Revert "[XRay] Move-only Allocator, FunctionCallTrie, and Array"

This reverts commits r348438, r348445, and r348449 due to breakages with
gcc-4.8 builds.

llvm-svn: 348455
This commit is contained in:
Dean Michael Berris 2018-12-06 03:28:57 +00:00
parent f587857c88
commit 82f7b21f17
7 changed files with 392 additions and 903 deletions

View File

@ -309,36 +309,6 @@ TEST(FunctionCallTrieTest, MergeInto) {
EXPECT_EQ(F2.Callees.size(), 0u);
}
TEST(FunctionCallTrieTest, PlacementNewOnAlignedStorage) {
profilingFlags()->setDefaults();
typename std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
alignof(FunctionCallTrie::Allocators)>::type
AllocatorsStorage;
new (&AllocatorsStorage)
FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
auto *A =
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);
typename std::aligned_storage<sizeof(FunctionCallTrie),
alignof(FunctionCallTrie)>::type FCTStorage;
new (&FCTStorage) FunctionCallTrie(*A);
auto *T = reinterpret_cast<FunctionCallTrie *>(&FCTStorage);
// Put some data into it.
T->enterFunction(1, 0, 0);
T->exitFunction(1, 1, 0);
// Re-initialize the objects in storage.
T->~FunctionCallTrie();
A->~Allocators();
new (A) FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
new (T) FunctionCallTrie(*A);
// Then put some data into it again.
T->enterFunction(1, 0, 0);
T->exitFunction(1, 1, 0);
}
} // namespace
} // namespace __xray

View File

@ -221,91 +221,5 @@ TEST(SegmentedArrayTest, SimulateStackBehaviour) {
}
}
TEST(SegmentedArrayTest, PlacementNewOnAlignedStorage) {
using AllocatorType = typename Array<ShadowStackEntry>::AllocatorType;
typename std::aligned_storage<sizeof(AllocatorType),
alignof(AllocatorType)>::type AllocatorStorage;
new (&AllocatorStorage) AllocatorType(1 << 10);
auto *A = reinterpret_cast<AllocatorType *>(&AllocatorStorage);
typename std::aligned_storage<sizeof(Array<ShadowStackEntry>),
alignof(Array<ShadowStackEntry>)>::type
ArrayStorage;
new (&ArrayStorage) Array<ShadowStackEntry>(*A);
auto *Data = reinterpret_cast<Array<ShadowStackEntry> *>(&ArrayStorage);
static uint64_t Dummy = 0;
constexpr uint64_t Max = 9;
for (uint64_t i = 0; i < Max; ++i) {
auto P = Data->Append({i, &Dummy});
ASSERT_NE(P, nullptr);
ASSERT_EQ(P->NodePtr, &Dummy);
auto &Back = Data->back();
ASSERT_EQ(Back.NodePtr, &Dummy);
ASSERT_EQ(Back.EntryTSC, i);
}
// Simulate a stack by checking the data from the end as we're trimming.
auto Counter = Max;
ASSERT_EQ(Data->size(), size_t(Max));
while (!Data->empty()) {
const auto &Top = Data->back();
uint64_t *TopNode = Top.NodePtr;
EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter;
Data->trim(1);
--Counter;
ASSERT_EQ(Data->size(), size_t(Counter));
}
// Once the stack is exhausted, we re-use the storage.
for (uint64_t i = 0; i < Max; ++i) {
auto P = Data->Append({i, &Dummy});
ASSERT_NE(P, nullptr);
ASSERT_EQ(P->NodePtr, &Dummy);
auto &Back = Data->back();
ASSERT_EQ(Back.NodePtr, &Dummy);
ASSERT_EQ(Back.EntryTSC, i);
}
// We re-initialize the storage, by calling the destructor and
// placement-new'ing again.
Data->~Array();
A->~AllocatorType();
new (A) AllocatorType(1 << 10);
new (Data) Array<ShadowStackEntry>(*A);
// Then re-do the test.
for (uint64_t i = 0; i < Max; ++i) {
auto P = Data->Append({i, &Dummy});
ASSERT_NE(P, nullptr);
ASSERT_EQ(P->NodePtr, &Dummy);
auto &Back = Data->back();
ASSERT_EQ(Back.NodePtr, &Dummy);
ASSERT_EQ(Back.EntryTSC, i);
}
// Simulate a stack by checking the data from the end as we're trimming.
Counter = Max;
ASSERT_EQ(Data->size(), size_t(Max));
while (!Data->empty()) {
const auto &Top = Data->back();
uint64_t *TopNode = Top.NodePtr;
EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter;
Data->trim(1);
--Counter;
ASSERT_EQ(Data->size(), size_t(Counter));
}
// Once the stack is exhausted, we re-use the storage.
for (uint64_t i = 0; i < Max; ++i) {
auto P = Data->Append({i, &Dummy});
ASSERT_NE(P, nullptr);
ASSERT_EQ(P->NodePtr, &Dummy);
auto &Back = Data->back();
ASSERT_EQ(Back.NodePtr, &Dummy);
ASSERT_EQ(Back.EntryTSC, i);
}
}
} // namespace
} // namespace __xray

View File

@ -21,8 +21,8 @@
#include "sanitizer_common/sanitizer_mutex.h"
#if SANITIZER_FUCHSIA
#include <zircon/process.h>
#include <zircon/status.h>
#include <zircon/syscalls.h>
#include <zircon/status.h>
#else
#include "sanitizer_common/sanitizer_posix.h"
#endif
@ -50,20 +50,20 @@ template <class T> T *allocate() XRAY_NEVER_INSTRUMENT {
}
uintptr_t B;
Status =
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
Vmo, 0, sizeof(T), &B);
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
Vmo, 0, sizeof(T), &B);
_zx_handle_close(Vmo);
if (Status != ZX_OK) {
if (Verbosity())
Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n", sizeof(T),
_zx_status_get_string(Status));
Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n",
sizeof(T), _zx_status_get_string(Status));
return nullptr;
}
return reinterpret_cast<T *>(B);
#else
uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
int ErrNo = 0;
int ErrNo;
if (UNLIKELY(internal_iserror(B, &ErrNo))) {
if (Verbosity())
Report(
@ -80,8 +80,8 @@ template <class T> void deallocate(T *B) XRAY_NEVER_INSTRUMENT {
return;
uptr RoundedSize = RoundUpTo(sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
_zx_vmar_unmap(_zx_vmar_root_self(), reinterpret_cast<uintptr_t>(B),
RoundedSize);
_zx_vmar_unmap(_zx_vmar_root_self(),
reinterpret_cast<uintptr_t>(B), RoundedSize);
#else
internal_munmap(B, RoundedSize);
#endif
@ -95,24 +95,25 @@ T *allocateBuffer(size_t S) XRAY_NEVER_INSTRUMENT {
zx_status_t Status = _zx_vmo_create(RoundedSize, 0, &Vmo);
if (Status != ZX_OK) {
if (Verbosity())
Report("XRay Profiling: Failed to create VMO of size %zu: %s\n", S,
_zx_status_get_string(Status));
Report("XRay Profiling: Failed to create VMO of size %zu: %s\n",
S, _zx_status_get_string(Status));
return nullptr;
}
uintptr_t B;
Status = _zx_vmar_map(_zx_vmar_root_self(),
ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, Vmo, 0, S, &B);
Status =
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
Vmo, 0, S, &B);
_zx_handle_close(Vmo);
if (Status != ZX_OK) {
if (Verbosity())
Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n", S,
_zx_status_get_string(Status));
Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n",
S, _zx_status_get_string(Status));
return nullptr;
}
#else
uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
int ErrNo = 0;
int ErrNo;
if (UNLIKELY(internal_iserror(B, &ErrNo))) {
if (Verbosity())
Report(
@ -129,8 +130,7 @@ template <class T> void deallocateBuffer(T *B, size_t S) XRAY_NEVER_INSTRUMENT {
return;
uptr RoundedSize = RoundUpTo(S * sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
_zx_vmar_unmap(_zx_vmar_root_self(), reinterpret_cast<uintptr_t>(B),
RoundedSize);
_zx_vmar_unmap(_zx_vmar_root_self(), reinterpret_cast<uintptr_t>(B), RoundedSize);
#else
internal_munmap(B, RoundedSize);
#endif
@ -171,7 +171,7 @@ template <size_t N> struct Allocator {
};
private:
size_t MaxMemory{0};
const size_t MaxMemory{0};
unsigned char *BackingStore = nullptr;
unsigned char *AlignedNextBlock = nullptr;
size_t AllocatedBlocks = 0;
@ -223,43 +223,7 @@ private:
public:
explicit Allocator(size_t M) XRAY_NEVER_INSTRUMENT
: MaxMemory(RoundUpTo(M, kCacheLineSize)),
BackingStore(nullptr),
AlignedNextBlock(nullptr),
AllocatedBlocks(0),
Mutex() {}
Allocator(const Allocator &) = delete;
Allocator &operator=(const Allocator &) = delete;
Allocator(Allocator &&O) XRAY_NEVER_INSTRUMENT {
SpinMutexLock L0(&Mutex);
SpinMutexLock L1(&O.Mutex);
MaxMemory = O.MaxMemory;
O.MaxMemory = 0;
BackingStore = O.BackingStore;
O.BackingStore = nullptr;
AlignedNextBlock = O.AlignedNextBlock;
O.AlignedNextBlock = nullptr;
AllocatedBlocks = O.AllocatedBlocks;
O.AllocatedBlocks = 0;
}
Allocator &operator=(Allocator &&O) XRAY_NEVER_INSTRUMENT {
SpinMutexLock L0(&Mutex);
SpinMutexLock L1(&O.Mutex);
MaxMemory = O.MaxMemory;
O.MaxMemory = 0;
if (BackingStore != nullptr)
deallocateBuffer(BackingStore, MaxMemory);
BackingStore = O.BackingStore;
O.BackingStore = nullptr;
AlignedNextBlock = O.AlignedNextBlock;
O.AlignedNextBlock = nullptr;
AllocatedBlocks = O.AllocatedBlocks;
O.AllocatedBlocks = 0;
return *this;
}
: MaxMemory(RoundUpTo(M, kCacheLineSize)) {}
Block Allocate() XRAY_NEVER_INSTRUMENT { return {Alloc()}; }

View File

@ -98,6 +98,9 @@ public:
struct NodeIdPair {
Node *NodePtr;
int32_t FId;
// Constructor for inplace-construction.
NodeIdPair(Node *N, int32_t F) : NodePtr(N), FId(F) {}
};
using NodeIdPairArray = Array<NodeIdPair>;
@ -115,6 +118,15 @@ public:
uint64_t CumulativeLocalTime; // Typically in TSC deltas, not wall-time.
int32_t FId;
// We add a constructor here to allow us to inplace-construct through
// Array<...>'s AppendEmplace.
Node(Node *P, NodeIdPairAllocatorType &A, uint64_t CC, uint64_t CLT,
int32_t F) XRAY_NEVER_INSTRUMENT : Parent(P),
Callees(A),
CallCount(CC),
CumulativeLocalTime(CLT),
FId(F) {}
// TODO: Include the compact histogram.
};
@ -123,6 +135,13 @@ private:
uint64_t EntryTSC;
Node *NodePtr;
uint16_t EntryCPU;
// We add a constructor here to allow us to inplace-construct through
// Array<...>'s AppendEmplace.
ShadowStackEntry(uint64_t T, Node *N, uint16_t C) XRAY_NEVER_INSTRUMENT
: EntryTSC{T},
NodePtr{N},
EntryCPU{C} {}
};
using NodeArray = Array<Node>;
@ -137,71 +156,20 @@ public:
using RootAllocatorType = RootArray::AllocatorType;
using ShadowStackAllocatorType = ShadowStackArray::AllocatorType;
// Use hosted aligned storage members to allow for trivial move and init.
// This also allows us to sidestep the potential-failing allocation issue.
typename std::aligned_storage<sizeof(NodeAllocatorType),
alignof(NodeAllocatorType)>::type
NodeAllocatorStorage;
typename std::aligned_storage<sizeof(RootAllocatorType),
alignof(RootAllocatorType)>::type
RootAllocatorStorage;
typename std::aligned_storage<sizeof(ShadowStackAllocatorType),
alignof(ShadowStackAllocatorType)>::type
ShadowStackAllocatorStorage;
typename std::aligned_storage<sizeof(NodeIdPairAllocatorType),
alignof(NodeIdPairAllocatorType)>::type
NodeIdPairAllocatorStorage;
NodeAllocatorType *NodeAllocator = nullptr;
RootAllocatorType *RootAllocator = nullptr;
ShadowStackAllocatorType *ShadowStackAllocator = nullptr;
NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
Allocators() = default;
Allocators() {}
Allocators(const Allocators &) = delete;
Allocators &operator=(const Allocators &) = delete;
explicit Allocators(uptr Max) XRAY_NEVER_INSTRUMENT {
new (&NodeAllocatorStorage) NodeAllocatorType(Max);
NodeAllocator =
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
new (&RootAllocatorStorage) RootAllocatorType(Max);
RootAllocator =
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
new (&ShadowStackAllocatorStorage) ShadowStackAllocatorType(Max);
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
&ShadowStackAllocatorStorage);
new (&NodeIdPairAllocatorStorage) NodeIdPairAllocatorType(Max);
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
&NodeIdPairAllocatorStorage);
}
Allocators(Allocators &&O) XRAY_NEVER_INSTRUMENT {
// Here we rely on the safety of memcpy'ing contents of the storage
// members, and then pointing the source pointers to nullptr.
internal_memcpy(&NodeAllocatorStorage, &O.NodeAllocatorStorage,
sizeof(NodeAllocatorType));
internal_memcpy(&RootAllocatorStorage, &O.RootAllocatorStorage,
sizeof(RootAllocatorType));
internal_memcpy(&ShadowStackAllocatorStorage,
&O.ShadowStackAllocatorStorage,
sizeof(ShadowStackAllocatorType));
internal_memcpy(&NodeIdPairAllocatorStorage,
&O.NodeIdPairAllocatorStorage,
sizeof(NodeIdPairAllocatorType));
NodeAllocator =
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
RootAllocator =
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
&ShadowStackAllocatorStorage);
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
&NodeIdPairAllocatorStorage);
Allocators(Allocators &&O) XRAY_NEVER_INSTRUMENT
: NodeAllocator(O.NodeAllocator),
RootAllocator(O.RootAllocator),
ShadowStackAllocator(O.ShadowStackAllocator),
NodeIdPairAllocator(O.NodeIdPairAllocator) {
O.NodeAllocator = nullptr;
O.RootAllocator = nullptr;
O.ShadowStackAllocator = nullptr;
@ -209,77 +177,79 @@ public:
}
Allocators &operator=(Allocators &&O) XRAY_NEVER_INSTRUMENT {
// When moving into an existing instance, we ensure that we clean up the
// current allocators.
if (NodeAllocator)
NodeAllocator->~NodeAllocatorType();
if (O.NodeAllocator) {
new (&NodeAllocatorStorage)
NodeAllocatorType(std::move(*O.NodeAllocator));
NodeAllocator =
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
O.NodeAllocator = nullptr;
} else {
NodeAllocator = nullptr;
{
auto Tmp = O.NodeAllocator;
O.NodeAllocator = this->NodeAllocator;
this->NodeAllocator = Tmp;
}
if (RootAllocator)
RootAllocator->~RootAllocatorType();
if (O.RootAllocator) {
new (&RootAllocatorStorage)
RootAllocatorType(std::move(*O.RootAllocator));
RootAllocator =
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
O.RootAllocator = nullptr;
} else {
RootAllocator = nullptr;
{
auto Tmp = O.RootAllocator;
O.RootAllocator = this->RootAllocator;
this->RootAllocator = Tmp;
}
if (ShadowStackAllocator)
ShadowStackAllocator->~ShadowStackAllocatorType();
if (O.ShadowStackAllocator) {
new (&ShadowStackAllocatorStorage)
ShadowStackAllocatorType(std::move(*O.ShadowStackAllocator));
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
&ShadowStackAllocatorStorage);
O.ShadowStackAllocator = nullptr;
} else {
ShadowStackAllocator = nullptr;
{
auto Tmp = O.ShadowStackAllocator;
O.ShadowStackAllocator = this->ShadowStackAllocator;
this->ShadowStackAllocator = Tmp;
}
if (NodeIdPairAllocator)
NodeIdPairAllocator->~NodeIdPairAllocatorType();
if (O.NodeIdPairAllocator) {
new (&NodeIdPairAllocatorStorage)
NodeIdPairAllocatorType(std::move(*O.NodeIdPairAllocator));
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
&NodeIdPairAllocatorStorage);
O.NodeIdPairAllocator = nullptr;
} else {
NodeIdPairAllocator = nullptr;
{
auto Tmp = O.NodeIdPairAllocator;
O.NodeIdPairAllocator = this->NodeIdPairAllocator;
this->NodeIdPairAllocator = Tmp;
}
return *this;
}
~Allocators() XRAY_NEVER_INSTRUMENT {
if (NodeAllocator != nullptr)
// Note that we cannot use delete on these pointers, as they need to be
// returned to the sanitizer_common library's internal memory tracking
// system.
if (NodeAllocator != nullptr) {
NodeAllocator->~NodeAllocatorType();
if (RootAllocator != nullptr)
deallocate(NodeAllocator);
NodeAllocator = nullptr;
}
if (RootAllocator != nullptr) {
RootAllocator->~RootAllocatorType();
if (ShadowStackAllocator != nullptr)
deallocate(RootAllocator);
RootAllocator = nullptr;
}
if (ShadowStackAllocator != nullptr) {
ShadowStackAllocator->~ShadowStackAllocatorType();
if (NodeIdPairAllocator != nullptr)
deallocate(ShadowStackAllocator);
ShadowStackAllocator = nullptr;
}
if (NodeIdPairAllocator != nullptr) {
NodeIdPairAllocator->~NodeIdPairAllocatorType();
deallocate(NodeIdPairAllocator);
NodeIdPairAllocator = nullptr;
}
}
};
// TODO: Support configuration of options through the arguments.
static Allocators InitAllocators() XRAY_NEVER_INSTRUMENT {
return InitAllocatorsCustom(profilingFlags()->per_thread_allocator_max);
}
static Allocators InitAllocatorsCustom(uptr Max) XRAY_NEVER_INSTRUMENT {
Allocators A(Max);
Allocators A;
auto NodeAllocator = allocate<Allocators::NodeAllocatorType>();
new (NodeAllocator) Allocators::NodeAllocatorType(Max);
A.NodeAllocator = NodeAllocator;
auto RootAllocator = allocate<Allocators::RootAllocatorType>();
new (RootAllocator) Allocators::RootAllocatorType(Max);
A.RootAllocator = RootAllocator;
auto ShadowStackAllocator =
allocate<Allocators::ShadowStackAllocatorType>();
new (ShadowStackAllocator) Allocators::ShadowStackAllocatorType(Max);
A.ShadowStackAllocator = ShadowStackAllocator;
auto NodeIdPairAllocator = allocate<NodeIdPairAllocatorType>();
new (NodeIdPairAllocator) NodeIdPairAllocatorType(Max);
A.NodeIdPairAllocator = NodeIdPairAllocator;
return A;
}
@ -287,38 +257,14 @@ private:
NodeArray Nodes;
RootArray Roots;
ShadowStackArray ShadowStack;
NodeIdPairAllocatorType *NodeIdPairAllocator;
uint32_t OverflowedFunctions;
NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
public:
explicit FunctionCallTrie(const Allocators &A) XRAY_NEVER_INSTRUMENT
: Nodes(*A.NodeAllocator),
Roots(*A.RootAllocator),
ShadowStack(*A.ShadowStackAllocator),
NodeIdPairAllocator(A.NodeIdPairAllocator),
OverflowedFunctions(0) {}
FunctionCallTrie() = delete;
FunctionCallTrie(const FunctionCallTrie &) = delete;
FunctionCallTrie &operator=(const FunctionCallTrie &) = delete;
FunctionCallTrie(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT
: Nodes(std::move(O.Nodes)),
Roots(std::move(O.Roots)),
ShadowStack(std::move(O.ShadowStack)),
NodeIdPairAllocator(O.NodeIdPairAllocator),
OverflowedFunctions(O.OverflowedFunctions) {}
FunctionCallTrie &operator=(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT {
Nodes = std::move(O.Nodes);
Roots = std::move(O.Roots);
ShadowStack = std::move(O.ShadowStack);
NodeIdPairAllocator = O.NodeIdPairAllocator;
OverflowedFunctions = O.OverflowedFunctions;
return *this;
}
~FunctionCallTrie() XRAY_NEVER_INSTRUMENT {}
NodeIdPairAllocator(A.NodeIdPairAllocator) {}
void enterFunction(const int32_t FId, uint64_t TSC,
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
@ -326,17 +272,12 @@ public:
// This function primarily deals with ensuring that the ShadowStack is
// consistent and ready for when an exit event is encountered.
if (UNLIKELY(ShadowStack.empty())) {
auto NewRoot = Nodes.AppendEmplace(
nullptr, NodeIdPairArray{*NodeIdPairAllocator}, 0u, 0u, FId);
auto NewRoot =
Nodes.AppendEmplace(nullptr, *NodeIdPairAllocator, 0u, 0u, FId);
if (UNLIKELY(NewRoot == nullptr))
return;
if (Roots.Append(NewRoot) == nullptr)
return;
if (ShadowStack.AppendEmplace(TSC, NewRoot, CPU) == nullptr) {
Roots.trim(1);
++OverflowedFunctions;
return;
}
Roots.Append(NewRoot);
ShadowStack.AppendEmplace(TSC, NewRoot, CPU);
return;
}
@ -350,39 +291,29 @@ public:
[FId](const NodeIdPair &NR) { return NR.FId == FId; });
if (Callee != nullptr) {
CHECK_NE(Callee->NodePtr, nullptr);
if (ShadowStack.AppendEmplace(TSC, Callee->NodePtr, CPU) == nullptr)
++OverflowedFunctions;
ShadowStack.AppendEmplace(TSC, Callee->NodePtr, CPU);
return;
}
// This means we've never seen this stack before, create a new node here.
auto NewNode = Nodes.AppendEmplace(
TopNode, NodeIdPairArray(*NodeIdPairAllocator), 0u, 0u, FId);
auto NewNode =
Nodes.AppendEmplace(TopNode, *NodeIdPairAllocator, 0u, 0u, FId);
if (UNLIKELY(NewNode == nullptr))
return;
DCHECK_NE(NewNode, nullptr);
TopNode->Callees.AppendEmplace(NewNode, FId);
if (ShadowStack.AppendEmplace(TSC, NewNode, CPU) == nullptr)
++OverflowedFunctions;
ShadowStack.AppendEmplace(TSC, NewNode, CPU);
DCHECK_NE(ShadowStack.back().NodePtr, nullptr);
return;
}
void exitFunction(int32_t FId, uint64_t TSC,
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
// If we're exiting functions that have "overflowed" or don't fit into the
// stack due to allocator constraints, we then decrement that count first.
if (OverflowedFunctions) {
--OverflowedFunctions;
return;
}
// When we exit a function, we look up the ShadowStack to see whether we've
// entered this function before. We do as little processing here as we can,
// since most of the hard work would have already been done at function
// entry.
uint64_t CumulativeTreeTime = 0;
while (!ShadowStack.empty()) {
const auto &Top = ShadowStack.back();
auto TopNode = Top.NodePtr;
@ -449,7 +380,7 @@ public:
for (const auto Root : getRoots()) {
// Add a node in O for this root.
auto NewRoot = O.Nodes.AppendEmplace(
nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), Root->CallCount,
nullptr, *O.NodeIdPairAllocator, Root->CallCount,
Root->CumulativeLocalTime, Root->FId);
// Because we cannot allocate more memory we should bail out right away.
@ -468,9 +399,8 @@ public:
DFSStack.trim(1);
for (const auto Callee : NP.Node->Callees) {
auto NewNode = O.Nodes.AppendEmplace(
NP.NewNode, NodeIdPairArray(*O.NodeIdPairAllocator),
Callee.NodePtr->CallCount, Callee.NodePtr->CumulativeLocalTime,
Callee.FId);
NP.NewNode, *O.NodeIdPairAllocator, Callee.NodePtr->CallCount,
Callee.NodePtr->CumulativeLocalTime, Callee.FId);
if (UNLIKELY(NewNode == nullptr))
return;
NP.NewNode->Callees.AppendEmplace(NewNode, Callee.FId);
@ -503,9 +433,8 @@ public:
auto R = O.Roots.find_element(
[&](const Node *Node) { return Node->FId == Root->FId; });
if (R == nullptr) {
TargetRoot = O.Nodes.AppendEmplace(
nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
Root->FId);
TargetRoot = O.Nodes.AppendEmplace(nullptr, *O.NodeIdPairAllocator, 0u,
0u, Root->FId);
if (UNLIKELY(TargetRoot == nullptr))
return;
@ -514,7 +443,7 @@ public:
TargetRoot = *R;
}
DFSStack.AppendEmplace(Root, TargetRoot);
DFSStack.Append(NodeAndTarget{Root, TargetRoot});
while (!DFSStack.empty()) {
NodeAndTarget NT = DFSStack.back();
DCHECK_NE(NT.OrigNode, nullptr);
@ -530,8 +459,7 @@ public:
});
if (TargetCallee == nullptr) {
auto NewTargetNode = O.Nodes.AppendEmplace(
NT.TargetNode, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
Callee.FId);
NT.TargetNode, *O.NodeIdPairAllocator, 0u, 0u, Callee.FId);
if (UNLIKELY(NewTargetNode == nullptr))
return;

View File

@ -86,8 +86,7 @@ static FunctionCallTrie::Allocators *GlobalAllocators = nullptr;
void post(const FunctionCallTrie &T, tid_t TId) XRAY_NEVER_INSTRUMENT {
static pthread_once_t Once = PTHREAD_ONCE_INIT;
pthread_once(
&Once, +[]() XRAY_NEVER_INSTRUMENT { reset(); });
pthread_once(&Once, +[] { reset(); });
ThreadTrie *Item = nullptr;
{
@ -95,16 +94,14 @@ void post(const FunctionCallTrie &T, tid_t TId) XRAY_NEVER_INSTRUMENT {
if (GlobalAllocators == nullptr || ThreadTries == nullptr)
return;
ThreadTrie Empty;
Item = ThreadTries->AppendEmplace(Empty);
if (Item == nullptr)
return;
Item = ThreadTries->Append({});
Item->TId = TId;
auto Trie = reinterpret_cast<FunctionCallTrie *>(&Item->TrieStorage);
new (Trie) FunctionCallTrie(*GlobalAllocators);
T.deepCopyInto(*Trie);
}
auto Trie = reinterpret_cast<FunctionCallTrie *>(&Item->TrieStorage);
T.deepCopyInto(*Trie);
}
// A PathArray represents the function id's representing a stack trace. In this
@ -118,7 +115,13 @@ struct ProfileRecord {
// The Path in this record is the function id's from the leaf to the root of
// the function call stack as represented from a FunctionCallTrie.
PathArray Path;
const FunctionCallTrie::Node *Node;
const FunctionCallTrie::Node *Node = nullptr;
// Constructor for in-place construction.
ProfileRecord(PathAllocator &A,
const FunctionCallTrie::Node *N) XRAY_NEVER_INSTRUMENT
: Path(A),
Node(N) {}
};
namespace {
@ -139,7 +142,7 @@ populateRecords(ProfileRecordArray &PRs, ProfileRecord::PathAllocator &PA,
while (!DFSStack.empty()) {
auto Node = DFSStack.back();
DFSStack.trim(1);
auto Record = PRs.AppendEmplace(PathArray{PA}, Node);
auto Record = PRs.AppendEmplace(PA, Node);
if (Record == nullptr)
return;
DCHECK_NE(Record, nullptr);
@ -200,7 +203,7 @@ void serialize() XRAY_NEVER_INSTRUMENT {
// Clear out the global ProfileBuffers, if it's not empty.
for (auto &B : *ProfileBuffers)
deallocateBuffer(reinterpret_cast<unsigned char *>(B.Data), B.Size);
deallocateBuffer(reinterpret_cast<uint8_t *>(B.Data), B.Size);
ProfileBuffers->trim(ProfileBuffers->size());
if (ThreadTries->empty())
@ -275,8 +278,8 @@ void reset() XRAY_NEVER_INSTRUMENT {
GlobalAllocators =
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorStorage);
new (GlobalAllocators)
FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
new (GlobalAllocators) FunctionCallTrie::Allocators();
*GlobalAllocators = FunctionCallTrie::InitAllocators();
if (ThreadTriesAllocator != nullptr)
ThreadTriesAllocator->~ThreadTriesArrayAllocator();
@ -309,10 +312,8 @@ XRayBuffer nextBuffer(XRayBuffer B) XRAY_NEVER_INSTRUMENT {
static pthread_once_t Once = PTHREAD_ONCE_INIT;
static typename std::aligned_storage<sizeof(XRayProfilingFileHeader)>::type
FileHeaderStorage;
pthread_once(
&Once, +[]() XRAY_NEVER_INSTRUMENT {
new (&FileHeaderStorage) XRayProfilingFileHeader{};
});
pthread_once(&Once,
+[] { new (&FileHeaderStorage) XRayProfilingFileHeader{}; });
if (UNLIKELY(B.Data == nullptr)) {
// The first buffer should always contain the file header information.

View File

@ -31,112 +31,67 @@ namespace __xray {
namespace {
static atomic_sint32_t ProfilerLogFlushStatus = {
atomic_sint32_t ProfilerLogFlushStatus = {
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
static atomic_sint32_t ProfilerLogStatus = {
XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
atomic_sint32_t ProfilerLogStatus = {XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
static SpinMutex ProfilerOptionsMutex;
SpinMutex ProfilerOptionsMutex;
struct ProfilingData {
atomic_uintptr_t Allocators;
atomic_uintptr_t FCT;
struct alignas(64) ProfilingData {
FunctionCallTrie::Allocators *Allocators;
FunctionCallTrie *FCT;
};
static pthread_key_t ProfilingKey;
thread_local std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
alignof(FunctionCallTrie::Allocators)>::type
thread_local std::aligned_storage<sizeof(FunctionCallTrie::Allocators)>::type
AllocatorsStorage;
thread_local std::aligned_storage<sizeof(FunctionCallTrie),
alignof(FunctionCallTrie)>::type
thread_local std::aligned_storage<sizeof(FunctionCallTrie)>::type
FunctionCallTrieStorage;
thread_local ProfilingData TLD{{0}, {0}};
thread_local atomic_uint8_t ReentranceGuard{0};
thread_local std::aligned_storage<sizeof(ProfilingData)>::type ThreadStorage{};
// We use a separate guard for ensuring that for this thread, if we're already
// cleaning up, that any signal handlers don't attempt to cleanup nor
// initialise.
thread_local atomic_uint8_t TLDInitGuard{0};
// We also use a separate latch to signal that the thread is exiting, and
// non-essential work should be ignored (things like recording events, etc.).
thread_local atomic_uint8_t ThreadExitingLatch{0};
static ProfilingData *getThreadLocalData() XRAY_NEVER_INSTRUMENT {
thread_local auto ThreadOnce = []() XRAY_NEVER_INSTRUMENT {
pthread_setspecific(ProfilingKey, &TLD);
static ProfilingData &getThreadLocalData() XRAY_NEVER_INSTRUMENT {
thread_local auto ThreadOnce = [] {
new (&ThreadStorage) ProfilingData{};
auto *Allocators =
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);
new (Allocators) FunctionCallTrie::Allocators();
*Allocators = FunctionCallTrie::InitAllocators();
auto *FCT = reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage);
new (FCT) FunctionCallTrie(*Allocators);
auto &TLD = *reinterpret_cast<ProfilingData *>(&ThreadStorage);
TLD.Allocators = Allocators;
TLD.FCT = FCT;
pthread_setspecific(ProfilingKey, &ThreadStorage);
return false;
}();
(void)ThreadOnce;
RecursionGuard TLDInit(TLDInitGuard);
if (!TLDInit)
return nullptr;
auto &TLD = *reinterpret_cast<ProfilingData *>(&ThreadStorage);
if (atomic_load_relaxed(&ThreadExitingLatch))
return nullptr;
uptr Allocators = 0;
if (atomic_compare_exchange_strong(&TLD.Allocators, &Allocators, 1,
memory_order_acq_rel)) {
new (&AllocatorsStorage)
FunctionCallTrie::Allocators(FunctionCallTrie::InitAllocators());
Allocators = reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage));
atomic_store(&TLD.Allocators, Allocators, memory_order_release);
if (UNLIKELY(TLD.Allocators == nullptr || TLD.FCT == nullptr)) {
auto *Allocators =
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage);
new (Allocators) FunctionCallTrie::Allocators();
*Allocators = FunctionCallTrie::InitAllocators();
auto *FCT = reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage);
new (FCT) FunctionCallTrie(*Allocators);
TLD.Allocators = Allocators;
TLD.FCT = FCT;
}
uptr FCT = 0;
if (atomic_compare_exchange_strong(&TLD.FCT, &FCT, 1, memory_order_acq_rel)) {
new (&FunctionCallTrieStorage) FunctionCallTrie(
*reinterpret_cast<FunctionCallTrie::Allocators *>(Allocators));
FCT = reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage));
atomic_store(&TLD.FCT, FCT, memory_order_release);
}
if (FCT == 1)
return nullptr;
return &TLD;
return *reinterpret_cast<ProfilingData *>(&ThreadStorage);
}
static void cleanupTLD() XRAY_NEVER_INSTRUMENT {
RecursionGuard TLDInit(TLDInitGuard);
if (!TLDInit)
return;
auto FCT = atomic_exchange(&TLD.FCT, 0, memory_order_acq_rel);
if (FCT == reinterpret_cast<uptr>(reinterpret_cast<FunctionCallTrie *>(
&FunctionCallTrieStorage)))
reinterpret_cast<FunctionCallTrie *>(FCT)->~FunctionCallTrie();
auto Allocators = atomic_exchange(&TLD.Allocators, 0, memory_order_acq_rel);
if (Allocators ==
reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage)))
reinterpret_cast<FunctionCallTrie::Allocators *>(Allocators)->~Allocators();
}
static void postCurrentThreadFCT(ProfilingData &T) XRAY_NEVER_INSTRUMENT {
RecursionGuard TLDInit(TLDInitGuard);
if (!TLDInit)
return;
uptr P = atomic_load(&T.FCT, memory_order_acquire);
if (P != reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage)))
return;
auto FCT = reinterpret_cast<FunctionCallTrie *>(P);
DCHECK_NE(FCT, nullptr);
if (!FCT->getRoots().empty())
profileCollectorService::post(*FCT, GetTid());
cleanupTLD();
auto &TLD = *reinterpret_cast<ProfilingData *>(&ThreadStorage);
if (TLD.Allocators != nullptr && TLD.FCT != nullptr) {
TLD.FCT->~FunctionCallTrie();
TLD.Allocators->~Allocators();
TLD.FCT = nullptr;
TLD.Allocators = nullptr;
}
}
} // namespace
@ -149,6 +104,9 @@ const char *profilingCompilerDefinedFlags() XRAY_NEVER_INSTRUMENT {
#endif
}
atomic_sint32_t ProfileFlushStatus = {
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
XRayLogFlushStatus profilingFlush() XRAY_NEVER_INSTRUMENT {
if (atomic_load(&ProfilerLogStatus, memory_order_acquire) !=
XRayLogInitStatus::XRAY_LOG_FINALIZED) {
@ -157,27 +115,14 @@ XRayLogFlushStatus profilingFlush() XRAY_NEVER_INSTRUMENT {
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
}
RecursionGuard SignalGuard(ReentranceGuard);
if (!SignalGuard) {
s32 Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
if (!atomic_compare_exchange_strong(&ProfilerLogFlushStatus, &Result,
XRayLogFlushStatus::XRAY_LOG_FLUSHING,
memory_order_acq_rel)) {
if (Verbosity())
Report("Cannot finalize properly inside a signal handler!\n");
atomic_store(&ProfilerLogFlushStatus,
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
memory_order_release);
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
Report("Not flushing profiles, implementation still finalizing.\n");
}
s32 Previous = atomic_exchange(&ProfilerLogFlushStatus,
XRayLogFlushStatus::XRAY_LOG_FLUSHING,
memory_order_acq_rel);
if (Previous == XRayLogFlushStatus::XRAY_LOG_FLUSHING) {
if (Verbosity())
Report("Not flushing profiles, implementation still flushing.\n");
return XRayLogFlushStatus::XRAY_LOG_FLUSHING;
}
postCurrentThreadFCT(TLD);
// At this point, we'll create the file that will contain the profile, but
// only if the options say so.
if (!profilingFlags()->no_flush) {
@ -205,19 +150,33 @@ XRayLogFlushStatus profilingFlush() XRAY_NEVER_INSTRUMENT {
}
}
// Clean up the current thread's TLD information as well.
cleanupTLD();
profileCollectorService::reset();
atomic_store(&ProfilerLogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
memory_order_release);
// Flush the current thread's local data structures as well.
cleanupTLD();
atomic_store(&ProfilerLogStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
memory_order_release);
return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}
namespace {
thread_local atomic_uint8_t ReentranceGuard{0};
static void postCurrentThreadFCT(ProfilingData &TLD) XRAY_NEVER_INSTRUMENT {
if (TLD.Allocators == nullptr || TLD.FCT == nullptr)
return;
if (!TLD.FCT->getRoots().empty())
profileCollectorService::post(*TLD.FCT, GetTid());
cleanupTLD();
}
} // namespace
void profilingHandleArg0(int32_t FuncId,
XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
unsigned char CPU;
@ -227,29 +186,22 @@ void profilingHandleArg0(int32_t FuncId,
return;
auto Status = atomic_load(&ProfilerLogStatus, memory_order_acquire);
if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_UNINITIALIZED ||
Status == XRayLogInitStatus::XRAY_LOG_INITIALIZING))
return;
if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_FINALIZED ||
Status == XRayLogInitStatus::XRAY_LOG_FINALIZING)) {
auto &TLD = getThreadLocalData();
postCurrentThreadFCT(TLD);
return;
}
auto T = getThreadLocalData();
if (T == nullptr)
return;
auto FCT = reinterpret_cast<FunctionCallTrie *>(atomic_load_relaxed(&T->FCT));
auto &TLD = getThreadLocalData();
switch (Entry) {
case XRayEntryType::ENTRY:
case XRayEntryType::LOG_ARGS_ENTRY:
FCT->enterFunction(FuncId, TSC, CPU);
TLD.FCT->enterFunction(FuncId, TSC, CPU);
break;
case XRayEntryType::EXIT:
case XRayEntryType::TAIL:
FCT->exitFunction(FuncId, TSC, CPU);
TLD.FCT->exitFunction(FuncId, TSC, CPU);
break;
default:
// FIXME: Handle bugs.
@ -275,14 +227,15 @@ XRayLogInitStatus profilingFinalize() XRAY_NEVER_INSTRUMENT {
// Wait a grace period to allow threads to see that we're finalizing.
SleepForMillis(profilingFlags()->grace_period_ms);
// If we for some reason are entering this function from an instrumented
// handler, we bail out.
RecursionGuard G(ReentranceGuard);
if (!G)
return static_cast<XRayLogInitStatus>(CurrentStatus);
// Post the current thread's data if we have any.
postCurrentThreadFCT(TLD);
// We also want to make sure that the current thread's data is cleaned up, if
// we have any. We need to ensure that the call to postCurrentThreadFCT() is
// guarded by our recursion guard.
auto &TLD = getThreadLocalData();
{
RecursionGuard G(ReentranceGuard);
if (G)
postCurrentThreadFCT(TLD);
}
// Then we force serialize the log data.
profileCollectorService::serialize();
@ -295,10 +248,6 @@ XRayLogInitStatus profilingFinalize() XRAY_NEVER_INSTRUMENT {
XRayLogInitStatus
profilingLoggingInit(UNUSED size_t BufferSize, UNUSED size_t BufferMax,
void *Options, size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
RecursionGuard G(ReentranceGuard);
if (!G)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
if (!atomic_compare_exchange_strong(&ProfilerLogStatus, &CurrentStatus,
XRayLogInitStatus::XRAY_LOG_INITIALIZING,
@ -333,51 +282,39 @@ profilingLoggingInit(UNUSED size_t BufferSize, UNUSED size_t BufferMax,
// We need to set up the exit handlers.
static pthread_once_t Once = PTHREAD_ONCE_INIT;
pthread_once(
&Once, +[] {
pthread_key_create(
&ProfilingKey, +[](void *P) XRAY_NEVER_INSTRUMENT {
if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
return;
pthread_once(&Once, +[] {
pthread_key_create(&ProfilingKey, +[](void *P) {
// This is the thread-exit handler.
auto &TLD = *reinterpret_cast<ProfilingData *>(P);
if (TLD.Allocators == nullptr && TLD.FCT == nullptr)
return;
if (P == nullptr)
return;
{
// If we're somehow executing this while inside a non-reentrant-friendly
// context, we skip attempting to post the current thread's data.
RecursionGuard G(ReentranceGuard);
if (G)
postCurrentThreadFCT(TLD);
}
});
auto T = reinterpret_cast<ProfilingData *>(P);
if (atomic_load_relaxed(&T->Allocators) == 0)
return;
{
// If we're somehow executing this while inside a
// non-reentrant-friendly context, we skip attempting to post
// the current thread's data.
RecursionGuard G(ReentranceGuard);
if (!G)
return;
postCurrentThreadFCT(*T);
}
});
// We also need to set up an exit handler, so that we can get the
// profile information at exit time. We use the C API to do this, to not
// rely on C++ ABI functions for registering exit handlers.
Atexit(+[]() XRAY_NEVER_INSTRUMENT {
if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
return;
auto Cleanup =
at_scope_exit([]() XRAY_NEVER_INSTRUMENT { cleanupTLD(); });
// Finalize and flush.
if (profilingFinalize() != XRAY_LOG_FINALIZED ||
profilingFlush() != XRAY_LOG_FLUSHED)
return;
if (Verbosity())
Report("XRay Profile flushed at exit.");
});
});
// We also need to set up an exit handler, so that we can get the profile
// information at exit time. We use the C API to do this, to not rely on C++
// ABI functions for registering exit handlers.
Atexit(+[] {
// Finalize and flush.
if (profilingFinalize() != XRAY_LOG_FINALIZED) {
cleanupTLD();
return;
}
if (profilingFlush() != XRAY_LOG_FLUSHED) {
cleanupTLD();
return;
}
if (Verbosity())
Report("XRay Profile flushed at exit.");
});
});
__xray_log_set_buffer_iterator(profileCollectorService::nextBuffer);
__xray_set_handler(profilingHandleArg0);

View File

@ -32,9 +32,14 @@ namespace __xray {
/// is destroyed. When an Array is destroyed, it will destroy elements in the
/// backing store but will not free the memory.
template <class T> class Array {
struct Segment {
Segment *Prev;
Segment *Next;
struct SegmentBase {
SegmentBase *Prev;
SegmentBase *Next;
};
// We want each segment of the array to be cache-line aligned, and elements of
// the array be offset from the beginning of the segment.
struct Segment : SegmentBase {
char Data[1];
};
@ -57,35 +62,91 @@ public:
// kCacheLineSize-multiple segments, minus the size of two pointers.
//
// - Request cacheline-multiple sized elements from the allocator.
static constexpr uint64_t AlignedElementStorageSize =
static constexpr size_t AlignedElementStorageSize =
sizeof(typename std::aligned_storage<sizeof(T), alignof(T)>::type);
static constexpr uint64_t SegmentControlBlockSize = sizeof(Segment *) * 2;
static constexpr uint64_t SegmentSize = nearest_boundary(
SegmentControlBlockSize + next_pow2(sizeof(T)), kCacheLineSize);
static constexpr size_t SegmentSize =
nearest_boundary(sizeof(Segment) + next_pow2(sizeof(T)), kCacheLineSize);
using AllocatorType = Allocator<SegmentSize>;
static constexpr uint64_t ElementsPerSegment =
(SegmentSize - SegmentControlBlockSize) / next_pow2(sizeof(T));
static constexpr size_t ElementsPerSegment =
(SegmentSize - sizeof(Segment)) / next_pow2(sizeof(T));
static_assert(ElementsPerSegment > 0,
"Must have at least 1 element per segment.");
static Segment SentinelSegment;
static SegmentBase SentinelSegment;
using size_type = uint64_t;
using size_type = size_t;
private:
AllocatorType *Alloc;
SegmentBase *Head = &SentinelSegment;
SegmentBase *Tail = &SentinelSegment;
size_t Size = 0;
// Here we keep track of segments in the freelist, to allow us to re-use
// segments when elements are trimmed off the end.
SegmentBase *Freelist = &SentinelSegment;
Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
// We need to handle the case in which enough elements have been trimmed to
// allow us to re-use segments we've allocated before. For this we look into
// the Freelist, to see whether we need to actually allocate new blocks or
// just re-use blocks we've already seen before.
if (Freelist != &SentinelSegment) {
auto *FreeSegment = Freelist;
Freelist = FreeSegment->Next;
FreeSegment->Next = &SentinelSegment;
Freelist->Prev = &SentinelSegment;
return static_cast<Segment *>(FreeSegment);
}
auto SegmentBlock = Alloc->Allocate();
if (SegmentBlock.Data == nullptr)
return nullptr;
// Placement-new the Segment element at the beginning of the SegmentBlock.
auto S = reinterpret_cast<Segment *>(SegmentBlock.Data);
new (S) SegmentBase{&SentinelSegment, &SentinelSegment};
return S;
}
Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
DCHECK_EQ(Head, &SentinelSegment);
DCHECK_EQ(Tail, &SentinelSegment);
auto Segment = NewSegment();
if (Segment == nullptr)
return nullptr;
DCHECK_EQ(Segment->Next, &SentinelSegment);
DCHECK_EQ(Segment->Prev, &SentinelSegment);
Head = Tail = static_cast<SegmentBase *>(Segment);
return Segment;
}
Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
auto S = NewSegment();
if (S == nullptr)
return nullptr;
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(S->Prev, &SentinelSegment);
DCHECK_EQ(S->Next, &SentinelSegment);
Tail->Next = S;
S->Prev = Tail;
Tail = S;
return static_cast<Segment *>(Tail);
}
// This Iterator models a BidirectionalIterator.
template <class U> class Iterator {
Segment *S = &SentinelSegment;
uint64_t Offset = 0;
uint64_t Size = 0;
SegmentBase *S = &SentinelSegment;
size_t Offset = 0;
size_t Size = 0;
public:
Iterator(Segment *IS, uint64_t Off, uint64_t S) XRAY_NEVER_INSTRUMENT
Iterator(SegmentBase *IS, size_t Off, size_t S) XRAY_NEVER_INSTRUMENT
: S(IS),
Offset(Off),
Size(S) {}
@ -154,7 +215,7 @@ private:
// We need to compute the character-aligned pointer, offset from the
// segment's Data location to get the element in the position of Offset.
auto Base = &S->Data;
auto Base = static_cast<Segment *>(S)->Data;
auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize);
return *reinterpret_cast<U *>(AlignedOffset);
}
@ -162,183 +223,17 @@ private:
U *operator->() const XRAY_NEVER_INSTRUMENT { return &(**this); }
};
AllocatorType *Alloc;
Segment *Head;
Segment *Tail;
// Here we keep track of segments in the freelist, to allow us to re-use
// segments when elements are trimmed off the end.
Segment *Freelist;
uint64_t Size;
// ===============================
// In the following implementation, we work through the algorithms and the
// list operations using the following notation:
//
// - pred(s) is the predecessor (previous node accessor) and succ(s) is
// the successor (next node accessor).
//
// - S is a sentinel segment, which has the following property:
//
// pred(S) == succ(S) == S
//
// - @ is a loop operator, which can imply pred(s) == s if it appears on
// the left of s, or succ(s) == S if it appears on the right of s.
//
// - sL <-> sR : means a bidirectional relation between sL and sR, which
// means:
//
// succ(sL) == sR && pred(SR) == sL
//
// - sL -> sR : implies a unidirectional relation between sL and SR,
// with the following properties:
//
// succ(sL) == sR
//
// sL <- sR : implies a unidirectional relation between sR and sL,
// with the following properties:
//
// pred(sR) == sL
//
// ===============================
Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
// We need to handle the case in which enough elements have been trimmed to
// allow us to re-use segments we've allocated before. For this we look into
// the Freelist, to see whether we need to actually allocate new blocks or
// just re-use blocks we've already seen before.
if (Freelist != &SentinelSegment) {
// The current state of lists resemble something like this at this point:
//
// Freelist: @S@<-f0->...<->fN->@S@
// ^ Freelist
//
// We want to perform a splice of `f0` from Freelist to a temporary list,
// which looks like:
//
// Templist: @S@<-f0->@S@
// ^ FreeSegment
//
// Our algorithm preconditions are:
DCHECK_EQ(Freelist->Prev, &SentinelSegment);
// Then the algorithm we implement is:
//
// SFS = Freelist
// Freelist = succ(Freelist)
// if (Freelist != S)
// pred(Freelist) = S
// succ(SFS) = S
// pred(SFS) = S
//
auto *FreeSegment = Freelist;
Freelist = Freelist->Next;
// Note that we need to handle the case where Freelist is now pointing to
// S, which we don't want to be overwriting.
// TODO: Determine whether the cost of the branch is higher than the cost
// of the blind assignment.
if (Freelist != &SentinelSegment)
Freelist->Prev = &SentinelSegment;
FreeSegment->Next = &SentinelSegment;
FreeSegment->Prev = &SentinelSegment;
// Our postconditions are:
DCHECK_EQ(Freelist->Prev, &SentinelSegment);
DCHECK_NE(FreeSegment, &SentinelSegment);
return FreeSegment;
}
auto SegmentBlock = Alloc->Allocate();
if (SegmentBlock.Data == nullptr)
return nullptr;
// Placement-new the Segment element at the beginning of the SegmentBlock.
new (SegmentBlock.Data) Segment{&SentinelSegment, &SentinelSegment, {0}};
auto SB = reinterpret_cast<Segment *>(SegmentBlock.Data);
return SB;
}
Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
DCHECK_EQ(Head, &SentinelSegment);
DCHECK_EQ(Tail, &SentinelSegment);
auto S = NewSegment();
if (S == nullptr)
return nullptr;
DCHECK_EQ(S->Next, &SentinelSegment);
DCHECK_EQ(S->Prev, &SentinelSegment);
DCHECK_NE(S, &SentinelSegment);
Head = S;
Tail = S;
DCHECK_EQ(Head, Tail);
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(Tail->Prev, &SentinelSegment);
return S;
}
Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
auto S = NewSegment();
if (S == nullptr)
return nullptr;
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(S->Prev, &SentinelSegment);
DCHECK_EQ(S->Next, &SentinelSegment);
S->Prev = Tail;
Tail->Next = S;
Tail = S;
DCHECK_EQ(S, S->Prev->Next);
DCHECK_EQ(Tail->Next, &SentinelSegment);
return S;
}
public:
explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT
: Alloc(&A),
Head(&SentinelSegment),
Tail(&SentinelSegment),
Freelist(&SentinelSegment),
Size(0) {}
Array() XRAY_NEVER_INSTRUMENT : Alloc(nullptr),
Head(&SentinelSegment),
Tail(&SentinelSegment),
Freelist(&SentinelSegment),
Size(0) {}
explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT : Alloc(&A) {}
Array(const Array &) = delete;
Array &operator=(const Array &) = delete;
Array(Array &&O) XRAY_NEVER_INSTRUMENT : Alloc(O.Alloc),
Head(O.Head),
Tail(O.Tail),
Freelist(O.Freelist),
Size(O.Size) {
O.Alloc = nullptr;
Array(Array &&O) NOEXCEPT : Alloc(O.Alloc),
Head(O.Head),
Tail(O.Tail),
Size(O.Size) {
O.Head = &SentinelSegment;
O.Tail = &SentinelSegment;
O.Size = 0;
O.Freelist = &SentinelSegment;
}
Array &operator=(Array &&O) XRAY_NEVER_INSTRUMENT {
Alloc = O.Alloc;
O.Alloc = nullptr;
Head = O.Head;
O.Head = &SentinelSegment;
Tail = O.Tail;
O.Tail = &SentinelSegment;
Freelist = O.Freelist;
O.Freelist = &SentinelSegment;
Size = O.Size;
O.Size = 0;
return *this;
}
~Array() XRAY_NEVER_INSTRUMENT {
for (auto &E : *this)
(&E)->~T();
}
bool empty() const XRAY_NEVER_INSTRUMENT { return Size == 0; }
@ -348,41 +243,52 @@ public:
return *Alloc;
}
uint64_t size() const XRAY_NEVER_INSTRUMENT { return Size; }
size_t size() const XRAY_NEVER_INSTRUMENT { return Size; }
template <class... Args>
T *AppendEmplace(Args &&... args) XRAY_NEVER_INSTRUMENT {
DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) ||
(Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
if (UNLIKELY(Head == &SentinelSegment)) {
auto R = InitHeadAndTail();
if (R == nullptr)
T *Append(const T &E) XRAY_NEVER_INSTRUMENT {
if (UNLIKELY(Head == &SentinelSegment))
if (InitHeadAndTail() == nullptr)
return nullptr;
}
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
auto Offset = Size % ElementsPerSegment;
if (UNLIKELY(Size != 0 && Offset == 0))
if (AppendNewSegment() == nullptr)
return nullptr;
DCHECK_NE(Tail, &SentinelSegment);
auto Base = &Tail->Data;
auto Base = static_cast<Segment *>(Tail)->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
DCHECK_LE(AlignedOffset + sizeof(T),
reinterpret_cast<unsigned char *>(Tail) + SegmentSize);
// In-place construct at Position.
new (AlignedOffset) T{std::forward<Args>(args)...};
auto Position = reinterpret_cast<T *>(AlignedOffset);
*Position = E;
++Size;
return reinterpret_cast<T *>(AlignedOffset);
return Position;
}
T *Append(const T &E) XRAY_NEVER_INSTRUMENT { return AppendEmplace(E); }
template <class... Args>
T *AppendEmplace(Args &&... args) XRAY_NEVER_INSTRUMENT {
if (UNLIKELY(Head == &SentinelSegment))
if (InitHeadAndTail() == nullptr)
return nullptr;
T &operator[](uint64_t Offset) const XRAY_NEVER_INSTRUMENT {
auto Offset = Size % ElementsPerSegment;
auto *LatestSegment = Tail;
if (UNLIKELY(Size != 0 && Offset == 0)) {
LatestSegment = AppendNewSegment();
if (LatestSegment == nullptr)
return nullptr;
}
DCHECK_NE(Tail, &SentinelSegment);
auto Base = static_cast<Segment *>(LatestSegment)->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
auto Position = reinterpret_cast<T *>(AlignedOffset);
// In-place construct at Position.
new (Position) T{std::forward<Args>(args)...};
++Size;
return reinterpret_cast<T *>(Position);
}
T &operator[](size_t Offset) const XRAY_NEVER_INSTRUMENT {
DCHECK_LE(Offset, Size);
// We need to traverse the array enough times to find the element at Offset.
auto S = Head;
@ -391,7 +297,7 @@ public:
Offset -= ElementsPerSegment;
DCHECK_NE(S, &SentinelSegment);
}
auto Base = &S->Data;
auto Base = static_cast<Segment *>(S)->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
auto Position = reinterpret_cast<T *>(AlignedOffset);
return *reinterpret_cast<T *>(Position);
@ -426,172 +332,41 @@ public:
/// Remove N Elements from the end. This leaves the blocks behind, and not
/// require allocation of new blocks for new elements added after trimming.
void trim(uint64_t Elements) XRAY_NEVER_INSTRUMENT {
void trim(size_t Elements) XRAY_NEVER_INSTRUMENT {
if (Elements == 0)
return;
auto OldSize = Size;
Elements = Elements > Size ? Size : Elements;
Elements = Elements >= Size ? Size : Elements;
Size -= Elements;
// We compute the number of segments we're going to return from the tail by
// counting how many elements have been trimmed. Given the following:
//
// - Each segment has N valid positions, where N > 0
// - The previous size > current size
//
// To compute the number of segments to return, we need to perform the
// following calculations for the number of segments required given 'x'
// elements:
//
// f(x) = {
// x == 0 : 0
// , 0 < x <= N : 1
// , N < x <= max : x / N + (x % N ? 1 : 0)
// }
//
// We can simplify this down to:
//
// f(x) = {
// x == 0 : 0,
// , 0 < x <= max : x / N + (x < N || x % N ? 1 : 0)
// }
//
// And further down to:
//
// f(x) = x ? x / N + (x < N || x % N ? 1 : 0) : 0
//
// We can then perform the following calculation `s` which counts the number
// of segments we need to remove from the end of the data structure:
//
// s(p, c) = f(p) - f(c)
//
// If we treat p = previous size, and c = current size, and given the
// properties above, the possible range for s(...) is [0..max(typeof(p))/N]
// given that typeof(p) == typeof(c).
auto F = [](uint64_t X) {
return X ? (X / ElementsPerSegment) +
(X < ElementsPerSegment || X % ElementsPerSegment ? 1 : 0)
: 0;
};
auto PS = F(OldSize);
auto CS = F(Size);
DCHECK_GE(PS, CS);
auto SegmentsToTrim = PS - CS;
for (auto I = 0uL; I < SegmentsToTrim; ++I) {
// Here we place the current tail segment to the freelist. To do this
// appropriately, we need to perform a splice operation on two
// bidirectional linked-lists. In particular, we have the current state of
// the doubly-linked list of segments:
//
// @S@ <- s0 <-> s1 <-> ... <-> sT -> @S@
//
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
for (auto SegmentsToTrim = (nearest_boundary(OldSize, ElementsPerSegment) -
nearest_boundary(Size, ElementsPerSegment)) /
ElementsPerSegment;
SegmentsToTrim > 0; --SegmentsToTrim) {
// We want to short-circuit if the trace is already empty.
if (Head == &SentinelSegment && Head == Tail)
return;
// Put the tail into the Freelist.
auto *FreeSegment = Tail;
Tail = Tail->Prev;
if (Tail == &SentinelSegment)
Head = Tail;
else
Tail->Next = &SentinelSegment;
DCHECK_EQ(Tail->Next, &SentinelSegment);
if (Freelist == &SentinelSegment) {
// Our two lists at this point are in this configuration:
//
// Freelist: (potentially) @S@
// Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
// ^ Head ^ Tail
//
// The end state for us will be this configuration:
//
// Freelist: @S@<-sT->@S@
// Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
// ^ Head ^ Tail
//
// The first step for us is to hold a reference to the tail of Mainlist,
// which in our notation is represented by sT. We call this our "free
// segment" which is the segment we are placing on the Freelist.
//
// sF = sT
//
// Then, we also hold a reference to the "pre-tail" element, which we
// call sPT:
//
// sPT = pred(sT)
//
// We want to splice sT into the beginning of the Freelist, which in
// an empty Freelist means placing a segment whose predecessor and
// successor is the sentinel segment.
//
// The splice operation then can be performed in the following
// algorithm:
//
// succ(sPT) = S
// pred(sT) = S
// succ(sT) = Freelist
// Freelist = sT
// Tail = sPT
//
auto SPT = Tail->Prev;
SPT->Next = &SentinelSegment;
Tail->Prev = &SentinelSegment;
Tail->Next = Freelist;
Freelist = Tail;
Tail = SPT;
// Our post-conditions here are:
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(Freelist->Prev, &SentinelSegment);
} else {
// In the other case, where the Freelist is not empty, we perform the
// following transformation instead:
//
// This transforms the current state:
//
// Freelist: @S@<-f0->@S@
// ^ Freelist
// Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
// ^ Head ^ Tail
//
// Into the following:
//
// Freelist: @S@<-sT<->f0->@S@
// ^ Freelist
// Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
// ^ Head ^ Tail
//
// The algorithm is:
//
// sFH = Freelist
// sPT = pred(sT)
// pred(SFH) = sT
// succ(sT) = Freelist
// pred(sT) = S
// succ(sPT) = S
// Tail = sPT
// Freelist = sT
//
auto SFH = Freelist;
auto SPT = Tail->Prev;
auto ST = Tail;
SFH->Prev = ST;
ST->Next = Freelist;
ST->Prev = &SentinelSegment;
SPT->Next = &SentinelSegment;
Tail = SPT;
Freelist = ST;
// Our post-conditions here are:
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(Freelist->Prev, &SentinelSegment);
DCHECK_EQ(Freelist->Next->Prev, Freelist);
}
FreeSegment->Next = Freelist;
FreeSegment->Prev = &SentinelSegment;
if (Freelist != &SentinelSegment)
Freelist->Prev = FreeSegment;
Freelist = FreeSegment;
}
// Now in case we've spliced all the segments in the end, we ensure that the
// main list is "empty", or both the head and tail pointing to the sentinel
// segment.
if (Tail == &SentinelSegment)
Head = Tail;
DCHECK(
(Size == 0 && Head == &SentinelSegment && Tail == &SentinelSegment) ||
(Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
DCHECK(
(Freelist != &SentinelSegment && Freelist->Prev == &SentinelSegment) ||
(Freelist == &SentinelSegment && Tail->Next == &SentinelSegment));
}
// Provide iterators.
@ -613,8 +388,8 @@ public:
// ensure that storage for the SentinelSegment is defined and has a single
// address.
template <class T>
typename Array<T>::Segment Array<T>::SentinelSegment{
&Array<T>::SentinelSegment, &Array<T>::SentinelSegment, {'\0'}};
typename Array<T>::SegmentBase Array<T>::SentinelSegment{
&Array<T>::SentinelSegment, &Array<T>::SentinelSegment};
} // namespace __xray