[clangd] allow extracting to variable for lambda expressions

Support for extracting lambda expressions, e.g. extracting a lambda from a callexpr (e.g. algorithms/ranges) to a named variable.

Reviewed By: nridge

Differential Revision: https://reviews.llvm.org/D141757
This commit is contained in:
Julian Schmidt 2023-09-11 03:50:17 -04:00 committed by Nathan Ridge
parent 64366d4935
commit 94b14355e2
3 changed files with 351 additions and 11 deletions

View File

@ -12,8 +12,11 @@
#include "SourceCode.h"
#include "refactor/Tweak.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
@ -74,10 +77,52 @@ computeReferencedDecls(const clang::Expr *Expr) {
public:
std::vector<Decl *> ReferencedDecls;
bool VisitDeclRefExpr(DeclRefExpr *DeclRef) { // NOLINT
// Stop the call operator of lambdas from being marked as a referenced
// DeclRefExpr in immediately invoked lambdas.
if (const auto *const Method =
llvm::dyn_cast<CXXMethodDecl>(DeclRef->getDecl());
Method != nullptr && Method->getParent()->isLambda()) {
return true;
}
ReferencedDecls.push_back(DeclRef->getDecl());
return true;
}
// Local variables declared inside of the selected lambda cannot go out of
// scope. The DeclRefExprs that are important are the variables captured,
// the DeclRefExprs inside the initializers of init-capture variables,
// variables mentioned in trailing return types, constraints and explicit
// defaulted template parameters.
bool TraverseLambdaExpr(LambdaExpr *LExpr) {
for (const auto &[Capture, Initializer] :
llvm::zip(LExpr->captures(), LExpr->capture_inits())) {
TraverseLambdaCapture(LExpr, &Capture, Initializer);
}
if (clang::Expr *const RequiresClause =
LExpr->getTrailingRequiresClause()) {
TraverseStmt(RequiresClause);
}
for (auto *const TemplateParam : LExpr->getExplicitTemplateParameters())
TraverseDecl(TemplateParam);
if (auto *const CallOperator = LExpr->getCallOperator()) {
TraverseType(CallOperator->getDeclaredReturnType());
for (auto *const Param : CallOperator->parameters()) {
TraverseParmVarDecl(Param);
}
for (auto *const Attr : CallOperator->attrs()) {
TraverseAttr(Attr);
}
}
return true;
}
};
FindDeclRefsVisitor Visitor;
Visitor.TraverseStmt(const_cast<Stmt *>(cast<Stmt>(Expr)));
return Visitor.ReferencedDecls;
@ -152,10 +197,16 @@ const clang::Stmt *ExtractionContext::computeInsertionPoint() const {
auto CanExtractOutside =
[](const SelectionTree::Node *InsertionPoint) -> bool {
if (const clang::Stmt *Stmt = InsertionPoint->ASTNode.get<clang::Stmt>()) {
// Allow all expressions except LambdaExpr since we don't want to extract
// from the captures/default arguments of a lambda
if (isa<clang::Expr>(Stmt))
return !isa<LambdaExpr>(Stmt);
if (isa<clang::Expr>(Stmt)) {
// Do not allow extraction from the initializer of a defaulted parameter
// to a local variable (e.g. a function-local lambda).
if (InsertionPoint->Parent->ASTNode.get<ParmVarDecl>() != nullptr) {
return false;
}
return true;
}
// We don't yet allow extraction from switch/case stmt as we would need to
// jump over the switch stmt even if there is a CompoundStmt inside the
// switch. And there are other Stmts which we don't care about (e.g.
@ -240,7 +291,7 @@ struct ParsedBinaryOperator {
SelectedOperands.clear();
if (const BinaryOperator *Op =
llvm::dyn_cast_or_null<BinaryOperator>(N.ASTNode.get<Expr>())) {
llvm::dyn_cast_or_null<BinaryOperator>(N.ASTNode.get<Expr>())) {
Kind = Op->getOpcode();
ExprLoc = Op->getExprLoc();
SelectedOperands = N.Children;
@ -255,7 +306,7 @@ struct ParsedBinaryOperator {
Kind = BinaryOperator::getOverloadedOpcode(Op->getOperator());
ExprLoc = Op->getExprLoc();
// Not all children are args, there's also the callee (operator).
for (const auto* Child : N.Children) {
for (const auto *Child : N.Children) {
const Expr *E = Child->ASTNode.get<Expr>();
assert(E && "callee and args should be Exprs!");
if (E == Op->getArg(0) || E == Op->getArg(1))
@ -376,15 +427,15 @@ bool childExprIsStmt(const Stmt *Outer, const Expr *Inner) {
if (llvm::isa<SwitchCase>(Outer))
return true;
// Control flow statements use condition etc, but not the body.
if (const auto* WS = llvm::dyn_cast<WhileStmt>(Outer))
if (const auto *WS = llvm::dyn_cast<WhileStmt>(Outer))
return Inner == WS->getBody();
if (const auto* DS = llvm::dyn_cast<DoStmt>(Outer))
if (const auto *DS = llvm::dyn_cast<DoStmt>(Outer))
return Inner == DS->getBody();
if (const auto* FS = llvm::dyn_cast<ForStmt>(Outer))
if (const auto *FS = llvm::dyn_cast<ForStmt>(Outer))
return Inner == FS->getBody();
if (const auto* FS = llvm::dyn_cast<CXXForRangeStmt>(Outer))
if (const auto *FS = llvm::dyn_cast<CXXForRangeStmt>(Outer))
return Inner == FS->getBody();
if (const auto* IS = llvm::dyn_cast<IfStmt>(Outer))
if (const auto *IS = llvm::dyn_cast<IfStmt>(Outer))
return Inner == IS->getThen() || Inner == IS->getElse();
// Assume all other cases may be actual expressions.
// This includes the important case of subexpressions (where Outer is Expr).

View File

@ -98,6 +98,7 @@ TEST_F(ExtractVariableTest, Test) {
return [[t]].bar([[t]].z);
}
void v() { return; }
// function default argument
void f(int b = [[1]]) {
// empty selection
@ -131,10 +132,80 @@ TEST_F(ExtractVariableTest, Test) {
goto label;
label:
a = [[1]];
// lambdas: captures
int x = 0;
[ [[=]] ](){};
[ [[&]] ](){};
[ [[x]] ](){};
[ [[&x]] ](){};
[y = [[x]] ](){};
[ [[y = x]] ](){};
// lambdas: default args, cannot extract into function-local scope
[](int x = [[10]]){};
[](auto h = [[ [i = [](){}](){} ]]) {};
// lambdas: default args
// Extracting from capture initializers is usually fine,
// but not if the capture itself is nested inside a default argument
[](auto h = [i = [[ [](){} ]]](){}) {};
[](auto h = [i = [[ 42 ]]](){}) {};
// lambdas: scope
if (int a = 1)
if ([[ [&](){ return a + 1; } ]]() == 4)
a = a + 1;
for (int c = 0; [[ [&]() { return c < b; } ]](); ++c) {
}
for (int c = 0; [[ [&]() { return c < b; } () ]]; ++c) {
}
// lambdas: scope with structured binding
struct Coordinates {
int x{};
int y{};
};
Coordinates c{};
if (const auto [x, y] = c; x > y)
auto f = [[ [&]() { return x + y; } ]];
// lambdas: referencing outside variables that block extraction
// in trailing return type or in a decltype used
// by a parameter
if (int a = 1)
if ([[ []() -> decltype(a) { return 1; } ]] () == 4)
a = a + 1;
if (int a = 1)
if ([[ [](int x = decltype(a){}) { return 1; } ]] () == 4)
a = a + 1;
if (int a = 1)
if ([[ [](decltype(a) x) { return 1; } ]] (42) == 4)
a = a + 1;
}
)cpp";
EXPECT_UNAVAILABLE(UnavailableCases);
ExtraArgs = {"-std=c++20"};
const char *UnavailableCasesCXX20 = R"cpp(
template <typename T>
concept Constraint = requires (T t) { true; };
void foo() {
// lambdas: referencing outside variables that block extraction
// in requires clause or defaulted explicit template parameters
if (int a = 1)
if ([[ [](auto b) requires (Constraint<decltype(a)> && Constraint<decltype(b)>) { return true; } ]] (a))
a = a + 1;
if (int a = 1)
if ([[ []<typename T = decltype(a)>(T b) { return true; } ]] (a))
a = a + 1;
}
)cpp";
EXPECT_UNAVAILABLE(UnavailableCasesCXX20);
ExtraArgs.clear();
// vector of pairs of input and output strings
std::vector<std::pair<std::string, std::string>> InputOutputs = {
// extraction from variable declaration/assignment
@ -282,6 +353,219 @@ TEST_F(ExtractVariableTest, Test) {
void f() {
auto placeholder = S(2) + S(3) + S(4); S x = S(1) + placeholder + S(5);
})cpp"},
// lambda expressions
{R"cpp(template <typename T> void f(T) {}
void f2() {
f([[ [](){ return 42; }]]);
}
)cpp",
R"cpp(template <typename T> void f(T) {}
void f2() {
auto placeholder = [](){ return 42; }; f( placeholder);
}
)cpp"},
{R"cpp(template <typename T> void f(T) {}
void f2() {
f([x = [[40 + 2]] ](){ return 42; });
}
)cpp",
R"cpp(template <typename T> void f(T) {}
void f2() {
auto placeholder = 40 + 2; f([x = placeholder ](){ return 42; });
}
)cpp"},
{R"cpp(auto foo(int VarA) {
return [VarA]() {
return [[ [VarA, VarC = 42 + VarA](int VarB) { return VarA + VarB + VarC; }]];
};
}
)cpp",
R"cpp(auto foo(int VarA) {
return [VarA]() {
auto placeholder = [VarA, VarC = 42 + VarA](int VarB) { return VarA + VarB + VarC; }; return placeholder;
};
}
)cpp"},
{R"cpp(template <typename T> void f(T) {}
void f2(int var) {
f([[ [&var](){ auto internal_val = 42; return var + internal_val; }]]);
}
)cpp",
R"cpp(template <typename T> void f(T) {}
void f2(int var) {
auto placeholder = [&var](){ auto internal_val = 42; return var + internal_val; }; f( placeholder);
}
)cpp"},
{R"cpp(template <typename T> void f(T) { }
struct A {
void f2(int& var) {
auto local_var = 42;
f([[ [&var, &local_var, this]() {
auto internal_val = 42;
return var + local_var + internal_val + member;
}]]);
}
int member = 42;
};
)cpp",
R"cpp(template <typename T> void f(T) { }
struct A {
void f2(int& var) {
auto local_var = 42;
auto placeholder = [&var, &local_var, this]() {
auto internal_val = 42;
return var + local_var + internal_val + member;
}; f( placeholder);
}
int member = 42;
};
)cpp"},
{R"cpp(void f() { auto x = [[ [](){ return 42; }]]; })cpp",
R"cpp(void f() { auto placeholder = [](){ return 42; }; auto x = placeholder; })cpp"},
{R"cpp(
template <typename T>
auto sink(T f) { return f(); }
int bar() {
return sink([[ []() { return 42; }]]);
}
)cpp",
R"cpp(
template <typename T>
auto sink(T f) { return f(); }
int bar() {
auto placeholder = []() { return 42; }; return sink( placeholder);
}
)cpp"},
{R"cpp(
int main() {
if (int a = 1) {
if ([[ [&](){ return a + 1; } ]]() == 4)
a = a + 1;
}
})cpp",
R"cpp(
int main() {
if (int a = 1) {
auto placeholder = [&](){ return a + 1; }; if ( placeholder () == 4)
a = a + 1;
}
})cpp"},
{R"cpp(
int main() {
if (int a = 1) {
if ([[ [&](){ return a + 1; }() ]] == 4)
a = a + 1;
}
})cpp",
R"cpp(
int main() {
if (int a = 1) {
auto placeholder = [&](){ return a + 1; }(); if ( placeholder == 4)
a = a + 1;
}
})cpp"},
{R"cpp(
template <typename T>
auto call(T t) { return t(); }
int main() {
return [[ call([](){ int a = 1; return a + 1; }) ]] + 5;
})cpp",
R"cpp(
template <typename T>
auto call(T t) { return t(); }
int main() {
auto placeholder = call([](){ int a = 1; return a + 1; }); return placeholder + 5;
})cpp"},
{R"cpp(
class Foo {
int bar() {
return [f = [[ [this](int g) { return g + x; } ]] ]() { return 42; }();
}
int x;
};
)cpp",
R"cpp(
class Foo {
int bar() {
auto placeholder = [this](int g) { return g + x; }; return [f = placeholder ]() { return 42; }();
}
int x;
};
)cpp"},
{R"cpp(
int main() {
return [[ []() { return 42; }() ]];
})cpp",
R"cpp(
int main() {
auto placeholder = []() { return 42; }(); return placeholder ;
})cpp"},
{R"cpp(
template <typename ...Ts>
void foo(Ts ...args) {
auto x = [[ [&args...]() {} ]];
}
)cpp",
R"cpp(
template <typename ...Ts>
void foo(Ts ...args) {
auto placeholder = [&args...]() {}; auto x = placeholder ;
}
)cpp"},
{R"cpp(
struct Coordinates {
int x{};
int y{};
};
int main() {
Coordinates c = {};
const auto [x, y] = c;
auto f = [[ [&]() { return x + y; } ]];
}
)cpp",
R"cpp(
struct Coordinates {
int x{};
int y{};
};
int main() {
Coordinates c = {};
const auto [x, y] = c;
auto placeholder = [&]() { return x + y; }; auto f = placeholder ;
}
)cpp"},
{R"cpp(
struct Coordinates {
int x{};
int y{};
};
int main() {
Coordinates c = {};
if (const auto [x, y] = c; x > y) {
auto f = [[ [&]() { return x + y; } ]];
}
}
)cpp",
R"cpp(
struct Coordinates {
int x{};
int y{};
};
int main() {
Coordinates c = {};
if (const auto [x, y] = c; x > y) {
auto placeholder = [&]() { return x + y; }; auto f = placeholder ;
}
}
)cpp"},
// Don't try to analyze across macro boundaries
// FIXME: it'd be nice to do this someday (in a safe way)
{R"cpp(#define ECHO(X) X

View File

@ -66,6 +66,11 @@ Hover
Code completion
^^^^^^^^^^^^^^^
Code actions
^^^^^^^^^^^^
- The extract variable tweak gained support for extracting lambda expressions to a variable.
Signature help
^^^^^^^^^^^^^^