[mlir][sparse] rename sparse_tensor.(un)pack to sparse_tensor.(dis)as… (#67717)

…semble

Pack/Unpack are overridden in many other places, rename the operations
to avoid confusion.
This commit is contained in:
Peiming Liu 2023-09-28 11:01:10 -07:00 committed by GitHub
parent 9f2fc88b23
commit 6ca47eb49d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 62 additions and 58 deletions

View File

@ -53,14 +53,14 @@ def SparseTensor_NewOp : SparseTensor_Op<"new", [Pure]>,
let assemblyFormat = "$source attr-dict `:` type($source) `to` type($result)";
}
def SparseTensor_PackOp : SparseTensor_Op<"pack", [Pure]>,
def SparseTensor_AssembleOp : SparseTensor_Op<"assemble", [Pure]>,
Arguments<(ins TensorOf<[AnyType]>:$values,
Variadic<TensorOf<[AnySignlessIntegerOrIndex]>>:$levels)>,
Results<(outs AnySparseTensor: $result)> {
let summary = "Returns a sparse tensor from the given values, levels";
let description = [{
Packs the values and per-level coordinate or postion arrays into a sparse tensor.
Assembles the values and per-level coordinate or postion arrays into a sparse tensor.
The order and types of provided levels must be consistent with the actual storage
layout of the returned sparse tensor described below.
@ -87,7 +87,7 @@ def SparseTensor_PackOp : SparseTensor_Op<"pack", [Pure]>,
```mlir
%values = arith.constant dense<[ 1.1, 2.2, 3.3 ]> : tensor<3xf64>
%coordinates = arith.constant dense<[[0,0], [1,2], [1,3]]> : tensor<3x2xindex>
%st = sparse_tensor.pack %values, %coordinates
%st = sparse_tensor.assemble %values, %coordinates
: tensor<3xf64>, tensor<3x2xindex> to tensor<3x4xf64, #COO>
// yields COO format |1.1, 0.0, 0.0, 0.0|
// of 3x4 matrix |0.0, 0.0, 2.2, 3.3|
@ -102,7 +102,7 @@ def SparseTensor_PackOp : SparseTensor_Op<"pack", [Pure]>,
let hasVerifier = 1;
}
def SparseTensor_UnpackOp : SparseTensor_Op<"unpack", [Pure, SameVariadicResultSize]>,
def SparseTensor_DisassembleOp : SparseTensor_Op<"disassemble", [Pure, SameVariadicResultSize]>,
Arguments<(ins AnySparseTensor:$tensor,
TensorOf<[AnyType]>:$out_values,
Variadic<TensorOf<[AnySignlessIntegerOrIndex]>>:$out_levels)>,
@ -113,7 +113,7 @@ def SparseTensor_UnpackOp : SparseTensor_Op<"unpack", [Pure, SameVariadicResultS
let summary = "Returns the (values, coordinates) pair unpacked from the input tensor";
let description = [{
The unpack operation is the inverse of `sparse_tensor::pack`. It returns
The disassemble operation is the inverse of `sparse_tensor::assemble`. It returns
the values and per-level position and coordinate array to the user
from the sparse tensor along with the actual length of the memory used in
each returned buffer. This operation can be used for returning an
@ -132,7 +132,7 @@ def SparseTensor_UnpackOp : SparseTensor_Op<"unpack", [Pure, SameVariadicResultS
// of 3x4 matrix |0.0, 0.0, 2.2, 3.3|
// |0.0, 0.0, 0.0, 0.0|
%v, %p, %c, %v_len, %p_len, %c_len =
sparse_tensor.unpack %sp : tensor<3x4xf64, #COO>
sparse_tensor.disassemble %sp : tensor<3x4xf64, #COO>
outs(%od, %op, %oi : tensor<3xf64>, tensor<2xindex>, tensor<3x2xindex>)
-> tensor<3xf64>, (tensor<2xindex>, tensor<3x2xindex>), index, (index, index)
// %v = arith.constant dense<[ 1.1, 2.2, 3.3 ]> : tensor<3xf64>

View File

@ -974,14 +974,14 @@ static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape,
return success();
}
LogicalResult PackOp::verify() {
LogicalResult AssembleOp::verify() {
const auto valuesTp = getRankedTensorType(getValues());
const auto lvlsTp = getLevels().getTypes();
const auto resTp = getSparseTensorType(getResult());
return verifyPackUnPack(*this, true, resTp, valuesTp, lvlsTp);
}
LogicalResult UnpackOp::verify() {
LogicalResult DisassembleOp::verify() {
if (getOutValues().getType() != getRetValues().getType())
return emitError("output values and return value type mismatch");

View File

@ -122,11 +122,11 @@ struct NewOpInterface
bool bufferizesToAllocation(Operation *op, Value value) const { return true; }
};
struct PackOpInterface
: public SparseBufferizableOpInterfaceExternalModel<PackOpInterface,
sparse_tensor::PackOp> {
struct AssembleOpInterface
: public SparseBufferizableOpInterfaceExternalModel<
AssembleOpInterface, sparse_tensor::AssembleOp> {
bool bufferizesToAllocation(Operation *op, Value value) const {
// PackOp reuses all the buffers instead of allocating new ones
// AssembleOp reuses all the buffers instead of allocating new ones
return false;
}
@ -143,7 +143,7 @@ struct PackOpInterface
AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
assert(op->getNumResults() == 1);
// PackOp reuses the input tensors as values/coordinates instead of
// AssembleOp reuses the input tensors as values/coordinates instead of
// creating new ones when packing into a COO format.
return {{op->getOpResult(0), BufferRelation::Equivalent}};
}
@ -154,8 +154,9 @@ struct PackOpInterface
}
};
struct UnpackOpInterface : public SparseBufferizableOpInterfaceExternalModel<
UnpackOpInterface, sparse_tensor::UnpackOp> {
struct DisassembleOpInterface
: public SparseBufferizableOpInterfaceExternalModel<
DisassembleOpInterface, sparse_tensor::DisassembleOp> {
bool bufferizesToAllocation(Operation *op, Value value) const {
// The output buffer is pre-allocated by the user.
return false;
@ -326,8 +327,8 @@ void mlir::sparse_tensor::registerBufferizableOpInterfaceExternalModels(
sparse_tensor::InsertOp::attachInterface<InsertOpInterface>(*ctx);
sparse_tensor::NumberOfEntriesOp::attachInterface<
NumberOfEntriesOpInterface>(*ctx);
sparse_tensor::PackOp::attachInterface<PackOpInterface>(*ctx);
sparse_tensor::UnpackOp::attachInterface<UnpackOpInterface>(*ctx);
sparse_tensor::AssembleOp::attachInterface<AssembleOpInterface>(*ctx);
sparse_tensor::DisassembleOp::attachInterface<DisassembleOpInterface>(*ctx);
sparse_tensor::ToCoordinatesBufferOp::attachInterface<
ToCoordinatesBufferOpInterface>(*ctx);
sparse_tensor::ToCoordinatesOp::attachInterface<ToCoordinatesOpInterface>(

View File

@ -795,10 +795,10 @@ rewriteSpGEMM(PatternRewriter &rewriter, linalg::GenericOp op, bool enableRT,
Value rowC = e1.getResult(0);
token = e1.getAsyncToken();
auto e2 = genAllocBuffer(rewriter, loc, cTp.getCrdType(), zero, token);
Value colC = e2.getResult(0); // no free needed
Value colC = e2.getResult(0); // no free needed
token = e2.getAsyncToken();
auto e3 = genAllocBuffer(rewriter, loc, dnCType, zero, token);
Value valC = e3.getResult(0); // no free needed
Value valC = e3.getResult(0); // no free needed
token = e3.getAsyncToken();
Operation *spGenC =
genSpMat(rewriter, loc, spmatHandleTp, tokenTp, token, szm, szn, zero,
@ -900,7 +900,8 @@ rewriteSpGEMM(PatternRewriter &rewriter, linalg::GenericOp op, bool enableRT,
Value vt = rewriter.create<bufferization::ToTensorOp>(loc, valH);
Value rt = rewriter.create<bufferization::ToTensorOp>(loc, rowH);
Value ct = rewriter.create<bufferization::ToTensorOp>(loc, colH);
rewriter.replaceOpWithNewOp<PackOp>(op, c.getType(), vt, ValueRange{rt, ct});
rewriter.replaceOpWithNewOp<AssembleOp>(op, c.getType(), vt,
ValueRange{rt, ct});
return success();
}

View File

@ -1244,10 +1244,10 @@ public:
}
};
struct SparsePackOpConverter : public OpConversionPattern<PackOp> {
struct SparseAssembleOpConverter : public OpConversionPattern<AssembleOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(PackOp op, OpAdaptor adaptor,
matchAndRewrite(AssembleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op.getResult());
@ -1347,13 +1347,15 @@ struct SparsePackOpConverter : public OpConversionPattern<PackOp> {
}
};
struct SparseUnpackOpConverter : public OpConversionPattern<UnpackOp> {
struct SparseDisassembleOpConverter
: public OpConversionPattern<DisassembleOp> {
using OpConversionPattern::OpConversionPattern;
SparseUnpackOpConverter(TypeConverter &typeConverter, MLIRContext *context)
SparseDisassembleOpConverter(TypeConverter &typeConverter,
MLIRContext *context)
: OpConversionPattern(typeConverter, context) {}
LogicalResult
matchAndRewrite(UnpackOp op, OpAdaptor adaptor,
matchAndRewrite(DisassembleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
Location loc = op.getLoc();
@ -1571,7 +1573,7 @@ struct SparseNewOpConverter : public OpConversionPattern<NewOp> {
void mlir::populateSparseTensorCodegenPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
bool createSparseDeallocs, bool enableBufferInitialization) {
patterns.add<SparsePackOpConverter, SparseUnpackOpConverter,
patterns.add<SparseAssembleOpConverter, SparseDisassembleOpConverter,
SparseReturnConverter, SparseCallConverter, SparseDimOpConverter,
SparseCastConverter, SparseExtractSliceConverter,
SparseTensorLoadConverter, SparseExpandConverter,

View File

@ -1493,15 +1493,15 @@ public:
};
/// Sparse conversion rule for the sparse_tensor.pack operator.
class SparseTensorPackConverter : public OpConversionPattern<PackOp> {
class SparseTensorAssembleConverter : public OpConversionPattern<AssembleOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(PackOp op, OpAdaptor adaptor,
matchAndRewrite(AssembleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto dstTp = getSparseTensorType(op.getResult());
// PackOps always returns a static shaped tensor result.
// AssembleOps always returns a static shaped tensor result.
assert(dstTp.hasStaticDimShape());
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, dstTp);
Value dst =
@ -1546,7 +1546,7 @@ void mlir::populateSparseTensorConversionPatterns(
SparseTensorToValuesConverter, SparseNumberOfEntriesConverter,
SparseTensorLoadConverter, SparseTensorInsertConverter,
SparseTensorExpandConverter, SparseTensorCompressConverter,
SparseTensorOutConverter, SparseTensorPackConverter>(
SparseTensorOutConverter, SparseTensorAssembleConverter>(
typeConverter, patterns.getContext());
patterns.add<SparseTensorConvertConverter>(typeConverter,
patterns.getContext(), options);

View File

@ -86,7 +86,7 @@
// CHECK: %[[VAL_a2:.*]] = bufferization.to_tensor %[[VAL_83]] : memref<?xf32>
// CHECK: %[[VAL_a3:.*]] = bufferization.to_tensor %[[VAL_81]] : memref<?xindex>
// CHECK: %[[VAL_a4:.*]] = bufferization.to_tensor %[[VAL_82]] : memref<?xindex>
// CHECK: %[[VAL_a5:.*]] = sparse_tensor.pack %[[VAL_a2]], %[[VAL_a3]], %[[VAL_a4]] : tensor<?xf32>, tensor<?xindex>, tensor<?xindex> to tensor<8x8xf32, #{{.*}}>
// CHECK: %[[VAL_a5:.*]] = sparse_tensor.assemble %[[VAL_a2]], %[[VAL_a3]], %[[VAL_a4]] : tensor<?xf32>, tensor<?xindex>, tensor<?xindex> to tensor<8x8xf32, #{{.*}}>
// CHECK: return %[[VAL_a5]] : tensor<8x8xf32, #{{.*}}>
// CHECK: }
func.func @matmulCSR(%A: tensor<8x8xf32, #CSR>,

View File

@ -13,7 +13,7 @@ func.func @invalid_new_dense(%arg0: !llvm.ptr<i8>) -> tensor<32xf32> {
func.func @non_static_pack_ret(%values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x1xi32>)
-> tensor<?xf64, #SparseVector> {
// expected-error@+1 {{the sparse-tensor must have static shape}}
%0 = sparse_tensor.pack %values, %pos, %coordinates
%0 = sparse_tensor.assemble %values, %pos, %coordinates
: tensor<6xf64>, tensor<2xi32>, tensor<6x1xi32> to tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
@ -25,7 +25,7 @@ func.func @non_static_pack_ret(%values: tensor<6xf64>, %pos: tensor<2xi32>, %coo
func.func @invalid_pack_type(%values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x1xi32>)
-> tensor<100xf32, #SparseVector> {
// expected-error@+1 {{input/output element-types don't match}}
%0 = sparse_tensor.pack %values, %pos, %coordinates
%0 = sparse_tensor.assemble %values, %pos, %coordinates
: tensor<6xf64>, tensor<2xi32>, tensor<6x1xi32> to tensor<100xf32, #SparseVector>
return %0 : tensor<100xf32, #SparseVector>
}
@ -37,7 +37,7 @@ func.func @invalid_pack_type(%values: tensor<6xf64>, %pos: tensor<2xi32>, %coord
func.func @invalid_pack_type(%values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x3xi32>)
-> tensor<100x2xf64, #SparseVector> {
// expected-error@+1 {{input/output trailing COO level-ranks don't match}}
%0 = sparse_tensor.pack %values, %pos, %coordinates
%0 = sparse_tensor.assemble %values, %pos, %coordinates
: tensor<6xf64>, tensor<2xi32>, tensor<6x3xi32> to tensor<100x2xf64, #SparseVector>
return %0 : tensor<100x2xf64, #SparseVector>
}
@ -49,7 +49,7 @@ func.func @invalid_pack_type(%values: tensor<6xf64>, %pos: tensor<2xi32>, %coord
func.func @invalid_pack_mis_position(%values: tensor<6xf64>, %coordinates: tensor<6xi32>)
-> tensor<2x100xf64, #CSR> {
// expected-error@+1 {{inconsistent number of fields between input/output}}
%0 = sparse_tensor.pack %values, %coordinates
%0 = sparse_tensor.assemble %values, %coordinates
: tensor<6xf64>, tensor<6xi32> to tensor<2x100xf64, #CSR>
return %0 : tensor<2x100xf64, #CSR>
}
@ -60,7 +60,7 @@ func.func @invalid_pack_mis_position(%values: tensor<6xf64>, %coordinates: tenso
func.func @invalid_unpack_type(%sp: tensor<100xf32, #SparseVector>, %values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x1xi32>) {
// expected-error@+1 {{input/output element-types don't match}}
%rv, %rp, %rc, %vl, %pl, %cl = sparse_tensor.unpack %sp : tensor<100xf32, #SparseVector>
%rv, %rp, %rc, %vl, %pl, %cl = sparse_tensor.disassemble %sp : tensor<100xf32, #SparseVector>
outs(%values, %pos, %coordinates : tensor<6xf64>, tensor<2xi32>, tensor<6x1xi32>)
-> tensor<6xf64>, (tensor<2xi32>, tensor<6x1xi32>), index, (index, index)
return
@ -72,7 +72,7 @@ func.func @invalid_unpack_type(%sp: tensor<100xf32, #SparseVector>, %values: ten
func.func @invalid_unpack_type(%sp: tensor<100x2xf64, #SparseVector>, %values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x3xi32>) {
// expected-error@+1 {{input/output trailing COO level-ranks don't match}}
%rv, %rp, %rc, %vl, %pl, %cl = sparse_tensor.unpack %sp : tensor<100x2xf64, #SparseVector>
%rv, %rp, %rc, %vl, %pl, %cl = sparse_tensor.disassemble %sp : tensor<100x2xf64, #SparseVector>
outs(%values, %pos, %coordinates : tensor<6xf64>, tensor<2xi32>, tensor<6x3xi32>)
-> tensor<6xf64>, (tensor<2xi32>, tensor<6x3xi32>), index, (index, index)
return
@ -84,7 +84,7 @@ func.func @invalid_unpack_type(%sp: tensor<100x2xf64, #SparseVector>, %values: t
func.func @invalid_unpack_mis_position(%sp: tensor<2x100xf64, #CSR>, %values: tensor<6xf64>, %coordinates: tensor<6xi32>) {
// expected-error@+1 {{inconsistent number of fields between input/output}}
%rv, %rc, %vl, %pl = sparse_tensor.unpack %sp : tensor<2x100xf64, #CSR>
%rv, %rc, %vl, %pl = sparse_tensor.disassemble %sp : tensor<2x100xf64, #CSR>
outs(%values, %coordinates : tensor<6xf64>, tensor<6xi32>)
-> tensor<6xf64>, (tensor<6xi32>), index, (index)
return

View File

@ -35,7 +35,7 @@ func.func @foo(%arg0: tensor<3xf64> {bufferization.writable = false},
//
// Pack the buffers into a sparse tensors.
//
%pack = sparse_tensor.pack %arg0, %arg2, %arg1
%pack = sparse_tensor.assemble %arg0, %arg2, %arg1
: tensor<3xf64>,
tensor<11xi32>,
tensor<3xi32> to tensor<10x10xf64, #CSR>
@ -76,7 +76,7 @@ func.func @bar(%arg0: tensor<3xf64> {bufferization.writable = true},
//
// Pack the buffers into a sparse tensors.
//
%pack = sparse_tensor.pack %arg0, %arg2, %arg1
%pack = sparse_tensor.assemble %arg0, %arg2, %arg1
: tensor<3xf64>,
tensor<11xi32>,
tensor<3xi32> to tensor<10x10xf64, #CSR>

View File

@ -19,11 +19,11 @@ func.func @sparse_new(%arg0: !llvm.ptr<i8>) -> tensor<128xf64, #SparseVector> {
// CHECK-SAME: %[[D:.*]]: tensor<6xf64>,
// CHECK-SAME: %[[P:.*]]: tensor<2xi32>,
// CHECK-SAME: %[[I:.*]]: tensor<6x1xi32>)
// CHECK: %[[R:.*]] = sparse_tensor.pack %[[D]], %[[P]], %[[I]]
// CHECK: %[[R:.*]] = sparse_tensor.assemble %[[D]], %[[P]], %[[I]]
// CHECK: return %[[R]] : tensor<100xf64, #{{.*}}>
func.func @sparse_pack(%data: tensor<6xf64>, %pos: tensor<2xi32>, %index: tensor<6x1xi32>)
-> tensor<100xf64, #SparseVector> {
%0 = sparse_tensor.pack %data, %pos, %index : tensor<6xf64>, tensor<2xi32>, tensor<6x1xi32>
%0 = sparse_tensor.assemble %data, %pos, %index : tensor<6xf64>, tensor<2xi32>, tensor<6x1xi32>
to tensor<100xf64, #SparseVector>
return %0 : tensor<100xf64, #SparseVector>
}
@ -36,14 +36,14 @@ func.func @sparse_pack(%data: tensor<6xf64>, %pos: tensor<2xi32>, %index: tensor
// CHECK-SAME: %[[OD:.*]]: tensor<6xf64>
// CHECK-SAME: %[[OP:.*]]: tensor<2xindex>
// CHECK-SAME: %[[OI:.*]]: tensor<6x1xi32>
// CHECK: %[[D:.*]], %[[P:.*]]:2, %[[DL:.*]], %[[PL:.*]]:2 = sparse_tensor.unpack %[[T]]
// CHECK: %[[D:.*]], %[[P:.*]]:2, %[[DL:.*]], %[[PL:.*]]:2 = sparse_tensor.disassemble %[[T]]
// CHECK: return %[[D]], %[[P]]#0, %[[P]]#1
func.func @sparse_unpack(%sp : tensor<100xf64, #SparseVector>,
%od : tensor<6xf64>,
%op : tensor<2xindex>,
%oi : tensor<6x1xi32>)
-> (tensor<6xf64>, tensor<2xindex>, tensor<6x1xi32>) {
%rd, %rp, %ri, %vl, %pl, %cl = sparse_tensor.unpack %sp : tensor<100xf64, #SparseVector>
%rd, %rp, %ri, %vl, %pl, %cl = sparse_tensor.disassemble %sp : tensor<100xf64, #SparseVector>
outs(%od, %op, %oi : tensor<6xf64>, tensor<2xindex>, tensor<6x1xi32>)
-> tensor<6xf64>, (tensor<2xindex>, tensor<6x1xi32>), index, (index, index)
return %rd, %rp, %ri : tensor<6xf64>, tensor<2xindex>, tensor<6x1xi32>

View File

@ -31,7 +31,7 @@
// CHECK: }
func.func @sparse_pack(%values: tensor<6xf64>, %pos:tensor<2xindex>, %coordinates: tensor<6x2xi32>)
-> tensor<100x100xf64, #COO> {
%0 = sparse_tensor.pack %values, %pos, %coordinates
%0 = sparse_tensor.assemble %values, %pos, %coordinates
: tensor<6xf64>, tensor<2xindex>, tensor<6x2xi32> to tensor<100x100xf64, #COO>
return %0 : tensor<100x100xf64, #COO>
}
@ -70,7 +70,7 @@ func.func @sparse_unpack(%sp : tensor<100x100xf64, #COO>,
%op : tensor<2xindex>,
%oi : tensor<6x2xi32>)
-> (tensor<6xf64>, tensor<2xindex>, tensor<6x2xi32>) {
%rd, %rp, %ri, %dl, %pl, %il = sparse_tensor.unpack %sp : tensor<100x100xf64, #COO>
%rd, %rp, %ri, %dl, %pl, %il = sparse_tensor.disassemble %sp : tensor<100x100xf64, #COO>
outs(%od, %op, %oi : tensor<6xf64>, tensor<2xindex>, tensor<6x2xi32>)
-> tensor<6xf64>, (tensor<2xindex>, tensor<6x2xi32>), index, (index, index)
return %rd, %rp, %ri : tensor<6xf64>, tensor<2xindex>, tensor<6x2xi32>

View File

@ -24,7 +24,7 @@
// REDEFINE: %{sparse_compiler_opts} = enable-runtime-library=false vl=4
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
// TODO: support sparse_tensor.unpack on libgen path.
// TODO: support sparse_tensor.disassemble on libgen path.
#SortedCOO = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
@ -81,9 +81,9 @@ module {
[ 7, 8]]
> : tensor<3x2xi32>
%s4 = sparse_tensor.pack %data, %pos, %index : tensor<3xf64>, tensor<2xindex>, tensor<3x2xindex>
%s4 = sparse_tensor.assemble %data, %pos, %index : tensor<3xf64>, tensor<2xindex>, tensor<3x2xindex>
to tensor<10x10xf64, #SortedCOO>
%s5= sparse_tensor.pack %data, %pos32, %index32 : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32>
%s5= sparse_tensor.assemble %data, %pos32, %index32 : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32>
to tensor<10x10xf64, #SortedCOOI32>
%csr_data = arith.constant dense<
@ -97,7 +97,7 @@ module {
%csr_index32 = arith.constant dense<
[1, 0, 1]
> : tensor<3xi32>
%csr= sparse_tensor.pack %csr_data, %csr_pos32, %csr_index32 : tensor<4xf64>, tensor<3xi32>, tensor<3xi32>
%csr= sparse_tensor.assemble %csr_data, %csr_pos32, %csr_index32 : tensor<4xf64>, tensor<3xi32>, tensor<3xi32>
to tensor<2x2xf64, #CSR>
%bdata = arith.constant dense<
@ -116,7 +116,7 @@ module {
[ 4, 2],
[ 10, 10]]
> : tensor<6x2xindex>
%bs = sparse_tensor.pack %bdata, %bpos, %bindex :
%bs = sparse_tensor.assemble %bdata, %bpos, %bindex :
tensor<6xf64>, tensor<4xindex>, tensor<6x2xindex> to tensor<2x10x10xf64, #BCOO>
// CHECK:1
@ -176,7 +176,7 @@ module {
%d_csr = tensor.empty() : tensor<4xf64>
%p_csr = tensor.empty() : tensor<3xi32>
%i_csr = tensor.empty() : tensor<3xi32>
%rd_csr, %rp_csr, %ri_csr, %ld_csr, %lp_csr, %li_csr = sparse_tensor.unpack %csr : tensor<2x2xf64, #CSR>
%rd_csr, %rp_csr, %ri_csr, %ld_csr, %lp_csr, %li_csr = sparse_tensor.disassemble %csr : tensor<2x2xf64, #CSR>
outs(%d_csr, %p_csr, %i_csr : tensor<4xf64>, tensor<3xi32>, tensor<3xi32>)
-> tensor<4xf64>, (tensor<3xi32>, tensor<3xi32>), index, (i32, i64)
@ -201,7 +201,7 @@ module {
%od = tensor.empty() : tensor<3xf64>
%op = tensor.empty() : tensor<2xi32>
%oi = tensor.empty() : tensor<3x2xi32>
%d, %p, %i, %dl, %pl, %il = sparse_tensor.unpack %s5 : tensor<10x10xf64, #SortedCOOI32>
%d, %p, %i, %dl, %pl, %il = sparse_tensor.disassemble %s5 : tensor<10x10xf64, #SortedCOOI32>
outs(%od, %op, %oi : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32>)
-> tensor<3xf64>, (tensor<2xi32>, tensor<3x2xi32>), index, (i32, i64)
@ -217,7 +217,7 @@ module {
%bod = tensor.empty() : tensor<6xf64>
%bop = tensor.empty() : tensor<4xindex>
%boi = tensor.empty() : tensor<6x2xindex>
%bd, %bp, %bi, %ld, %lp, %li = sparse_tensor.unpack %bs : tensor<2x10x10xf64, #BCOO>
%bd, %bp, %bi, %ld, %lp, %li = sparse_tensor.disassemble %bs : tensor<2x10x10xf64, #BCOO>
outs(%bod, %bop, %boi : tensor<6xf64>, tensor<4xindex>, tensor<6x2xindex>)
-> tensor<6xf64>, (tensor<4xindex>, tensor<6x2xindex>), index, (i32, tensor<i64>)

View File

@ -24,7 +24,7 @@
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
// TODO: This is considered to be a short-living tests and should be merged with sparse_pack.mlir
// after sparse_tensor.unpack is supported on libgen path.
// after sparse_tensor.disassemble is supported on libgen path.
#SortedCOO = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
@ -82,9 +82,9 @@ module {
[ 7, 8]]
> : tensor<3x2xi32>
%s4 = sparse_tensor.pack %data, %pos, %index : tensor<3xf64>, tensor<2xindex>, tensor<3x2xindex>
%s4 = sparse_tensor.assemble %data, %pos, %index : tensor<3xf64>, tensor<2xindex>, tensor<3x2xindex>
to tensor<10x10xf64, #SortedCOO>
%s5= sparse_tensor.pack %data, %pos32, %index32 : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32>
%s5= sparse_tensor.assemble %data, %pos32, %index32 : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32>
to tensor<10x10xf64, #SortedCOOI32>
%csr_data = arith.constant dense<
@ -98,7 +98,7 @@ module {
%csr_index32 = arith.constant dense<
[1, 0, 1]
> : tensor<3xi32>
%csr= sparse_tensor.pack %csr_data, %csr_pos32, %csr_index32 : tensor<4xf64>, tensor<3xi32>, tensor<3xi32>
%csr= sparse_tensor.assemble %csr_data, %csr_pos32, %csr_index32 : tensor<4xf64>, tensor<3xi32>, tensor<3xi32>
to tensor<2x2xf64, #CSR>
// CHECK:1