Correction to previous commit which mistakenly included older versions of some files; now includes the correct LLVM license header

llvm-svn: 107408
This commit is contained in:
Stephen Canon 2010-07-01 17:58:24 +00:00
parent 54be33925a
commit 74eaf1f66c
11 changed files with 311 additions and 115 deletions

View File

@ -1,16 +1,20 @@
/*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*/
//===-- lib/adddf3.c - Double-precision addition and subtraction --*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements double-precision soft-float addition and subtraction
// with the IEEE-754 default rounding (to nearest, ties to even).
//
//===----------------------------------------------------------------------===//
#define DOUBLE_PRECISION
#include "fp_lib.h"
// This file implements double-precision soft-float addition and subtraction
// with the IEEE-754 default rounding (to nearest, ties to even).
fp_t __adddf3(fp_t a, fp_t b) {
rep_t aRep = toRep(a);

View File

@ -1,16 +1,20 @@
/*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*/
//===-- lib/addsf3.c - Single-precision addition and subtraction --*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements single-precision soft-float addition and subtraction
// with the IEEE-754 default rounding (to nearest, ties to even).
//
//===----------------------------------------------------------------------===//
#define SINGLE_PRECISION
#include "fp_lib.h"
// This file implements single-precision soft-float addition and subtraction
// with the IEEE-754 default rounding (to nearest, ties to even).
fp_t __addsf3(fp_t a, fp_t b) {
rep_t aRep = toRep(a);

View File

@ -1,16 +1,15 @@
/*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*/
#define DOUBLE_PRECISION
#include "fp_lib.h"
// This file implements the following soft-float comparison routines:
//===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===//
//
// __eqdf2 __gedf2 __nedf2
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// // This file implements the following soft-float comparison routines:
//
// __eqdf2 __gedf2 __unorddf2
// __ledf2 __gtdf2
// __ltdf2
// __nedf2
@ -35,6 +34,11 @@
//
// Note that __ledf2( ) and __gedf2( ) are identical except in their handling of
// NaN values.
//
//===----------------------------------------------------------------------===//
#define DOUBLE_PRECISION
#include "fp_lib.h"
enum LE_RESULT {
LE_LESS = -1,
@ -75,7 +79,6 @@ enum LE_RESULT __ledf2(fp_t a, fp_t b) {
}
}
enum GE_RESULT {
GE_LESS = -1,
GE_EQUAL = 0,
@ -109,6 +112,8 @@ int __unorddf2(fp_t a, fp_t b) {
return aAbs > infRep || bAbs > infRep;
}
// The following are alternative names for the preceeding routines.
enum LE_RESULT __eqdf2(fp_t a, fp_t b) {
return __ledf2(a, b);
}

View File

@ -9,7 +9,7 @@
//
// This file implements the following soft-fp_t comparison routines:
//
// __eqsf2 __gesf2 __nesf2
// __eqsf2 __gesf2 __unordsf2
// __lesf2 __gtsf2
// __ltsf2
// __nesf2
@ -79,7 +79,6 @@ enum LE_RESULT __lesf2(fp_t a, fp_t b) {
}
}
enum GE_RESULT {
GE_LESS = -1,
GE_EQUAL = 0,
@ -113,7 +112,7 @@ int __unordsf2(fp_t a, fp_t b) {
return aAbs > infRep || bAbs > infRep;
}
// The following are just other names for the forgoing routines.
// The following are alternative names for the preceeding routines.
enum LE_RESULT __eqsf2(fp_t a, fp_t b) {
return __lesf2(a, b);
@ -130,4 +129,3 @@ enum LE_RESULT __nesf2(fp_t a, fp_t b) {
enum GE_RESULT __gtsf2(fp_t a, fp_t b) {
return __gesf2(a, b);
}

View File

@ -1,18 +1,15 @@
/*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*/
#include <stdint.h>
#include <limits.h>
//===-- lib/extendsfdf2.c - single -> double conversion -----------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a fairly generic conversion from a narrower to a wider
// IEEE-754 floating-point type. The next 10 lines parametrize which types
// are to be used as the source and destination, the actual name used for
// the conversion, and a suitable CLZ function for the source representation
// type.
// IEEE-754 floating-point type. The constants and types defined following the
// includes below parameterize the conversion.
//
// This routine can be trivially adapted to support conversions from
// half-precision or to quad-precision. It does not support types that don't
@ -38,8 +35,11 @@
//
// 2. quiet NaNs, if supported, are indicated by the leading bit of the
// significand field being set
//
//===----------------------------------------------------------------------===//
#define widen __extendsfdf2
#include <stdint.h>
#include <limits.h>
typedef float src_t;
typedef uint32_t src_rep_t;
@ -67,7 +67,7 @@ static inline dst_t dstFromRep(dst_rep_t x) {
// End helper routines. Conversion implementation follows.
dst_t widen(src_t a) {
dst_t __extendsfdf2(src_t a) {
// Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these.
@ -75,22 +75,25 @@ dst_t widen(src_t a) {
const int srcExpBits = srcBits - srcSigBits - 1;
const int srcInfExp = (1 << srcExpBits) - 1;
const int srcExpBias = srcInfExp >> 1;
const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
const src_rep_t srcAbsMask = srcSignMask - 1;
const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
const src_rep_t srcNaNCode = srcQNaN - 1;
const int dstBits = sizeof(dst_t)*CHAR_BIT;
const int dstExpBits = dstBits - dstSigBits - 1;
const int dstInfExp = (1 << dstExpBits) - 1;
const int dstExpBias = dstInfExp >> 1;
const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
// Break a into a sign and representation of the absolute value
src_rep_t aRep = srcToRep(a);
src_rep_t aAbs = aRep & srcAbsMask;
src_rep_t sign = aRep & srcSignMask;
const src_rep_t aRep = srcToRep(a);
const src_rep_t aAbs = aRep & srcAbsMask;
const src_rep_t sign = aRep & srcSignMask;
dst_rep_t absResult;
if (aAbs - srcMinNormal < srcInfinity - srcMinNormal) {
@ -104,11 +107,11 @@ dst_t widen(src_t a) {
else if (aAbs >= srcInfinity) {
// a is NaN or infinity.
// Conjure the result by beginning with infinity, then setting the qNaN
// bit if appropriate and then by right-aligning the rest of the
// trailing NaN payload field.
// bit (if needed) and right-aligning the rest of the trailing NaN
// payload field.
absResult = (dst_rep_t)dstInfExp << dstSigBits;
absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
absResult |= (aAbs & srcNaNCode);
absResult |= aAbs & srcNaNCode;
}
else if (aAbs) {
@ -128,6 +131,6 @@ dst_t widen(src_t a) {
}
// Apply the signbit to (dst_t)abs(a).
dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
return dstFromRep(result);
}

View File

@ -1,8 +1,22 @@
//===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a configuration header for soft-float routines in compiler-rt.
// This file does not provide any part of the compiler-rt interface.
// This file does not provide any part of the compiler-rt interface, but defines
// many useful constants and utility routines that are used in the
// implementation of the soft-float routines in compiler-rt.
//
// Assumes that float and double correspond to the IEEE-754 binary32 and
// binary64 types, respectively.
// binary64 types, respectively, and that integer endianness matches floating
// point endianness on the target platform.
//
//===----------------------------------------------------------------------===//
#ifndef FP_LIB_HEADER
#define FP_LIB_HEADER
@ -12,9 +26,6 @@
#include <limits.h>
#if defined SINGLE_PRECISION
#if 0
#pragma mark single definitions
#endif
typedef uint32_t rep_t;
typedef int32_t srep_t;
@ -27,9 +38,6 @@ static inline int rep_clz(rep_t a) {
}
#elif defined DOUBLE_PRECISION
#if 0
#pragma mark double definitions
#endif
typedef uint64_t rep_t;
typedef int64_t srep_t;
@ -52,21 +60,11 @@ static inline int rep_clz(rep_t a) {
#error Either SINGLE_PRECISION or DOUBLE_PRECISION must be defined.
#endif
#if 0
#pragma mark -
#pragma mark integer constants
#endif
#define typeWidth (sizeof(rep_t)*CHAR_BIT)
#define exponentBits (typeWidth - significandBits - 1)
#define maxExponent ((1 << exponentBits) - 1)
#define exponentBias (maxExponent >> 1)
#if 0
#pragma mark -
#pragma mark rep_t constants
#endif
#define implicitBit (REP_C(1) << significandBits)
#define significandMask (implicitBit - 1U)
#define signBit (REP_C(1) << (significandBits + exponentBits))
@ -77,11 +75,6 @@ static inline int rep_clz(rep_t a) {
#define quietBit (implicitBit >> 1)
#define qnanRep (exponentMask | quietBit)
#if 0
#pragma mark -
#pragma mark generic functions
#endif
static inline rep_t toRep(fp_t x) {
const union { fp_t f; rep_t i; } rep = {.f = x};
return rep.i;

View File

@ -1,21 +1,25 @@
/*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*/
//===-- lib/muldf3.c - Double-precision multiplication ------------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements double-precision soft-float multiplication
// with the IEEE-754 default rounding (to nearest, ties to even).
//
//===----------------------------------------------------------------------===//
#define DOUBLE_PRECISION
#include "fp_lib.h"
// This file implements double-precision soft-float multiplication with the
// IEEE-754 default rounding (to nearest, ties to even).
#define loWord(a) (a & 0xffffffffU)
#define hiWord(a) (a >> 32)
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
// some 64-bit platforms have this operation, but they tend to have hardware
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
// Each of the component 32x32 -> 64 products
@ -23,7 +27,7 @@ static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
const uint64_t plohi = loWord(a) * hiWord(b);
const uint64_t philo = hiWord(a) * loWord(b);
const uint64_t phihi = hiWord(a) * hiWord(b);
// Sum terms that compute to lo in a way that allows us to get the carry
// Sum terms that contribute to lo in a way that allows us to get the carry
const uint64_t r0 = loWord(plolo);
const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
*lo = r0 + (r1 << 32);

View File

@ -1,16 +1,20 @@
/*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*/
//===-- lib/mulsf3.c - Single-precision multiplication ------------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements single-precision soft-float multiplication
// with the IEEE-754 default rounding (to nearest, ties to even).
//
//===----------------------------------------------------------------------===//
#define SINGLE_PRECISION
#include "fp_lib.h"
// This file implements single-precision soft-float multiplication with the
// IEEE-754 default rounding (to nearest, ties to even).
// 32x32 --> 64 bit multiply
static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
const uint64_t product = (uint64_t)a*b;

View File

@ -1,13 +1,19 @@
/*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*/
//===-- lib/negdf3.c - double-precision negation ------------------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements double-precision soft-float negation.
//
//===----------------------------------------------------------------------===//
#define DOUBLE_PRECISION
#include "fp_lib.h"
fp_t __negsf2(fp_t a) {
fp_t __negdf2(fp_t a) {
return fromRep(toRep(a) ^ signBit);
}

View File

@ -1,9 +1,15 @@
/*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*/
//===-- lib/negsf3.c - single-precision negation ------------------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements single-precision soft-float negation.
//
//===----------------------------------------------------------------------===//
#define SINGLE_PRECISION
#include "fp_lib.h"

View File

@ -0,0 +1,169 @@
//===-- lib/truncdfsf2.c - double -> single conversion ------------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a fairly generic conversion from a wider to a narrower
// IEEE-754 floating-point type in the default (round to nearest, ties to even)
// rounding mode. The constants and types defined following the includes below
// parameterize the conversion.
//
// This routine can be trivially adapted to support conversions to
// half-precision or from quad-precision. It does not support types that don't
// use the usual IEEE-754 interchange formats; specifically, some work would be
// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
// double-double format.
//
// Note please, however, that this implementation is only intended to support
// *narrowing* operations; if you need to convert to a *wider* floating-point
// type (e.g. float -> double), then this routine will not do what you want it
// to.
//
// It also requires that integer types at least as large as both formats
// are available on the target platform; this may pose a problem when trying
// to add support for quad on some 32-bit systems, for example.
//
// Finally, the following assumptions are made:
//
// 1. floating-point types and integer types have the same endianness on the
// target platform
//
// 2. quiet NaNs, if supported, are indicated by the leading bit of the
// significand field being set
//
//===----------------------------------------------------------------------===//
#include <stdint.h>
#include <limits.h>
#include <stdbool.h>
typedef double src_t;
typedef uint64_t src_rep_t;
#define SRC_REP_C UINT64_C
static const int srcSigBits = 52;
typedef float dst_t;
typedef uint32_t dst_rep_t;
#define DST_REP_C UINT32_C
static const int dstSigBits = 23;
// End of specialization parameters. Two helper routines for conversion to and
// from the representation of floating-point data as integer values follow.
static inline src_rep_t srcToRep(src_t x) {
const union { src_t f; src_rep_t i; } rep = {.f = x};
return rep.i;
}
static inline dst_t dstFromRep(dst_rep_t x) {
const union { dst_t f; dst_rep_t i; } rep = {.i = x};
return rep.f;
}
// End helper routines. Conversion implementation follows.
dst_t __truncdfsf2(src_t a) {
// Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these.
const int srcBits = sizeof(src_t)*CHAR_BIT;
const int srcExpBits = srcBits - srcSigBits - 1;
const int srcInfExp = (1 << srcExpBits) - 1;
const int srcExpBias = srcInfExp >> 1;
const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
const src_rep_t srcSignificandMask = srcMinNormal - 1;
const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
const src_rep_t srcAbsMask = srcSignMask - 1;
const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
const src_rep_t srcNaNCode = srcQNaN - 1;
const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
const int dstBits = sizeof(dst_t)*CHAR_BIT;
const int dstExpBits = dstBits - dstSigBits - 1;
const int dstInfExp = (1 << dstExpBits) - 1;
const int dstExpBias = dstInfExp >> 1;
const int underflowExponent = srcExpBias + 1 - dstExpBias;
const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
const dst_rep_t dstNaNCode = dstQNaN - 1;
// Break a into a sign and representation of the absolute value
const src_rep_t aRep = srcToRep(a);
const src_rep_t aAbs = aRep & srcAbsMask;
const src_rep_t sign = aRep & srcSignMask;
dst_rep_t absResult;
if (aAbs - underflow < aAbs - overflow) {
// The exponent of a is within the range of normal numbers in the
// destination format. We can convert by simply right-shifting with
// rounding and adjusting the exponent.
absResult = aAbs >> (srcSigBits - dstSigBits);
absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
const src_rep_t roundBits = aAbs & roundMask;
// Round to nearest
if (roundBits > halfway)
absResult++;
// Ties to even
else if (roundBits == halfway)
absResult += absResult & 1;
}
else if (aAbs > srcInfinity) {
// a is NaN.
// Conjure the result by beginning with infinity, setting the qNaN
// bit and inserting the (truncated) trailing NaN field.
absResult = (dst_rep_t)dstInfExp << dstSigBits;
absResult |= dstQNaN;
absResult |= aAbs & dstNaNCode;
}
else if (aAbs > overflow) {
// a overflows to infinity.
absResult = (dst_rep_t)dstInfExp << dstSigBits;
}
else {
// a underflows on conversion to the destination type or is an exact
// zero. The result may be a denormal or zero. Extract the exponent
// to get the shift amount for the denormalization.
const int aExp = aAbs >> srcSigBits;
const int shift = srcExpBias - dstExpBias - aExp + 1;
const src_rep_t significand = aRep & srcSignificandMask | srcMinNormal;
// Right shift by the denormalization amount with sticky.
if (shift > srcSigBits) {
absResult = 0;
} else {
const bool sticky = significand << (srcBits - shift);
src_rep_t denormalizedSignificand = significand >> shift | sticky;
absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
const src_rep_t roundBits = denormalizedSignificand & roundMask;
// Round to nearest
if (roundBits > halfway)
absResult++;
// Ties to even
else if (roundBits == halfway)
absResult += absResult & 1;
}
}
// Apply the signbit to (dst_t)abs(a).
const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
return dstFromRep(result);
}