[flang][runtime] Handle aliasing in Assign()

Detect and handle LHS/RHS aliasing when effecting intrinsic
assignments via the Assign() runtime function.

Also: don't apply special handling for allocatable LHS when calling
a user-defined type-bound ASSIGNMENT(=) generic procedure for a
polymorphic type, and refactor some code into utility functions to
make Assign() more comprehensible.

Differential Revision: https://reviews.llvm.org/D144026
This commit is contained in:
Peter Klausler 2023-02-01 15:25:54 -08:00
parent 0f52c1f86c
commit 755535b5eb
6 changed files with 262 additions and 109 deletions

View File

@ -17,8 +17,8 @@
// must arrive here.
//
// Non-type-bound generic INTERFACE ASSIGNMENT(=) is resolved in semantics and
// need not be handled here in the runtime; ditto for type conversions on
// intrinsic assignments.
// need not be handled here in the runtime apart from derived type components;
// ditto for type conversions on intrinsic assignments.
#ifndef FORTRAN_RUNTIME_ASSIGN_H_
#define FORTRAN_RUNTIME_ASSIGN_H_
@ -32,6 +32,10 @@ extern "C" {
// API for lowering assignment
void RTNAME(Assign)(Descriptor &to, const Descriptor &from,
const char *sourceFile = nullptr, int sourceLine = 0);
// This variant has no finalization, defined assignment, or allocatable
// reallocation.
void RTNAME(AssignTemporary)(Descriptor &to, const Descriptor &from,
const char *sourceFile = nullptr, int sourceLine = 0);
} // extern "C"
} // namespace Fortran::runtime
#endif // FORTRAN_RUNTIME_ASSIGN_H_

View File

@ -7,7 +7,7 @@
//===----------------------------------------------------------------------===//
#include "flang/Runtime/allocatable.h"
#include "assign.h"
#include "assign-impl.h"
#include "derived.h"
#include "stat.h"
#include "terminator.h"

View File

@ -1,4 +1,4 @@
//===-- runtime/assign.h-----------------------------------------*- C++ -*-===//
//===-- runtime/assign-impl.h -----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@ -6,8 +6,8 @@
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_RUNTIME_ASSIGN_INTERNAL_H_
#define FORTRAN_RUNTIME_ASSIGN_INTERNAL_H_
#ifndef FORTRAN_RUNTIME_ASSIGN_IMPL_H_
#define FORTRAN_RUNTIME_ASSIGN_IMPL_H_
namespace Fortran::runtime {
class Descriptor;
@ -20,4 +20,4 @@ class Terminator;
void DoFromSourceAssign(Descriptor &, const Descriptor &, Terminator &);
} // namespace Fortran::runtime
#endif // FORTRAN_RUNTIME_ASSIGN_INTERNAL_H_
#endif // FORTRAN_RUNTIME_ASSIGN_IMPL_H_

View File

@ -7,7 +7,7 @@
//===----------------------------------------------------------------------===//
#include "flang/Runtime/assign.h"
#include "assign.h"
#include "assign-impl.h"
#include "derived.h"
#include "stat.h"
#include "terminator.h"
@ -16,6 +16,140 @@
namespace Fortran::runtime {
// Predicate: is the left-hand side of an assignment an allocated allocatable
// that must be deallocated?
static inline bool MustDeallocateLHS(
Descriptor &to, const Descriptor &from, Terminator &terminator) {
// Top-level assignments to allocatable variables (*not* components)
// may first deallocate existing content if there's about to be a
// change in type or shape; see F'2018 10.2.1.3(3).
if (!to.IsAllocatable() || !to.IsAllocated()) {
return false;
}
if (to.type() != from.type()) {
return true;
}
DescriptorAddendum *toAddendum{to.Addendum()};
const typeInfo::DerivedType *toDerived{
toAddendum ? toAddendum->derivedType() : nullptr};
const DescriptorAddendum *fromAddendum{from.Addendum()};
const typeInfo::DerivedType *fromDerived{
fromAddendum ? fromAddendum->derivedType() : nullptr};
if (toDerived != fromDerived) {
return true;
}
if (toAddendum) {
// Distinct LEN parameters? Deallocate
std::size_t lenParms{fromDerived ? fromDerived->LenParameters() : 0};
for (std::size_t j{0}; j < lenParms; ++j) {
if (toAddendum->LenParameterValue(j) !=
fromAddendum->LenParameterValue(j)) {
return true;
}
}
}
if (from.rank() > 0) {
// Distinct shape? Deallocate
int rank{to.rank()};
for (int j{0}; j < rank; ++j) {
if (to.GetDimension(j).Extent() != from.GetDimension(j).Extent()) {
return true;
}
}
}
return false;
}
// Utility: allocate the allocatable left-hand side, either because it was
// originally deallocated or because it required reallocation
static int AllocateAssignmentLHS(
Descriptor &to, const Descriptor &from, Terminator &terminator) {
to.raw().type = from.raw().type;
to.raw().elem_len = from.ElementBytes();
const typeInfo::DerivedType *derived{nullptr};
if (const DescriptorAddendum * fromAddendum{from.Addendum()}) {
derived = fromAddendum->derivedType();
if (DescriptorAddendum * toAddendum{to.Addendum()}) {
toAddendum->set_derivedType(derived);
std::size_t lenParms{derived ? derived->LenParameters() : 0};
for (std::size_t j{0}; j < lenParms; ++j) {
toAddendum->SetLenParameterValue(j, fromAddendum->LenParameterValue(j));
}
}
}
// subtle: leave bounds in place when "from" is scalar (10.2.1.3(3))
int rank{from.rank()};
auto stride{static_cast<SubscriptValue>(to.ElementBytes())};
for (int j{0}; j < rank; ++j) {
auto &toDim{to.GetDimension(j)};
const auto &fromDim{from.GetDimension(j)};
toDim.SetBounds(fromDim.LowerBound(), fromDim.UpperBound());
toDim.SetByteStride(stride);
stride *= toDim.Extent();
}
int result{ReturnError(terminator, to.Allocate())};
if (result == StatOk && derived && !derived->noInitializationNeeded()) {
result = ReturnError(terminator, Initialize(to, *derived, terminator));
}
return result;
}
// least <= 0, most >= 0
static void MaximalByteOffsetRange(
const Descriptor &desc, std::int64_t &least, std::int64_t &most) {
least = most = 0;
if (desc.ElementBytes() == 0) {
return;
}
int n{desc.raw().rank};
for (int j{0}; j < n; ++j) {
const auto &dim{desc.GetDimension(j)};
auto extent{dim.Extent()};
if (extent > 0) {
auto sm{dim.ByteStride()};
if (sm < 0) {
least += extent * sm;
} else {
most += extent * sm;
}
}
}
most += desc.ElementBytes() - 1;
}
static inline bool RangesOverlap(const char *aStart, const char *aEnd,
const char *bStart, const char *bEnd) {
return aEnd >= bStart && bEnd >= aStart;
}
// Predicate: could the left-hand and right-hand sides of the assignment
// possibly overlap in memory? Note that the descriptors themeselves
// are included in the test.
static bool MayAlias(const Descriptor &x, const Descriptor &y) {
const char *xDesc{reinterpret_cast<const char *>(&x)};
const char *xDescLast{xDesc + x.SizeInBytes()};
const char *yDesc{reinterpret_cast<const char *>(&x)};
const char *yDescLast{yDesc + y.SizeInBytes()};
std::int64_t xLeast, xMost, yLeast, yMost;
MaximalByteOffsetRange(x, xLeast, xMost);
MaximalByteOffsetRange(y, yLeast, yMost);
const char *xBase{x.OffsetElement()};
const char *yBase{y.OffsetElement()};
if (RangesOverlap(xDesc, xDescLast, yBase + yLeast, yBase + yMost) ||
RangesOverlap(yDesc, yDescLast, xBase + xLeast, xBase + xMost)) {
// A descriptor overlaps with the storage described by the other;
// this can arise when an allocatable or pointer component is
// being assigned to/from.
return true;
}
if (!RangesOverlap(
xBase + xLeast, xBase + xMost, yBase + yLeast, yBase + yMost)) {
return false; // no storage overlap
}
// TODO: check dimensions: if any is independent, return false
return true;
}
static void DoScalarDefinedAssignment(const Descriptor &to,
const Descriptor &from, const typeInfo::SpecialBinding &special) {
bool toIsDesc{special.IsArgDescriptor(0)};
@ -41,8 +175,10 @@ static void DoScalarDefinedAssignment(const Descriptor &to,
}
static void DoElementalDefinedAssignment(const Descriptor &to,
const Descriptor &from, const typeInfo::SpecialBinding &special,
std::size_t toElements, SubscriptValue toAt[], SubscriptValue fromAt[]) {
const Descriptor &from, const typeInfo::SpecialBinding &special) {
SubscriptValue toAt[maxRank], fromAt[maxRank];
to.GetLowerBounds(toAt);
from.GetLowerBounds(fromAt);
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc[2];
Descriptor &toElementDesc{statDesc[0].descriptor()};
Descriptor &fromElementDesc{statDesc[1].descriptor()};
@ -52,66 +188,92 @@ static void DoElementalDefinedAssignment(const Descriptor &to,
fromElementDesc = from;
fromElementDesc.raw().attribute = CFI_attribute_pointer;
fromElementDesc.raw().rank = 0;
for (std::size_t j{0}; j < toElements;
++j, to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
for (std::size_t toElements{to.Elements()}; toElements-- > 0;
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
toElementDesc.set_base_addr(to.Element<char>(toAt));
fromElementDesc.set_base_addr(from.Element<char>(fromAt));
DoScalarDefinedAssignment(toElementDesc, fromElementDesc, special);
}
}
// Assigns one object to another via intrinsic assignment (F'2018 10.2.1.3) or
// type-bound (only!) defined assignment (10.2.1.4), as appropriate. Performs
// finalization, scalar expansion, & allocatable (re)allocation as needed.
// Does not perform intrinsic assignment implicit type conversion. Both
// descriptors must be initialized. Recurses as needed to handle components.
// Do not perform allocatable reallocation if \p skipRealloc is true, which is
// used for allocate statement with source specifier.
// Common implementation of assignments, both intrinsic assignments and
// those cases of polymorphic user-defined ASSIGNMENT(=) TBPs that could not
// be resolved in semantics. Most assignment statements do not need any
// of the capabilities of this function -- but when the LHS is allocatable,
// the type might have a user-defined ASSIGNMENT(=), or the type might be
// finalizable, this function should be used.
static void Assign(Descriptor &to, const Descriptor &from,
Terminator &terminator, bool skipRealloc = false,
bool skipFinalization = false) {
Terminator &terminator, bool maybeReallocate, bool needFinalization,
bool canBeDefinedAssignment, bool componentCanBeDefinedAssignment) {
bool mustDeallocateLHS{
maybeReallocate && MustDeallocateLHS(to, from, terminator)};
DescriptorAddendum *toAddendum{to.Addendum()};
const typeInfo::DerivedType *toDerived{
toAddendum ? toAddendum->derivedType() : nullptr};
const DescriptorAddendum *fromAddendum{from.Addendum()};
const typeInfo::DerivedType *fromDerived{
fromAddendum ? fromAddendum->derivedType() : nullptr};
bool wasJustAllocated{false};
if (to.IsAllocatable()) {
std::size_t lenParms{fromDerived ? fromDerived->LenParameters() : 0};
if (to.IsAllocated() && !skipRealloc) {
// Top-level assignments to allocatable variables (*not* components)
// may first deallocate existing content if there's about to be a
// change in type or shape; see F'2018 10.2.1.3(3).
bool deallocate{false};
if (to.type() != from.type()) {
deallocate = true;
} else if (toDerived != fromDerived) {
deallocate = true;
} else {
if (toAddendum) {
// Distinct LEN parameters? Deallocate
for (std::size_t j{0}; j < lenParms; ++j) {
if (toAddendum->LenParameterValue(j) !=
fromAddendum->LenParameterValue(j)) {
deallocate = true;
break;
}
}
}
if (from.rank() > 0) {
// Distinct shape? Deallocate
int rank{to.rank()};
for (int j{0}; j < rank; ++j) {
if (to.GetDimension(j).Extent() != from.GetDimension(j).Extent()) {
deallocate = true;
break;
}
}
}
if (canBeDefinedAssignment && toDerived) {
needFinalization &= !toDerived->noFinalizationNeeded();
// Check for a user-defined assignment type-bound procedure;
// see 10.2.1.4-5. A user-defined assignment TBP defines all of
// the semantics, including allocatable (re)allocation and any
// finalization.
if (to.rank() == 0) {
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ScalarAssignment)}) {
return DoScalarDefinedAssignment(to, from, *special);
}
if (deallocate) {
to.Destroy(true /*finalize*/);
}
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ElementalAssignment)}) {
return DoElementalDefinedAssignment(to, from, *special);
}
}
bool isSimpleMemmove{!toDerived && to.rank() == from.rank() &&
to.IsContiguous() && from.IsContiguous()};
StaticDescriptor<maxRank, true, 10 /*?*/> deferredDeallocStatDesc;
Descriptor *deferDeallocation{nullptr};
if (MayAlias(to, from)) {
if (mustDeallocateLHS) {
deferDeallocation = &deferredDeallocStatDesc.descriptor();
std::memcpy(deferDeallocation, &to, to.SizeInBytes());
to.set_base_addr(nullptr);
} else if (!isSimpleMemmove) {
// Handle LHS/RHS aliasing by copying RHS into a temp, then
// recursively assigning from that temp.
auto descBytes{from.SizeInBytes()};
StaticDescriptor<maxRank, true, 16> staticDesc;
Descriptor &newFrom{staticDesc.descriptor()};
std::memcpy(&newFrom, &from, descBytes);
auto stat{ReturnError(terminator, newFrom.Allocate())};
if (stat == StatOk) {
char *toAt{newFrom.OffsetElement()};
std::size_t fromElements{from.Elements()};
std::size_t elementBytes{from.ElementBytes()};
if (from.IsContiguous()) {
std::memcpy(toAt, from.OffsetElement(), fromElements * elementBytes);
} else {
SubscriptValue fromAt[maxRank];
for (from.GetLowerBounds(fromAt); fromElements-- > 0;
toAt += elementBytes, from.IncrementSubscripts(fromAt)) {
std::memcpy(toAt, from.Element<char>(fromAt), elementBytes);
}
}
Assign(to, newFrom, terminator, /*maybeReallocate=*/false,
needFinalization, false, componentCanBeDefinedAssignment);
newFrom.Deallocate();
}
return;
}
}
if (to.IsAllocatable()) {
if (mustDeallocateLHS) {
if (deferDeallocation) {
if (needFinalization && toDerived) {
Finalize(to, *toDerived);
needFinalization = false;
}
} else {
to.Destroy(/*finalize=*/needFinalization);
needFinalization = false;
}
} else if (to.rank() != from.rank()) {
terminator.Crash("Assign: mismatched ranks (%d != %d) in assignment to "
@ -119,31 +281,10 @@ static void Assign(Descriptor &to, const Descriptor &from,
to.rank(), from.rank());
}
if (!to.IsAllocated()) {
to.raw().type = from.raw().type;
to.raw().elem_len = from.ElementBytes();
if (toAddendum) {
toDerived = fromDerived;
toAddendum->set_derivedType(toDerived);
for (std::size_t j{0}; j < lenParms; ++j) {
toAddendum->SetLenParameterValue(
j, fromAddendum->LenParameterValue(j));
}
if (AllocateAssignmentLHS(to, from, terminator) != StatOk) {
return;
}
// subtle: leave bounds in place when "from" is scalar (10.2.1.3(3))
int rank{from.rank()};
auto stride{static_cast<SubscriptValue>(to.ElementBytes())};
for (int j{0}; j < rank; ++j) {
auto &toDim{to.GetDimension(j)};
const auto &fromDim{from.GetDimension(j)};
toDim.SetBounds(fromDim.LowerBound(), fromDim.UpperBound());
toDim.SetByteStride(stride);
stride *= toDim.Extent();
}
ReturnError(terminator, to.Allocate());
if (fromDerived && !fromDerived->noInitializationNeeded()) {
ReturnError(terminator, Initialize(to, *toDerived, terminator));
}
wasJustAllocated = true;
needFinalization = false;
}
}
SubscriptValue toAt[maxRank];
@ -169,24 +310,11 @@ static void Assign(Descriptor &to, const Descriptor &from,
"Assign: mismatching element sizes (to %zd bytes != from %zd bytes)",
elementBytes, from.ElementBytes());
}
if (toDerived) { // Derived type assignment
// Check for defined assignment type-bound procedures (10.2.1.4-5)
if (to.rank() == 0) {
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ScalarAssignment)}) {
return DoScalarDefinedAssignment(to, from, *special);
}
}
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ElementalAssignment)}) {
return DoElementalDefinedAssignment(
to, from, *special, toElements, toAt, fromAt);
}
if (toDerived) {
// Derived type intrinsic assignment, which is componentwise and elementwise
// for all components, including parent components (10.2.1.2-3).
// The target is first finalized if still necessary (7.5.6.3(1))
if (!wasJustAllocated && !toDerived->noFinalizationNeeded() &&
!skipFinalization) {
if (needFinalization) {
Finalize(to, *toDerived);
}
// Copy the data components (incl. the parent) first.
@ -207,8 +335,10 @@ static void Assign(Descriptor &to, const Descriptor &from,
comp.CreatePointerDescriptor(toCompDesc, to, terminator, toAt);
comp.CreatePointerDescriptor(
fromCompDesc, from, terminator, fromAt);
Assign(toCompDesc, fromCompDesc, terminator, /*skipRealloc=*/false,
/*skipFinalization=*/true);
Assign(toCompDesc, fromCompDesc, terminator,
/*maybeReallocate=*/true,
/*needFinalization=*/false, componentCanBeDefinedAssignment,
componentCanBeDefinedAssignment);
}
} else { // Component has intrinsic type; simply copy raw bytes
std::size_t componentByteSize{comp.SizeInBytes(to)};
@ -253,7 +383,9 @@ static void Assign(Descriptor &to, const Descriptor &from,
continue; // F'2018 10.2.1.3(13)(2)
}
}
Assign(*toDesc, *fromDesc, terminator, /*skipRealloc=*/false);
Assign(*toDesc, *fromDesc, terminator, /*maybeReallocate=*/true,
/*needFinalization=*/false, componentCanBeDefinedAssignment,
componentCanBeDefinedAssignment);
}
break;
}
@ -272,8 +404,7 @@ static void Assign(Descriptor &to, const Descriptor &from,
}
}
} else { // intrinsic type, intrinsic assignment
if (to.rank() == from.rank() && to.IsContiguous() && from.IsContiguous()) {
// Everything is contiguous; do a single big copy
if (isSimpleMemmove) {
std::memmove(
to.raw().base_addr, from.raw().base_addr, toElements * elementBytes);
} else { // elemental copies
@ -284,6 +415,9 @@ static void Assign(Descriptor &to, const Descriptor &from,
}
}
}
if (deferDeallocation) {
deferDeallocation->Destroy();
}
}
void DoFromSourceAssign(
@ -300,7 +434,8 @@ void DoFromSourceAssign(
alloc.IncrementSubscripts(allocAt)) {
Descriptor allocElement{*Descriptor::Create(*allocDerived,
reinterpret_cast<void *>(alloc.Element<char>(allocAt)), 0)};
Assign(allocElement, source, terminator, /*skipRealloc=*/true);
Assign(allocElement, source, terminator, /*maybeReallocate=*/false,
/*needFinalization=*/false, false, false);
}
} else { // intrinsic type
for (std::size_t n{alloc.Elements()}; n-- > 0;
@ -310,7 +445,8 @@ void DoFromSourceAssign(
}
}
} else {
Assign(alloc, source, terminator, /*skipRealloc=*/true);
Assign(alloc, source, terminator, /*maybeReallocate=*/false,
/*needFinalization=*/false, false, false);
}
}
@ -318,7 +454,22 @@ extern "C" {
void RTNAME(Assign)(Descriptor &to, const Descriptor &from,
const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
Assign(to, from, terminator);
// All top-level defined assignments can be recognized in semantics and
// will have been already been converted to calls, so don't check for
// defined assignment apart from components.
Assign(to, from, terminator, /*maybeReallocate=*/true,
/*needFinalization=*/true,
/*canBeDefinedAssignment=*/false,
/*componentCanBeDefinedAssignment=*/true);
}
void RTNAME(AssignTemporary)(Descriptor &to, const Descriptor &from,
const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
Assign(to, from, terminator, /*maybeReallocate=*/false,
/*needFinalization=*/false,
/*canBeDefinedAssignment=*/false,
/*componentCanBeDefinedAssignment=*/false);
}
} // extern "C"

View File

@ -144,7 +144,5 @@ bool RTNAME(ExtendsTypeOf)(const Descriptor &a, const Descriptor &mold) {
return false;
}
// TODO: Assign()
} // extern "C"
} // namespace Fortran::runtime

View File

@ -7,7 +7,7 @@
//===----------------------------------------------------------------------===//
#include "flang/Runtime/pointer.h"
#include "assign.h"
#include "assign-impl.h"
#include "derived.h"
#include "stat.h"
#include "terminator.h"