mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-12-14 03:29:57 +00:00
Sphinxify the LTO document.
llvm-svn: 158808
This commit is contained in:
parent
39a3e7544a
commit
8cb8e9987b
@ -1,401 +0,0 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
|
||||
"http://www.w3.org/TR/html4/strict.dtd">
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
|
||||
<title>LLVM Link Time Optimization: Design and Implementation</title>
|
||||
<link rel="stylesheet" href="_static/llvm.css" type="text/css">
|
||||
</head>
|
||||
|
||||
<h1>
|
||||
LLVM Link Time Optimization: Design and Implementation
|
||||
</h1>
|
||||
|
||||
<ul>
|
||||
<li><a href="#desc">Description</a></li>
|
||||
<li><a href="#design">Design Philosophy</a>
|
||||
<ul>
|
||||
<li><a href="#example1">Example of link time optimization</a></li>
|
||||
<li><a href="#alternative_approaches">Alternative Approaches</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
|
||||
<ul>
|
||||
<li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li>
|
||||
<li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
|
||||
<li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>
|
||||
<li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
|
||||
</ul></li>
|
||||
<li><a href="#lto">libLTO</a>
|
||||
<ul>
|
||||
<li><a href="#lto_module_t">lto_module_t</a></li>
|
||||
<li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>
|
||||
</ul>
|
||||
</ul>
|
||||
|
||||
<div class="doc_author">
|
||||
<p>Written by Devang Patel and Nick Kledzik</p>
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<h2>
|
||||
<a name="desc">Description</a>
|
||||
</h2>
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<div>
|
||||
<p>
|
||||
LLVM features powerful intermodular optimizations which can be used at link
|
||||
time. Link Time Optimization (LTO) is another name for intermodular optimization
|
||||
when performed during the link stage. This document describes the interface
|
||||
and design between the LTO optimizer and the linker.</p>
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<h2>
|
||||
<a name="design">Design Philosophy</a>
|
||||
</h2>
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<div>
|
||||
<p>
|
||||
The LLVM Link Time Optimizer provides complete transparency, while doing
|
||||
intermodular optimization, in the compiler tool chain. Its main goal is to let
|
||||
the developer take advantage of intermodular optimizations without making any
|
||||
significant changes to the developer's makefiles or build system. This is
|
||||
achieved through tight integration with the linker. In this model, the linker
|
||||
treates LLVM bitcode files like native object files and allows mixing and
|
||||
matching among them. The linker uses <a href="#lto">libLTO</a>, a shared
|
||||
object, to handle LLVM bitcode files. This tight integration between
|
||||
the linker and LLVM optimizer helps to do optimizations that are not possible
|
||||
in other models. The linker input allows the optimizer to avoid relying on
|
||||
conservative escape analysis.
|
||||
</p>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<h3>
|
||||
<a name="example1">Example of link time optimization</a>
|
||||
</h3>
|
||||
|
||||
<div>
|
||||
<p>The following example illustrates the advantages of LTO's integrated
|
||||
approach and clean interface. This example requires a system linker which
|
||||
supports LTO through the interface described in this document. Here,
|
||||
clang transparently invokes system linker. </p>
|
||||
<ul>
|
||||
<li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
|
||||
<li> Input source file <tt>main.c</tt> is compiled into native object code.
|
||||
</ul>
|
||||
<pre class="doc_code">
|
||||
--- a.h ---
|
||||
extern int foo1(void);
|
||||
extern void foo2(void);
|
||||
extern void foo4(void);
|
||||
|
||||
--- a.c ---
|
||||
#include "a.h"
|
||||
|
||||
static signed int i = 0;
|
||||
|
||||
void foo2(void) {
|
||||
i = -1;
|
||||
}
|
||||
|
||||
static int foo3() {
|
||||
foo4();
|
||||
return 10;
|
||||
}
|
||||
|
||||
int foo1(void) {
|
||||
int data = 0;
|
||||
|
||||
if (i < 0)
|
||||
data = foo3();
|
||||
|
||||
data = data + 42;
|
||||
return data;
|
||||
}
|
||||
|
||||
--- main.c ---
|
||||
#include <stdio.h>
|
||||
#include "a.h"
|
||||
|
||||
void foo4(void) {
|
||||
printf("Hi\n");
|
||||
}
|
||||
|
||||
int main() {
|
||||
return foo1();
|
||||
}
|
||||
|
||||
--- command lines ---
|
||||
$ clang -emit-llvm -c a.c -o a.o # <-- a.o is LLVM bitcode file
|
||||
$ clang -c main.c -o main.o # <-- main.o is native object file
|
||||
$ clang a.o main.o -o main # <-- standard link command without any modifications
|
||||
</pre>
|
||||
|
||||
<ul>
|
||||
<li>In this example, the linker recognizes that <tt>foo2()</tt> is an
|
||||
externally visible symbol defined in LLVM bitcode file. The linker
|
||||
completes its usual symbol resolution pass and finds that <tt>foo2()</tt>
|
||||
is not used anywhere. This information is used by the LLVM optimizer and
|
||||
it removes <tt>foo2()</tt>.</li>
|
||||
<li>As soon as <tt>foo2()</tt> is removed, the optimizer recognizes that condition
|
||||
<tt>i < 0</tt> is always false, which means <tt>foo3()</tt> is never
|
||||
used. Hence, the optimizer also removes <tt>foo3()</tt>.</li>
|
||||
<li>And this in turn, enables linker to remove <tt>foo4()</tt>.</li>
|
||||
</ul>
|
||||
|
||||
<p>This example illustrates the advantage of tight integration with the
|
||||
linker. Here, the optimizer can not remove <tt>foo3()</tt> without the
|
||||
linker's input.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<h3>
|
||||
<a name="alternative_approaches">Alternative Approaches</a>
|
||||
</h3>
|
||||
|
||||
<div>
|
||||
<dl>
|
||||
<dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
|
||||
<dd>In this model the link time optimizer is not able to take advantage of
|
||||
information collected during the linker's normal symbol resolution phase.
|
||||
In the above example, the optimizer can not remove <tt>foo2()</tt> without
|
||||
the linker's input because it is externally visible. This in turn prohibits
|
||||
the optimizer from removing <tt>foo3()</tt>.</dd>
|
||||
<dt><b>Use separate tool to collect symbol information from all object
|
||||
files.</b></dt>
|
||||
<dd>In this model, a new, separate, tool or library replicates the linker's
|
||||
capability to collect information for link time optimization. Not only is
|
||||
this code duplication difficult to justify, but it also has several other
|
||||
disadvantages. For example, the linking semantics and the features
|
||||
provided by the linker on various platform are not unique. This means,
|
||||
this new tool needs to support all such features and platforms in one
|
||||
super tool or a separate tool per platform is required. This increases
|
||||
maintenance cost for link time optimizer significantly, which is not
|
||||
necessary. This approach also requires staying synchronized with linker
|
||||
developements on various platforms, which is not the main focus of the link
|
||||
time optimizer. Finally, this approach increases end user's build time due
|
||||
to the duplication of work done by this separate tool and the linker itself.
|
||||
</dd>
|
||||
</dl>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<h2>
|
||||
<a name="multiphase">Multi-phase communication between libLTO and linker</a>
|
||||
</h2>
|
||||
|
||||
<div>
|
||||
<p>The linker collects information about symbol defininitions and uses in
|
||||
various link objects which is more accurate than any information collected
|
||||
by other tools during typical build cycles. The linker collects this
|
||||
information by looking at the definitions and uses of symbols in native .o
|
||||
files and using symbol visibility information. The linker also uses
|
||||
user-supplied information, such as a list of exported symbols. LLVM
|
||||
optimizer collects control flow information, data flow information and knows
|
||||
much more about program structure from the optimizer's point of view.
|
||||
Our goal is to take advantage of tight integration between the linker and
|
||||
the optimizer by sharing this information during various linking phases.
|
||||
</p>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<h3>
|
||||
<a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
|
||||
</h3>
|
||||
|
||||
<div>
|
||||
<p>The linker first reads all object files in natural order and collects
|
||||
symbol information. This includes native object files as well as LLVM bitcode
|
||||
files. To minimize the cost to the linker in the case that all .o files
|
||||
are native object files, the linker only calls <tt>lto_module_create()</tt>
|
||||
when a supplied object file is found to not be a native object file. If
|
||||
<tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file,
|
||||
the linker
|
||||
then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and
|
||||
<tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and
|
||||
referenced.
|
||||
This information is added to the linker's global symbol table.
|
||||
</p>
|
||||
<p>The lto* functions are all implemented in a shared object libLTO. This
|
||||
allows the LLVM LTO code to be updated independently of the linker tool.
|
||||
On platforms that support it, the shared object is lazily loaded.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<h3>
|
||||
<a name="phase2">Phase 2 : Symbol Resolution</a>
|
||||
</h3>
|
||||
|
||||
<div>
|
||||
<p>In this stage, the linker resolves symbols using global symbol table.
|
||||
It may report undefined symbol errors, read archive members, replace
|
||||
weak symbols, etc. The linker is able to do this seamlessly even though it
|
||||
does not know the exact content of input LLVM bitcode files. If dead code
|
||||
stripping is enabled then the linker collects the list of live symbols.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<h3>
|
||||
<a name="phase3">Phase 3 : Optimize Bitcode Files</a>
|
||||
</h3>
|
||||
<div>
|
||||
<p>After symbol resolution, the linker tells the LTO shared object which
|
||||
symbols are needed by native object files. In the example above, the linker
|
||||
reports that only <tt>foo1()</tt> is used by native object files using
|
||||
<tt>lto_codegen_add_must_preserve_symbol()</tt>. Next the linker invokes
|
||||
the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>
|
||||
which returns a native object file creating by merging the LLVM bitcode files
|
||||
and applying various optimization passes.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<h3>
|
||||
<a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
|
||||
</h3>
|
||||
|
||||
<div>
|
||||
<p>In this phase, the linker reads optimized a native object file and
|
||||
updates the internal global symbol table to reflect any changes. The linker
|
||||
also collects information about any changes in use of external symbols by
|
||||
LLVM bitcode files. In the example above, the linker notes that
|
||||
<tt>foo4()</tt> is not used any more. If dead code stripping is enabled then
|
||||
the linker refreshes the live symbol information appropriately and performs
|
||||
dead code stripping.</p>
|
||||
<p>After this phase, the linker continues linking as if it never saw LLVM
|
||||
bitcode files.</p>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<h2>
|
||||
<a name="lto">libLTO</a>
|
||||
</h2>
|
||||
|
||||
<div>
|
||||
<p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and
|
||||
is intended for use by a linker. <tt>libLTO</tt> provides an abstract C
|
||||
interface to use the LLVM interprocedural optimizer without exposing details
|
||||
of LLVM's internals. The intention is to keep the interface as stable as
|
||||
possible even when the LLVM optimizer continues to evolve. It should even
|
||||
be possible for a completely different compilation technology to provide
|
||||
a different libLTO that works with their object files and the standard
|
||||
linker tool.</p>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<h3>
|
||||
<a name="lto_module_t">lto_module_t</a>
|
||||
</h3>
|
||||
|
||||
<div>
|
||||
|
||||
<p>A non-native object file is handled via an <tt>lto_module_t</tt>.
|
||||
The following functions allow the linker to check if a file (on disk
|
||||
or in a memory buffer) is a file which libLTO can process:</p>
|
||||
|
||||
<pre class="doc_code">
|
||||
lto_module_is_object_file(const char*)
|
||||
lto_module_is_object_file_for_target(const char*, const char*)
|
||||
lto_module_is_object_file_in_memory(const void*, size_t)
|
||||
lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
|
||||
</pre>
|
||||
|
||||
<p>If the object file can be processed by libLTO, the linker creates a
|
||||
<tt>lto_module_t</tt> by using one of</p>
|
||||
|
||||
<pre class="doc_code">
|
||||
lto_module_create(const char*)
|
||||
lto_module_create_from_memory(const void*, size_t)
|
||||
</pre>
|
||||
|
||||
<p>and when done, the handle is released via</p>
|
||||
|
||||
<pre class="doc_code">
|
||||
lto_module_dispose(lto_module_t)
|
||||
</pre>
|
||||
|
||||
<p>The linker can introspect the non-native object file by getting the number of
|
||||
symbols and getting the name and attributes of each symbol via:</p>
|
||||
|
||||
<pre class="doc_code">
|
||||
lto_module_get_num_symbols(lto_module_t)
|
||||
lto_module_get_symbol_name(lto_module_t, unsigned int)
|
||||
lto_module_get_symbol_attribute(lto_module_t, unsigned int)
|
||||
</pre>
|
||||
|
||||
<p>The attributes of a symbol include the alignment, visibility, and kind.</p>
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<h3>
|
||||
<a name="lto_code_gen_t">lto_code_gen_t</a>
|
||||
</h3>
|
||||
|
||||
<div>
|
||||
|
||||
<p>Once the linker has loaded each non-native object files into an
|
||||
<tt>lto_module_t</tt>, it can request libLTO to process them all and
|
||||
generate a native object file. This is done in a couple of steps.
|
||||
First, a code generator is created with:</p>
|
||||
|
||||
<pre class="doc_code">lto_codegen_create()</pre>
|
||||
|
||||
<p>Then, each non-native object file is added to the code generator with:</p>
|
||||
|
||||
<pre class="doc_code">
|
||||
lto_codegen_add_module(lto_code_gen_t, lto_module_t)
|
||||
</pre>
|
||||
|
||||
<p>The linker then has the option of setting some codegen options. Whether or
|
||||
not to generate DWARF debug info is set with:</p>
|
||||
|
||||
<pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>
|
||||
|
||||
<p>Which kind of position independence is set with:</p>
|
||||
|
||||
<pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>
|
||||
|
||||
<p>And each symbol that is referenced by a native object file or otherwise must
|
||||
not be optimized away is set with:</p>
|
||||
|
||||
<pre class="doc_code">
|
||||
lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
|
||||
</pre>
|
||||
|
||||
<p>After all these settings are done, the linker requests that a native object
|
||||
file be created from the modules with the settings using:</p>
|
||||
|
||||
<pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>
|
||||
|
||||
<p>which returns a pointer to a buffer containing the generated native
|
||||
object file. The linker then parses that and links it with the rest
|
||||
of the native object files.</p>
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<hr>
|
||||
<address>
|
||||
<a href="http://jigsaw.w3.org/css-validator/check/referer"><img
|
||||
src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
|
||||
<a href="http://validator.w3.org/check/referer"><img
|
||||
src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
|
||||
|
||||
Devang Patel and Nick Kledzik<br>
|
||||
<a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
|
||||
Last modified: $Date$
|
||||
</address>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
|
298
llvm/docs/LinkTimeOptimization.rst
Normal file
298
llvm/docs/LinkTimeOptimization.rst
Normal file
@ -0,0 +1,298 @@
|
||||
.. _lto:
|
||||
|
||||
======================================================
|
||||
LLVM Link Time Optimization: Design and Implementation
|
||||
======================================================
|
||||
|
||||
.. contents::
|
||||
:local:
|
||||
|
||||
Description
|
||||
===========
|
||||
|
||||
LLVM features powerful intermodular optimizations which can be used at link
|
||||
time. Link Time Optimization (LTO) is another name for intermodular
|
||||
optimization when performed during the link stage. This document describes the
|
||||
interface and design between the LTO optimizer and the linker.
|
||||
|
||||
Design Philosophy
|
||||
=================
|
||||
|
||||
The LLVM Link Time Optimizer provides complete transparency, while doing
|
||||
intermodular optimization, in the compiler tool chain. Its main goal is to let
|
||||
the developer take advantage of intermodular optimizations without making any
|
||||
significant changes to the developer's makefiles or build system. This is
|
||||
achieved through tight integration with the linker. In this model, the linker
|
||||
treates LLVM bitcode files like native object files and allows mixing and
|
||||
matching among them. The linker uses `libLTO`_, a shared object, to handle LLVM
|
||||
bitcode files. This tight integration between the linker and LLVM optimizer
|
||||
helps to do optimizations that are not possible in other models. The linker
|
||||
input allows the optimizer to avoid relying on conservative escape analysis.
|
||||
|
||||
Example of link time optimization
|
||||
---------------------------------
|
||||
|
||||
The following example illustrates the advantages of LTO's integrated approach
|
||||
and clean interface. This example requires a system linker which supports LTO
|
||||
through the interface described in this document. Here, clang transparently
|
||||
invokes system linker.
|
||||
|
||||
* Input source file ``a.c`` is compiled into LLVM bitcode form.
|
||||
* Input source file ``main.c`` is compiled into native object code.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
--- a.h ---
|
||||
extern int foo1(void);
|
||||
extern void foo2(void);
|
||||
extern void foo4(void);
|
||||
|
||||
--- a.c ---
|
||||
#include "a.h"
|
||||
|
||||
static signed int i = 0;
|
||||
|
||||
void foo2(void) {
|
||||
i = -1;
|
||||
}
|
||||
|
||||
static int foo3() {
|
||||
foo4();
|
||||
return 10;
|
||||
}
|
||||
|
||||
int foo1(void) {
|
||||
int data = 0;
|
||||
|
||||
if (i < 0)
|
||||
data = foo3();
|
||||
|
||||
data = data + 42;
|
||||
return data;
|
||||
}
|
||||
|
||||
--- main.c ---
|
||||
#include <stdio.h>
|
||||
#include "a.h"
|
||||
|
||||
void foo4(void) {
|
||||
printf("Hi\n");
|
||||
}
|
||||
|
||||
int main() {
|
||||
return foo1();
|
||||
}
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
--- command lines ---
|
||||
% clang -emit-llvm -c a.c -o a.o # <-- a.o is LLVM bitcode file
|
||||
% clang -c main.c -o main.o # <-- main.o is native object file
|
||||
% clang a.o main.o -o main # <-- standard link command without modifications
|
||||
|
||||
* In this example, the linker recognizes that ``foo2()`` is an externally
|
||||
visible symbol defined in LLVM bitcode file. The linker completes its usual
|
||||
symbol resolution pass and finds that ``foo2()`` is not used
|
||||
anywhere. This information is used by the LLVM optimizer and it
|
||||
removes ``foo2()``.</li>
|
||||
|
||||
* As soon as ``foo2()`` is removed, the optimizer recognizes that condition ``i
|
||||
< 0`` is always false, which means ``foo3()`` is never used. Hence, the
|
||||
optimizer also removes ``foo3()``.
|
||||
|
||||
* And this in turn, enables linker to remove ``foo4()``.
|
||||
|
||||
This example illustrates the advantage of tight integration with the
|
||||
linker. Here, the optimizer can not remove ``foo3()`` without the linker's
|
||||
input.
|
||||
|
||||
Alternative Approaches
|
||||
----------------------
|
||||
|
||||
**Compiler driver invokes link time optimizer separately.**
|
||||
In this model the link time optimizer is not able to take advantage of
|
||||
information collected during the linker's normal symbol resolution phase.
|
||||
In the above example, the optimizer can not remove ``foo2()`` without the
|
||||
linker's input because it is externally visible. This in turn prohibits the
|
||||
optimizer from removing ``foo3()``.
|
||||
|
||||
**Use separate tool to collect symbol information from all object files.**
|
||||
In this model, a new, separate, tool or library replicates the linker's
|
||||
capability to collect information for link time optimization. Not only is
|
||||
this code duplication difficult to justify, but it also has several other
|
||||
disadvantages. For example, the linking semantics and the features provided
|
||||
by the linker on various platform are not unique. This means, this new tool
|
||||
needs to support all such features and platforms in one super tool or a
|
||||
separate tool per platform is required. This increases maintenance cost for
|
||||
link time optimizer significantly, which is not necessary. This approach
|
||||
also requires staying synchronized with linker developements on various
|
||||
platforms, which is not the main focus of the link time optimizer. Finally,
|
||||
this approach increases end user's build time due to the duplication of work
|
||||
done by this separate tool and the linker itself.
|
||||
|
||||
Multi-phase communication between ``libLTO`` and linker
|
||||
=======================================================
|
||||
|
||||
The linker collects information about symbol defininitions and uses in various
|
||||
link objects which is more accurate than any information collected by other
|
||||
tools during typical build cycles. The linker collects this information by
|
||||
looking at the definitions and uses of symbols in native .o files and using
|
||||
symbol visibility information. The linker also uses user-supplied information,
|
||||
such as a list of exported symbols. LLVM optimizer collects control flow
|
||||
information, data flow information and knows much more about program structure
|
||||
from the optimizer's point of view. Our goal is to take advantage of tight
|
||||
integration between the linker and the optimizer by sharing this information
|
||||
during various linking phases.
|
||||
|
||||
Phase 1 : Read LLVM Bitcode Files
|
||||
---------------------------------
|
||||
|
||||
The linker first reads all object files in natural order and collects symbol
|
||||
information. This includes native object files as well as LLVM bitcode files.
|
||||
To minimize the cost to the linker in the case that all .o files are native
|
||||
object files, the linker only calls ``lto_module_create()`` when a supplied
|
||||
object file is found to not be a native object file. If ``lto_module_create()``
|
||||
returns that the file is an LLVM bitcode file, the linker then iterates over the
|
||||
module using ``lto_module_get_symbol_name()`` and
|
||||
``lto_module_get_symbol_attribute()`` to get all symbols defined and referenced.
|
||||
This information is added to the linker's global symbol table.
|
||||
|
||||
|
||||
The lto* functions are all implemented in a shared object libLTO. This allows
|
||||
the LLVM LTO code to be updated independently of the linker tool. On platforms
|
||||
that support it, the shared object is lazily loaded.
|
||||
|
||||
Phase 2 : Symbol Resolution
|
||||
---------------------------
|
||||
|
||||
In this stage, the linker resolves symbols using global symbol table. It may
|
||||
report undefined symbol errors, read archive members, replace weak symbols, etc.
|
||||
The linker is able to do this seamlessly even though it does not know the exact
|
||||
content of input LLVM bitcode files. If dead code stripping is enabled then the
|
||||
linker collects the list of live symbols.
|
||||
|
||||
Phase 3 : Optimize Bitcode Files
|
||||
--------------------------------
|
||||
|
||||
After symbol resolution, the linker tells the LTO shared object which symbols
|
||||
are needed by native object files. In the example above, the linker reports
|
||||
that only ``foo1()`` is used by native object files using
|
||||
``lto_codegen_add_must_preserve_symbol()``. Next the linker invokes the LLVM
|
||||
optimizer and code generators using ``lto_codegen_compile()`` which returns a
|
||||
native object file creating by merging the LLVM bitcode files and applying
|
||||
various optimization passes.
|
||||
|
||||
Phase 4 : Symbol Resolution after optimization
|
||||
----------------------------------------------
|
||||
|
||||
In this phase, the linker reads optimized a native object file and updates the
|
||||
internal global symbol table to reflect any changes. The linker also collects
|
||||
information about any changes in use of external symbols by LLVM bitcode
|
||||
files. In the example above, the linker notes that ``foo4()`` is not used any
|
||||
more. If dead code stripping is enabled then the linker refreshes the live
|
||||
symbol information appropriately and performs dead code stripping.
|
||||
|
||||
After this phase, the linker continues linking as if it never saw LLVM bitcode
|
||||
files.
|
||||
|
||||
.. _libLTO:
|
||||
|
||||
``libLTO``
|
||||
==========
|
||||
|
||||
``libLTO`` is a shared object that is part of the LLVM tools, and is intended
|
||||
for use by a linker. ``libLTO`` provides an abstract C interface to use the LLVM
|
||||
interprocedural optimizer without exposing details of LLVM's internals. The
|
||||
intention is to keep the interface as stable as possible even when the LLVM
|
||||
optimizer continues to evolve. It should even be possible for a completely
|
||||
different compilation technology to provide a different libLTO that works with
|
||||
their object files and the standard linker tool.
|
||||
|
||||
``lto_module_t``
|
||||
----------------
|
||||
|
||||
A non-native object file is handled via an ``lto_module_t``. The following
|
||||
functions allow the linker to check if a file (on disk or in a memory buffer) is
|
||||
a file which libLTO can process:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_module_is_object_file(const char*)
|
||||
lto_module_is_object_file_for_target(const char*, const char*)
|
||||
lto_module_is_object_file_in_memory(const void*, size_t)
|
||||
lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
|
||||
|
||||
If the object file can be processed by ``libLTO``, the linker creates a
|
||||
``lto_module_t`` by using one of:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_module_create(const char*)
|
||||
lto_module_create_from_memory(const void*, size_t)
|
||||
|
||||
and when done, the handle is released via
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_module_dispose(lto_module_t)
|
||||
|
||||
|
||||
The linker can introspect the non-native object file by getting the number of
|
||||
symbols and getting the name and attributes of each symbol via:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_module_get_num_symbols(lto_module_t)
|
||||
lto_module_get_symbol_name(lto_module_t, unsigned int)
|
||||
lto_module_get_symbol_attribute(lto_module_t, unsigned int)
|
||||
|
||||
The attributes of a symbol include the alignment, visibility, and kind.
|
||||
|
||||
``lto_code_gen_t``
|
||||
------------------
|
||||
|
||||
Once the linker has loaded each non-native object files into an
|
||||
``lto_module_t``, it can request ``libLTO`` to process them all and generate a
|
||||
native object file. This is done in a couple of steps. First, a code generator
|
||||
is created with:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_codegen_create()
|
||||
|
||||
Then, each non-native object file is added to the code generator with:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_codegen_add_module(lto_code_gen_t, lto_module_t)
|
||||
|
||||
The linker then has the option of setting some codegen options. Whether or not
|
||||
to generate DWARF debug info is set with:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_codegen_set_debug_model(lto_code_gen_t)
|
||||
|
||||
Which kind of position independence is set with:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_codegen_set_pic_model(lto_code_gen_t)
|
||||
|
||||
And each symbol that is referenced by a native object file or otherwise must not
|
||||
be optimized away is set with:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
|
||||
|
||||
After all these settings are done, the linker requests that a native object file
|
||||
be created from the modules with the settings using:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
lto_codegen_compile(lto_code_gen_t, size*)
|
||||
|
||||
which returns a pointer to a buffer containing the generated native object file.
|
||||
The linker then parses that and links it with the rest of the native object
|
||||
files.
|
@ -7,6 +7,7 @@ Subsystem Documentation
|
||||
:hidden:
|
||||
|
||||
AliasAnalysis
|
||||
LinkTimeOptimization
|
||||
|
||||
* `Writing an LLVM Pass <WritingAnLLVMPass.html>`_
|
||||
|
||||
@ -61,7 +62,7 @@ Subsystem Documentation
|
||||
This document describes the LLVM System Library (<tt>lib/System</tt>) and
|
||||
how to keep LLVM source code portable
|
||||
|
||||
* `Link Time Optimization <LinkTimeOptimization.html>`_
|
||||
* :ref:`lto`
|
||||
|
||||
This document describes the interface between LLVM intermodular optimizer
|
||||
and the linker and its design
|
||||
|
Loading…
Reference in New Issue
Block a user