t^μ_i in one term of a generating function, returning
/// a quasipolynomial which represents the exponent of the numerator
/// of the result, and a vector which represents the exponents of the
/// denominator of the result.
/// If the returned value is {num, dens}, it represents the function
/// t^num / \prod_j (1 - t^dens[j]).
/// v represents the affine functions whose floors are multiplied by the
/// generators, and ds represents the list of generators.
std::pair<QuasiPolynomial, std::vector<Fraction>>
substituteMuInTerm(unsigned numParams, ParamPoint v, std::vector<Point> ds,
Point mu) {
unsigned numDims = mu.size();
for (const Point &d : ds)
assert(d.size() == numDims &&
"μ has to have the same number of dimensions as the generators!");
// First, the exponent in the numerator becomes
// - (μ • u_1) * (floor(first col of v))
// - (μ • u_2) * (floor(second col of v)) - ...
// - (μ • u_d) * (floor(d'th col of v))
// So we store the negation of the dot products.
// We have d terms, each of whose coefficient is the negative dot product.
SmallVector<Fraction> coefficients;
coefficients.reserve(numDims);
for (const Point &d : ds)
coefficients.push_back(-dotProduct(mu, d));
// Then, the affine function is a single floor expression, given by the
// corresponding column of v.
ParamPoint vTranspose = v.transpose();
std::vector<std::vector<SmallVector<Fraction>>> affine;
affine.reserve(numDims);
for (unsigned j = 0; j < numDims; ++j)
affine.push_back({SmallVector<Fraction>(vTranspose.getRow(j))});
QuasiPolynomial num(numParams, coefficients, affine);
num = num.simplify();
std::vector<Fraction> dens;
dens.reserve(ds.size());
// Similarly, each term in the denominator has exponent
// given by the dot product of μ with u_i.
for (const Point &d : ds) {
// This term in the denominator is
// (1 - t^dens.back())
dens.push_back(dotProduct(d, mu));
}
return {num, dens};
}
/// Normalize all denominator exponents `dens` to their absolute values
/// by multiplying and dividing by the inverses, in a function of the form
/// sign * t^num / prod_j (1 - t^dens[j]).
/// Here, sign = ± 1,
/// num is a QuasiPolynomial, and
/// each dens[j] is a Fraction.
void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num,
std::vector<Fraction> &dens) {
// We track the number of exponents that are negative in the
// denominator, and convert them to their absolute values.
unsigned numNegExps = 0;
Fraction sumNegExps(0, 1);
for (unsigned j = 0, e = dens.size(); j < e; ++j) {
if (dens[j] < 0) {
numNegExps += 1;
sumNegExps += dens[j];
}
}
// If we have (1 - t^-c) in the denominator, for positive c,
// multiply and divide by t^c.
// We convert all negative-exponent terms at once; therefore
// we multiply and divide by t^sumNegExps.
// Then we get
// -(1 - t^c) in the denominator,
// increase the numerator by c, and
// flip the sign of the function.
if (numNegExps % 2 == 1)
sign = -sign;
num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps);
}
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
/// where n is a QuasiPolynomial.
std::vector<QuasiPolynomial> getBinomialCoefficients(QuasiPolynomial n,
unsigned r) {
unsigned numParams = n.getNumInputs();
std::vector<QuasiPolynomial> coefficients;
coefficients.reserve(r + 1);
coefficients.push_back(QuasiPolynomial(numParams, 1));
for (unsigned j = 1; j <= r; ++j)
// We use the recursive formula for binomial coefficients here and below.
coefficients.push_back(
(coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) /
Fraction(j, 1))
.simplify());
return coefficients;
}
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
/// where n is a QuasiPolynomial.
std::vector<Fraction> getBinomialCoefficients(Fraction n, Fraction r) {
std::vector<Fraction> coefficients;
coefficients.reserve((int64_t)floor(r));
coefficients.push_back(1);
for (unsigned j = 1; j <= r; ++j)
coefficients.push_back(coefficients[j - 1] * (n - (j - 1)) / (j));
return coefficients;
}
/// We have a generating function of the form
/// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij})
///
/// where sign_i is ±1,
/// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the
/// floors of d affine functions on p parameters.
/// d_{ij} \in Q^d are vectors.
///
/// We need to find the number of terms of the form x^t in the expansion of
/// this function.
/// However, direct substitution (x = (1, ..., 1)) causes the denominator
/// to become zero.
///
/// We therefore use the following procedure instead:
/// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating
/// function a function of a scalar s.
/// 2. Write each term in this function as P(s)/Q(s), where P and Q are
/// polynomials. P has coefficients as quasipolynomials in d parameters, while
/// Q has coefficients as scalars.
/// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is
/// equivalent to substituting s = 0.
///
/// Verdoolaege, Sven, et al. "Counting integer points in parametric
/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
/// 37-66.
QuasiPolynomial
mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) {
// Step (1) We need to find a μ such that we can substitute x_i =
// (s+1)^μ_i. After this substitution, the exponent of (s+1) in the
// denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become
// zero. Hence we find a vector μ that is not orthogonal to any of the
// d_{ij} and substitute x accordingly.
std::vector<Point> allDenominators;
for (ArrayRef<Point> den : gf.getDenominators())
allDenominators.insert(allDenominators.end(), den.begin(), den.end());
Point mu = getNonOrthogonalVector(allDenominators);
unsigned numParams = gf.getNumParams();
const std::vector<std::vector<Point>> &ds = gf.getDenominators();
QuasiPolynomial totalTerm(numParams, 0);
for (unsigned i = 0, e = ds.size(); i < e; ++i) {
int sign = gf.getSigns()[i];
// Compute the new exponents of (s+1) for the numerator and the
// denominator after substituting μ.
auto [numExp, dens] =
substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu);
// Now the numerator is (s+1)^numExp
// and the denominator is \prod_j (1 - (s+1)^dens[j]).
// Step (2) We need to express the terms in the function as quotients of
// polynomials. Each term is now of the form
// sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j]))
// For the i'th term, we first normalize the denominator to have only
// positive exponents. We convert all the dens[j] to their
// absolute values and change the sign and exponent in the numerator.
normalizeDenominatorExponents(sign, numExp, dens);
// Then, using the formula for geometric series, we replace each (1 -
// (s+1)^(dens[j])) with
// (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k).
for (unsigned j = 0, e = dens.size(); j < e; ++j)
dens[j] = abs(dens[j]) - 1;
// Note that at this point, the semantics of `dens[j]` changes to mean
// a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before,
// a product of these terms.
// Since the -s are taken out, the sign changes if there is an odd number
// of such terms.
unsigned r = dens.size();
if (dens.size() % 2 == 1)
sign = -sign;
// Thus the term overall now has the form
// sign'_i * (s+1)^numExp /
// (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)).
// This means that
// the numerator is a polynomial in s, with coefficients as
// quasipolynomials (given by binomial coefficients), and the denominator
// is a polynomial in s, with integral coefficients (given by taking the
// convolution over all j).
// Step (3) We need to find the constant term in the expansion of each
// term. Since each term has s^r as a factor in the denominator, we avoid
// substituting s = 0 directly; instead, we find the coefficient of s^r in
// sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)),
// Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...),
// we need to find the coefficient of s^r in P(s)/Q(s),
// for which we use the `getCoefficientInRationalFunction()` function.
// First, we compute the coefficients of P(s), which are binomial
// coefficients.
// We only need the first r+1 of these, as higher-order terms do not
// contribute to the coefficient of s^r.
std::vector<QuasiPolynomial> numeratorCoefficients =
getBinomialCoefficients(numExp, r);
// Then we compute the coefficients of each individual term in Q(s),
// which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i].
std::vector<std::vector<Fraction>> eachTermDenCoefficients;
std::vector<Fraction> singleTermDenCoefficients;
eachTermDenCoefficients.reserve(r);
for (const Fraction &den : dens) {
singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1);
eachTermDenCoefficients.push_back(
ArrayRef<Fraction>(singleTermDenCoefficients).slice(1));
}
// Now we find the coefficients in Q(s) itself
// by taking the convolution of the coefficients
// of all the terms.
std::vector<Fraction> denominatorCoefficients;
denominatorCoefficients = eachTermDenCoefficients[0];
for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j)
denominatorCoefficients = multiplyPolynomials(denominatorCoefficients,
eachTermDenCoefficients[j]);
totalTerm =
totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients,
denominatorCoefficients) *
QuasiPolynomial(numParams, sign);
}
return totalTerm.simplify();
}

View File

@ -97,10 +97,18 @@ QuasiPolynomial QuasiPolynomial::operator/(const Fraction x) const {
return qp;
}
// Removes terms which evaluate to zero from the expression.
// Removes terms which evaluate to zero from the expression and
// integrate affine functions which are constants into the
// coefficients.
QuasiPolynomial QuasiPolynomial::simplify() {
Fraction newCoeff = 0;
SmallVector<Fraction> newCoeffs({});
std::vector<SmallVector<Fraction>> newAffineTerm({});
std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
unsigned numParam = getNumInputs();
for (unsigned i = 0, e = coefficients.size(); i < e; i++) {
// A term is zero if its coefficient is zero, or
if (coefficients[i] == Fraction(0, 1))
@ -114,9 +122,46 @@ QuasiPolynomial QuasiPolynomial::simplify() {
});
if (product_is_zero)
continue;
// Now, we know the term is nonzero.
// We now eliminate the affine functions which are constant
// by merging them into the coefficients.
newAffineTerm = {};
newCoeff = coefficients[i];
for (ArrayRef<Fraction> term : affine[i]) {
bool allCoeffsZero = llvm::all_of(
term.slice(0, numParam), [](const Fraction c) { return c == 0; });
if (allCoeffsZero)
newCoeff *= term[numParam];
else
newAffineTerm.push_back(SmallVector<Fraction>(term));
}
newCoeffs.push_back(newCoeff);
newAffine.push_back(newAffineTerm);
}
return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
}
QuasiPolynomial QuasiPolynomial::collectTerms() {
SmallVector<Fraction> newCoeffs({});
std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
for (unsigned i = 0, e = affine.size(); i < e; i++) {
bool alreadyPresent = false;
for (unsigned j = 0, f = newAffine.size(); j < f; j++) {
if (affine[i] == newAffine[j]) {
newCoeffs[j] += coefficients[i];
alreadyPresent = true;
}
}
if (alreadyPresent)
continue;
newCoeffs.push_back(coefficients[i]);
newAffine.push_back(affine[i]);
}
return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
}

View File

@ -537,4 +537,31 @@ Fraction presburger::dotProduct(ArrayRef<Fraction> a, ArrayRef<Fraction> b) {
for (unsigned i = 0, e = a.size(); i < e; i++)
sum += a[i] * b[i];
return sum;
}
/// Find the product of two polynomials, each given by an array of
/// coefficients, by taking the convolution.
std::vector<Fraction> presburger::multiplyPolynomials(ArrayRef<Fraction> a,
ArrayRef<Fraction> b) {
// The length of the convolution is the sum of the lengths
// of the two sequences. We pad the shorter one with zeroes.
unsigned len = a.size() + b.size() - 1;
// We define accessors to avoid out-of-bounds errors.
auto getCoeff = [](ArrayRef<Fraction> arr, unsigned i) -> Fraction {
if (i < arr.size())
return arr[i];
else
return 0;
};
std::vector<Fraction> convolution;
convolution.reserve(len);
for (unsigned k = 0; k < len; ++k) {
Fraction sum(0, 1);
for (unsigned l = 0; l <= k; ++l)
sum += getCoeff(a, l) * getCoeff(b, k - l);
convolution.push_back(sum);
}
return convolution;
}

View File

@ -124,3 +124,113 @@ TEST(BarvinokTest, getCoefficientInRationalFunction) {
coeff = getCoefficientInRationalFunction(3, numerator, denominator);
EXPECT_EQ(coeff.getConstantTerm(), Fraction(55, 64));
}
TEST(BarvinokTest, computeNumTerms) {
// The following test is taken from
// Verdoolaege, Sven, et al. "Counting integer points in parametric
// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
// 37-66.
// It represents a right-angled triangle with right angle at the origin,
// with height and base lengths (p/2).
GeneratingFunction gf(
1, {1, 1, 1},
{makeFracMatrix(2, 2, {{0, Fraction(1, 2)}, {0, 0}}),
makeFracMatrix(2, 2, {{0, Fraction(1, 2)}, {0, 0}}),
makeFracMatrix(2, 2, {{0, 0}, {0, 0}})},
{{{-1, 1}, {-1, 0}}, {{1, -1}, {0, -1}}, {{1, 0}, {0, 1}}});
QuasiPolynomial numPoints = computeNumTerms(gf).collectTerms();
// First, we make sure that all the affine functions are of the form ⌊p/2⌋.
for (const std::vector<SmallVector<Fraction>> &term : numPoints.getAffine()) {
for (const SmallVector<Fraction> &aff : term) {
EXPECT_EQ(aff.size(), 2u);
EXPECT_EQ(aff[0], Fraction(1, 2));
EXPECT_EQ(aff[1], Fraction(0, 1));
}
}
// Now, we can gather the like terms because we know there's only
// either ⌊p/2⌋^2, ⌊p/2⌋, or constants.
// The total coefficient of ⌊p/2⌋^2 is the sum of coefficients of all
// terms with 2 affine functions, and
// the coefficient of total ⌊p/2⌋ is the sum of coefficients of all
// terms with 1 affine function,
Fraction pSquaredCoeff = 0, pCoeff = 0, constantTerm = 0;
SmallVector<Fraction> coefficients = numPoints.getCoefficients();
for (unsigned i = 0; i < numPoints.getCoefficients().size(); i++)
if (numPoints.getAffine()[i].size() == 2)
pSquaredCoeff = pSquaredCoeff + coefficients[i];
else if (numPoints.getAffine()[i].size() == 1)
pCoeff = pCoeff + coefficients[i];
// We expect the answer to be (1/2)⌊p/2⌋^2 + (3/2)⌊p/2⌋ + 1.
EXPECT_EQ(pSquaredCoeff, Fraction(1, 2));
EXPECT_EQ(pCoeff, Fraction(3, 2));
EXPECT_EQ(numPoints.getConstantTerm(), Fraction(1, 1));
// The following generating function corresponds to a cuboid
// with length M (x-axis), width N (y-axis), and height P (z-axis).
// There are eight terms.
gf = GeneratingFunction(
3, {1, 1, 1, 1, 1, 1, 1, 1},
{makeFracMatrix(4, 3, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}),
makeFracMatrix(4, 3, {{1, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}),
makeFracMatrix(4, 3, {{0, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 0}}),
makeFracMatrix(4, 3, {{0, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 0, 0}}),
makeFracMatrix(4, 3, {{1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 0}}),
makeFracMatrix(4, 3, {{1, 0, 0}, {0, 0, 0}, {0, 0, 1}, {0, 0, 0}}),
makeFracMatrix(4, 3, {{0, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0}}),
makeFracMatrix(4, 3, {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0}})},
{{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
{{-1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
{{1, 0, 0}, {0, -1, 0}, {0, 0, 1}},
{{1, 0, 0}, {0, 1, 0}, {0, 0, -1}},
{{-1, 0, 0}, {0, -1, 0}, {0, 0, 1}},
{{-1, 0, 0}, {0, 1, 0}, {0, 0, -1}},
{{1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}}});
numPoints = computeNumTerms(gf);
numPoints = numPoints.collectTerms().simplify();
// First, we make sure all the affine functions are either
// M, N, P, or 1.
for (const std::vector<SmallVector<Fraction>> &term : numPoints.getAffine()) {
for (const SmallVector<Fraction> &aff : term) {
// First, ensure that the coefficients are all nonnegative integers.
for (const Fraction &c : aff) {
EXPECT_TRUE(c >= 0);
EXPECT_EQ(c, c.getAsInteger());
}
// Now, if the coefficients add up to 1, we can be sure the term is
// either M, N, P, or 1.
EXPECT_EQ(aff[0] + aff[1] + aff[2] + aff[3], 1);
}
}
// We store the coefficients of M, N and P in this array.
Fraction count[2][2][2];
coefficients = numPoints.getCoefficients();
for (unsigned i = 0, e = coefficients.size(); i < e; i++) {
unsigned mIndex = 0, nIndex = 0, pIndex = 0;
for (const SmallVector<Fraction> &aff : numPoints.getAffine()[i]) {
if (aff[0] == 1)
mIndex = 1;
if (aff[1] == 1)
nIndex = 1;
if (aff[2] == 1)
pIndex = 1;
EXPECT_EQ(aff[3], 0);
}
count[mIndex][nIndex][pIndex] += coefficients[i];
}
// We expect the answer to be
// (⌊M⌋ + 1)(⌊N⌋ + 1)(⌊P⌋ + 1) =
// ⌊M⌋⌊N⌋⌊P⌋ + ⌊M⌋⌊N⌋ + ⌊N⌋⌊P⌋ + ⌊M⌋⌊P⌋ + ⌊M⌋ + ⌊N⌋ + ⌊P⌋ + 1.
for (unsigned i = 0; i < 2; i++)
for (unsigned j = 0; j < 2; j++)
for (unsigned k = 0; k < 2; k++)
EXPECT_EQ(count[i][j][k], 1);
}

View File

@ -66,3 +66,22 @@ TEST(UtilsTest, DivisionReprNormalizeTest) {
checkEqual(a, b);
checkEqual(c, d);
}
TEST(UtilsTest, convolution) {
std::vector<Fraction> aVals({1, 2, 3, 4});
std::vector<Fraction> bVals({7, 3, 1, 6});
ArrayRef<Fraction> a(aVals);
ArrayRef<Fraction> b(bVals);
std::vector<Fraction> conv = multiplyPolynomials(a, b);
EXPECT_EQ(conv, std::vector<Fraction>({7, 17, 28, 45, 27, 22, 24}));
aVals = {3, 6, 0, 2, 5};
bVals = {2, 0, 6};
a = aVals;
b = bVals;
conv = multiplyPolynomials(a, b);
EXPECT_EQ(conv, std::vector<Fraction>({6, 12, 18, 40, 10, 12, 30}));
}