mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-01 12:43:47 +00:00
Revert "[MLIR][Presburger] Template Matrix to allow MPInt and Fraction (#65272)"
This reverts commit efca035c6d28542ad6374cd8bf17ae7c72407ead. Reverting due to windows build bot failure: https://lab.llvm.org/buildbot/#/builders/13/builds/40242/steps/6/logs/stdio
This commit is contained in:
parent
054f9c55c6
commit
98c994c8e2
@ -366,7 +366,7 @@ public:
|
||||
/// bounded. The span of the returned vectors is guaranteed to contain all
|
||||
/// such vectors. The returned vectors are NOT guaranteed to be linearly
|
||||
/// independent. This function should not be called on empty sets.
|
||||
Matrix<MPInt> getBoundedDirections() const;
|
||||
Matrix getBoundedDirections() const;
|
||||
|
||||
/// Find an integer sample point satisfying the constraints using a
|
||||
/// branch and bound algorithm with generalized basis reduction, with some
|
||||
@ -792,10 +792,10 @@ protected:
|
||||
PresburgerSpace space;
|
||||
|
||||
/// Coefficients of affine equalities (in == 0 form).
|
||||
Matrix<MPInt> equalities;
|
||||
Matrix equalities;
|
||||
|
||||
/// Coefficients of affine inequalities (in >= 0 form).
|
||||
Matrix<MPInt> inequalities;
|
||||
Matrix inequalities;
|
||||
};
|
||||
|
||||
/// An IntegerPolyhedron represents the set of points from a PresburgerSpace
|
||||
|
@ -22,8 +22,8 @@ namespace presburger {
|
||||
|
||||
class LinearTransform {
|
||||
public:
|
||||
explicit LinearTransform(Matrix<MPInt> &&oMatrix);
|
||||
explicit LinearTransform(const Matrix<MPInt> &oMatrix);
|
||||
explicit LinearTransform(Matrix &&oMatrix);
|
||||
explicit LinearTransform(const Matrix &oMatrix);
|
||||
|
||||
// Returns a linear transform T such that MT is M in column echelon form.
|
||||
// Also returns the number of non-zero columns in MT.
|
||||
@ -32,7 +32,7 @@ public:
|
||||
// strictly below that of the previous column, and all columns which have only
|
||||
// zeros are at the end.
|
||||
static std::pair<unsigned, LinearTransform>
|
||||
makeTransformToColumnEchelon(const Matrix<MPInt> &m);
|
||||
makeTransformToColumnEchelon(const Matrix &m);
|
||||
|
||||
// Returns an IntegerRelation having a constraint vector vT for every
|
||||
// constraint vector v in rel, where T is this transform.
|
||||
@ -50,12 +50,8 @@ public:
|
||||
return matrix.postMultiplyWithColumn(colVec);
|
||||
}
|
||||
|
||||
// Compute the determinant of the transform by converting it to row echelon
|
||||
// form and then taking the product of the diagonal.
|
||||
MPInt determinant();
|
||||
|
||||
private:
|
||||
Matrix<MPInt> matrix;
|
||||
Matrix matrix;
|
||||
};
|
||||
|
||||
} // namespace presburger
|
||||
|
@ -7,17 +7,15 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This is a simple 2D matrix class that supports reading, writing, resizing,
|
||||
// swapping rows, and swapping columns. It can hold integers (MPInt) or rational
|
||||
// numbers (Fraction).
|
||||
// swapping rows, and swapping columns.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef MLIR_ANALYSIS_PRESBURGER_MATRIX_H
|
||||
#define MLIR_ANALYSIS_PRESBURGER_MATRIX_H
|
||||
|
||||
#include "mlir/Analysis/Presburger/MPInt.h"
|
||||
#include "mlir/Support/LLVM.h"
|
||||
#include "mlir/Analysis/Presburger/Fraction.h"
|
||||
#include "mlir/Analysis/Presburger/Matrix.h"
|
||||
#include "llvm/ADT/ArrayRef.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
|
||||
@ -34,12 +32,7 @@ namespace presburger {
|
||||
/// (i, j) is stored at data[i*nReservedColumns + j]. The reserved but unused
|
||||
/// columns always have all zero values. The reserved rows are just reserved
|
||||
/// space in the underlying SmallVector's capacity.
|
||||
/// This class only works for the types MPInt and Fraction, since the method
|
||||
/// implementations are in the Matrix.cpp file. Only these two types have
|
||||
/// been explicitly instantiated there.
|
||||
template<typename T>
|
||||
class Matrix {
|
||||
static_assert(std::is_same_v<T,MPInt> || std::is_same_v<T,Fraction>, "T must be MPInt or Fraction.");
|
||||
public:
|
||||
Matrix() = delete;
|
||||
|
||||
@ -56,21 +49,21 @@ public:
|
||||
static Matrix identity(unsigned dimension);
|
||||
|
||||
/// Access the element at the specified row and column.
|
||||
T &at(unsigned row, unsigned column) {
|
||||
MPInt &at(unsigned row, unsigned column) {
|
||||
assert(row < nRows && "Row outside of range");
|
||||
assert(column < nColumns && "Column outside of range");
|
||||
return data[row * nReservedColumns + column];
|
||||
}
|
||||
|
||||
T at(unsigned row, unsigned column) const {
|
||||
MPInt at(unsigned row, unsigned column) const {
|
||||
assert(row < nRows && "Row outside of range");
|
||||
assert(column < nColumns && "Column outside of range");
|
||||
return data[row * nReservedColumns + column];
|
||||
}
|
||||
|
||||
T &operator()(unsigned row, unsigned column) { return at(row, column); }
|
||||
MPInt &operator()(unsigned row, unsigned column) { return at(row, column); }
|
||||
|
||||
T operator()(unsigned row, unsigned column) const {
|
||||
MPInt operator()(unsigned row, unsigned column) const {
|
||||
return at(row, column);
|
||||
}
|
||||
|
||||
@ -94,11 +87,11 @@ public:
|
||||
void reserveRows(unsigned rows);
|
||||
|
||||
/// Get a [Mutable]ArrayRef corresponding to the specified row.
|
||||
MutableArrayRef<T> getRow(unsigned row);
|
||||
ArrayRef<T> getRow(unsigned row) const;
|
||||
MutableArrayRef<MPInt> getRow(unsigned row);
|
||||
ArrayRef<MPInt> getRow(unsigned row) const;
|
||||
|
||||
/// Set the specified row to `elems`.
|
||||
void setRow(unsigned row, ArrayRef<T> elems);
|
||||
void setRow(unsigned row, ArrayRef<MPInt> elems);
|
||||
|
||||
/// Insert columns having positions pos, pos + 1, ... pos + count - 1.
|
||||
/// Columns that were at positions 0 to pos - 1 will stay where they are;
|
||||
@ -132,23 +125,23 @@ public:
|
||||
|
||||
void copyRow(unsigned sourceRow, unsigned targetRow);
|
||||
|
||||
void fillRow(unsigned row, const T &value);
|
||||
void fillRow(unsigned row, int64_t value) { fillRow(row, T(value)); }
|
||||
void fillRow(unsigned row, const MPInt &value);
|
||||
void fillRow(unsigned row, int64_t value) { fillRow(row, MPInt(value)); }
|
||||
|
||||
/// Add `scale` multiples of the source row to the target row.
|
||||
void addToRow(unsigned sourceRow, unsigned targetRow, const T &scale);
|
||||
void addToRow(unsigned sourceRow, unsigned targetRow, const MPInt &scale);
|
||||
void addToRow(unsigned sourceRow, unsigned targetRow, int64_t scale) {
|
||||
addToRow(sourceRow, targetRow, T(scale));
|
||||
addToRow(sourceRow, targetRow, MPInt(scale));
|
||||
}
|
||||
/// Add `scale` multiples of the rowVec row to the specified row.
|
||||
void addToRow(unsigned row, ArrayRef<T> rowVec, const T &scale);
|
||||
void addToRow(unsigned row, ArrayRef<MPInt> rowVec, const MPInt &scale);
|
||||
|
||||
/// Add `scale` multiples of the source column to the target column.
|
||||
void addToColumn(unsigned sourceColumn, unsigned targetColumn,
|
||||
const T &scale);
|
||||
const MPInt &scale);
|
||||
void addToColumn(unsigned sourceColumn, unsigned targetColumn,
|
||||
int64_t scale) {
|
||||
addToColumn(sourceColumn, targetColumn, T(scale));
|
||||
addToColumn(sourceColumn, targetColumn, MPInt(scale));
|
||||
}
|
||||
|
||||
/// Negate the specified column.
|
||||
@ -159,18 +152,18 @@ public:
|
||||
|
||||
/// Divide the first `nCols` of the specified row by their GCD.
|
||||
/// Returns the GCD of the first `nCols` of the specified row.
|
||||
T normalizeRow(unsigned row, unsigned nCols);
|
||||
MPInt normalizeRow(unsigned row, unsigned nCols);
|
||||
/// Divide the columns of the specified row by their GCD.
|
||||
/// Returns the GCD of the columns of the specified row.
|
||||
T normalizeRow(unsigned row);
|
||||
MPInt normalizeRow(unsigned row);
|
||||
|
||||
/// The given vector is interpreted as a row vector v. Post-multiply v with
|
||||
/// this matrix, say M, and return vM.
|
||||
SmallVector<T, 8> preMultiplyWithRow(ArrayRef<T> rowVec) const;
|
||||
SmallVector<MPInt, 8> preMultiplyWithRow(ArrayRef<MPInt> rowVec) const;
|
||||
|
||||
/// The given vector is interpreted as a column vector v. Pre-multiply v with
|
||||
/// this matrix, say M, and return Mv.
|
||||
SmallVector<T, 8> postMultiplyWithColumn(ArrayRef<T> colVec) const;
|
||||
SmallVector<MPInt, 8> postMultiplyWithColumn(ArrayRef<MPInt> colVec) const;
|
||||
|
||||
/// Given the current matrix M, returns the matrices H, U such that H is the
|
||||
/// column hermite normal form of M, i.e. H = M * U, where U is unimodular and
|
||||
@ -199,7 +192,7 @@ public:
|
||||
unsigned appendExtraRow();
|
||||
/// Same as above, but copy the given elements into the row. The length of
|
||||
/// `elems` must be equal to the number of columns.
|
||||
unsigned appendExtraRow(ArrayRef<T> elems);
|
||||
unsigned appendExtraRow(ArrayRef<MPInt> elems);
|
||||
|
||||
/// Print the matrix.
|
||||
void print(raw_ostream &os) const;
|
||||
@ -218,7 +211,7 @@ private:
|
||||
|
||||
/// Stores the data. data.size() is equal to nRows * nReservedColumns.
|
||||
/// data.capacity() / nReservedColumns is the number of reserved rows.
|
||||
SmallVector<T, 16> data;
|
||||
SmallVector<MPInt, 16> data;
|
||||
};
|
||||
|
||||
} // namespace presburger
|
||||
|
@ -40,13 +40,13 @@ enum class OrderingKind { EQ, NE, LT, LE, GT, GE };
|
||||
/// value of the function at a specified point.
|
||||
class MultiAffineFunction {
|
||||
public:
|
||||
MultiAffineFunction(const PresburgerSpace &space, const Matrix<MPInt> &output)
|
||||
MultiAffineFunction(const PresburgerSpace &space, const Matrix &output)
|
||||
: space(space), output(output),
|
||||
divs(space.getNumVars() - space.getNumRangeVars()) {
|
||||
assertIsConsistent();
|
||||
}
|
||||
|
||||
MultiAffineFunction(const PresburgerSpace &space, const Matrix<MPInt> &output,
|
||||
MultiAffineFunction(const PresburgerSpace &space, const Matrix &output,
|
||||
const DivisionRepr &divs)
|
||||
: space(space), output(output), divs(divs) {
|
||||
assertIsConsistent();
|
||||
@ -65,7 +65,7 @@ public:
|
||||
PresburgerSpace getOutputSpace() const { return space.getRangeSpace(); }
|
||||
|
||||
/// Get a matrix with each row representing row^th output expression.
|
||||
const Matrix<MPInt> &getOutputMatrix() const { return output; }
|
||||
const Matrix &getOutputMatrix() const { return output; }
|
||||
/// Get the `i^th` output expression.
|
||||
ArrayRef<MPInt> getOutputExpr(unsigned i) const { return output.getRow(i); }
|
||||
|
||||
@ -124,7 +124,7 @@ private:
|
||||
/// The function's output is a tuple of integers, with the ith element of the
|
||||
/// tuple defined by the affine expression given by the ith row of this output
|
||||
/// matrix.
|
||||
Matrix<MPInt> output;
|
||||
Matrix output;
|
||||
|
||||
/// Storage for division representation for each local variable in space.
|
||||
DivisionRepr divs;
|
||||
|
@ -338,7 +338,7 @@ protected:
|
||||
unsigned nSymbol;
|
||||
|
||||
/// The matrix representing the tableau.
|
||||
Matrix<MPInt> tableau;
|
||||
Matrix tableau;
|
||||
|
||||
/// This is true if the tableau has been detected to be empty, false
|
||||
/// otherwise.
|
||||
@ -861,7 +861,7 @@ private:
|
||||
|
||||
/// Reduce the given basis, starting at the specified level, using general
|
||||
/// basis reduction.
|
||||
void reduceBasis(Matrix<MPInt> &basis, unsigned level);
|
||||
void reduceBasis(Matrix &basis, unsigned level);
|
||||
};
|
||||
|
||||
/// Takes a snapshot of the simplex state on construction and rolls back to the
|
||||
|
@ -182,7 +182,7 @@ private:
|
||||
/// Each row of the Matrix represents a single division dividend. The
|
||||
/// `i^th` row represents the dividend of the variable at `divOffset + i`
|
||||
/// in the constraint system (and the `i^th` local variable).
|
||||
Matrix<MPInt> dividends;
|
||||
Matrix dividends;
|
||||
|
||||
/// Denominators of each division. If a denominator of a division is `0`, the
|
||||
/// division variable is considered to not have a division representation.
|
||||
|
@ -1292,7 +1292,7 @@ mlir::getMultiAffineFunctionFromMap(AffineMap map,
|
||||
"AffineMap cannot produce divs without local representation");
|
||||
|
||||
// TODO: We shouldn't have to do this conversion.
|
||||
Matrix<MPInt> mat(map.getNumResults(), map.getNumInputs() + divs.getNumDivs() + 1);
|
||||
Matrix mat(map.getNumResults(), map.getNumInputs() + divs.getNumDivs() + 1);
|
||||
for (unsigned i = 0, e = flattenedExprs.size(); i < e; ++i)
|
||||
for (unsigned j = 0, f = flattenedExprs[i].size(); j < f; ++j)
|
||||
mat(i, j) = flattenedExprs[i][j];
|
||||
|
@ -304,7 +304,7 @@ SymbolicLexOpt IntegerRelation::findSymbolicIntegerLexMax() const {
|
||||
// Get lexmax by flipping range sign in the PWMA constraints.
|
||||
for (auto &flippedPiece :
|
||||
flippedSymbolicIntegerLexMax.lexopt.getAllPieces()) {
|
||||
Matrix<MPInt> mat = flippedPiece.output.getOutputMatrix();
|
||||
Matrix mat = flippedPiece.output.getOutputMatrix();
|
||||
for (unsigned i = 0, e = mat.getNumRows(); i < e; i++)
|
||||
mat.negateRow(i);
|
||||
MultiAffineFunction maf(flippedPiece.output.getSpace(), mat);
|
||||
@ -738,7 +738,7 @@ bool IntegerRelation::isEmptyByGCDTest() const {
|
||||
//
|
||||
// It is sufficient to check the perpendiculars of the constraints, as the set
|
||||
// of perpendiculars which are bounded must span all bounded directions.
|
||||
Matrix<MPInt> IntegerRelation::getBoundedDirections() const {
|
||||
Matrix IntegerRelation::getBoundedDirections() const {
|
||||
// Note that it is necessary to add the equalities too (which the constructor
|
||||
// does) even though we don't need to check if they are bounded; whether an
|
||||
// inequality is bounded or not depends on what other constraints, including
|
||||
@ -759,7 +759,7 @@ Matrix<MPInt> IntegerRelation::getBoundedDirections() const {
|
||||
// The direction vector is given by the coefficients and does not include the
|
||||
// constant term, so the matrix has one fewer column.
|
||||
unsigned dirsNumCols = getNumCols() - 1;
|
||||
Matrix<MPInt> dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols);
|
||||
Matrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols);
|
||||
|
||||
// Copy the bounded inequalities.
|
||||
unsigned row = 0;
|
||||
@ -845,7 +845,7 @@ IntegerRelation::findIntegerSample() const {
|
||||
// m is a matrix containing, in each row, a vector in which S is
|
||||
// bounded, such that the linear span of all these dimensions contains all
|
||||
// bounded dimensions in S.
|
||||
Matrix<MPInt> m = getBoundedDirections();
|
||||
Matrix m = getBoundedDirections();
|
||||
// In column echelon form, each row of m occupies only the first rank(m)
|
||||
// columns and has zeros on the other columns. The transform T that brings S
|
||||
// to column echelon form is unimodular as well, so this is a suitable
|
||||
|
@ -12,11 +12,11 @@
|
||||
using namespace mlir;
|
||||
using namespace presburger;
|
||||
|
||||
LinearTransform::LinearTransform(Matrix<MPInt> &&oMatrix) : matrix(oMatrix) {}
|
||||
LinearTransform::LinearTransform(const Matrix<MPInt> &oMatrix) : matrix(oMatrix) {}
|
||||
LinearTransform::LinearTransform(Matrix &&oMatrix) : matrix(oMatrix) {}
|
||||
LinearTransform::LinearTransform(const Matrix &oMatrix) : matrix(oMatrix) {}
|
||||
|
||||
std::pair<unsigned, LinearTransform>
|
||||
LinearTransform::makeTransformToColumnEchelon(const Matrix<MPInt> &m) {
|
||||
LinearTransform::makeTransformToColumnEchelon(const Matrix &m) {
|
||||
// Compute the hermite normal form of m. This, is by definition, is in column
|
||||
// echelon form.
|
||||
auto [h, u] = m.computeHermiteNormalForm();
|
||||
|
@ -7,14 +7,13 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Analysis/Presburger/Matrix.h"
|
||||
#include "mlir/Analysis/Presburger/Fraction.h"
|
||||
#include "mlir/Analysis/Presburger/Utils.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace presburger;
|
||||
|
||||
template <typename T> Matrix<T>::Matrix(unsigned rows, unsigned columns, unsigned reservedRows,
|
||||
Matrix::Matrix(unsigned rows, unsigned columns, unsigned reservedRows,
|
||||
unsigned reservedColumns)
|
||||
: nRows(rows), nColumns(columns),
|
||||
nReservedColumns(std::max(nColumns, reservedColumns)),
|
||||
@ -22,27 +21,27 @@ template <typename T> Matrix<T>::Matrix(unsigned rows, unsigned columns, unsigne
|
||||
data.reserve(std::max(nRows, reservedRows) * nReservedColumns);
|
||||
}
|
||||
|
||||
template <typename T> Matrix<T> Matrix<T>::identity(unsigned dimension) {
|
||||
Matrix Matrix::identity(unsigned dimension) {
|
||||
Matrix matrix(dimension, dimension);
|
||||
for (unsigned i = 0; i < dimension; ++i)
|
||||
matrix(i, i) = 1;
|
||||
return matrix;
|
||||
}
|
||||
|
||||
template <typename T> unsigned Matrix<T>::getNumReservedRows() const {
|
||||
unsigned Matrix::getNumReservedRows() const {
|
||||
return data.capacity() / nReservedColumns;
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::reserveRows(unsigned rows) {
|
||||
void Matrix::reserveRows(unsigned rows) {
|
||||
data.reserve(rows * nReservedColumns);
|
||||
}
|
||||
|
||||
template <typename T> unsigned Matrix<T>::appendExtraRow() {
|
||||
unsigned Matrix::appendExtraRow() {
|
||||
resizeVertically(nRows + 1);
|
||||
return nRows - 1;
|
||||
}
|
||||
|
||||
template <typename T> unsigned Matrix<T>::appendExtraRow(ArrayRef<T> elems) {
|
||||
unsigned Matrix::appendExtraRow(ArrayRef<MPInt> elems) {
|
||||
assert(elems.size() == nColumns && "elems must match row length!");
|
||||
unsigned row = appendExtraRow();
|
||||
for (unsigned col = 0; col < nColumns; ++col)
|
||||
@ -50,24 +49,24 @@ template <typename T> unsigned Matrix<T>::appendExtraRow(ArrayRef<T> elems) {
|
||||
return row;
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::resizeHorizontally(unsigned newNColumns) {
|
||||
void Matrix::resizeHorizontally(unsigned newNColumns) {
|
||||
if (newNColumns < nColumns)
|
||||
removeColumns(newNColumns, nColumns - newNColumns);
|
||||
if (newNColumns > nColumns)
|
||||
insertColumns(nColumns, newNColumns - nColumns);
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::resize(unsigned newNRows, unsigned newNColumns) {
|
||||
void Matrix::resize(unsigned newNRows, unsigned newNColumns) {
|
||||
resizeHorizontally(newNColumns);
|
||||
resizeVertically(newNRows);
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::resizeVertically(unsigned newNRows) {
|
||||
void Matrix::resizeVertically(unsigned newNRows) {
|
||||
nRows = newNRows;
|
||||
data.resize(nRows * nReservedColumns);
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::swapRows(unsigned row, unsigned otherRow) {
|
||||
void Matrix::swapRows(unsigned row, unsigned otherRow) {
|
||||
assert((row < getNumRows() && otherRow < getNumRows()) &&
|
||||
"Given row out of bounds");
|
||||
if (row == otherRow)
|
||||
@ -76,7 +75,7 @@ template <typename T> void Matrix<T>::swapRows(unsigned row, unsigned otherRow)
|
||||
std::swap(at(row, col), at(otherRow, col));
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::swapColumns(unsigned column, unsigned otherColumn) {
|
||||
void Matrix::swapColumns(unsigned column, unsigned otherColumn) {
|
||||
assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
|
||||
"Given column out of bounds");
|
||||
if (column == otherColumn)
|
||||
@ -85,23 +84,23 @@ template <typename T> void Matrix<T>::swapColumns(unsigned column, unsigned othe
|
||||
std::swap(at(row, column), at(row, otherColumn));
|
||||
}
|
||||
|
||||
template <typename T> MutableArrayRef<T> Matrix<T>::getRow(unsigned row) {
|
||||
MutableArrayRef<MPInt> Matrix::getRow(unsigned row) {
|
||||
return {&data[row * nReservedColumns], nColumns};
|
||||
}
|
||||
|
||||
template <typename T> ArrayRef<T> Matrix<T>::getRow(unsigned row) const {
|
||||
ArrayRef<MPInt> Matrix::getRow(unsigned row) const {
|
||||
return {&data[row * nReservedColumns], nColumns};
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::setRow(unsigned row, ArrayRef<T> elems) {
|
||||
void Matrix::setRow(unsigned row, ArrayRef<MPInt> elems) {
|
||||
assert(elems.size() == getNumColumns() &&
|
||||
"elems size must match row length!");
|
||||
for (unsigned i = 0, e = getNumColumns(); i < e; ++i)
|
||||
at(row, i) = elems[i];
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::insertColumn(unsigned pos) { insertColumns(pos, 1); }
|
||||
template <typename T> void Matrix<T>::insertColumns(unsigned pos, unsigned count) {
|
||||
void Matrix::insertColumn(unsigned pos) { insertColumns(pos, 1); }
|
||||
void Matrix::insertColumns(unsigned pos, unsigned count) {
|
||||
if (count == 0)
|
||||
return;
|
||||
assert(pos <= nColumns);
|
||||
@ -116,7 +115,7 @@ template <typename T> void Matrix<T>::insertColumns(unsigned pos, unsigned count
|
||||
for (int ci = nReservedColumns - 1; ci >= 0; --ci) {
|
||||
unsigned r = ri;
|
||||
unsigned c = ci;
|
||||
T &dest = data[r * nReservedColumns + c];
|
||||
MPInt &dest = data[r * nReservedColumns + c];
|
||||
if (c >= nColumns) { // NOLINT
|
||||
// Out of bounds columns are zero-initialized. NOLINT because clang-tidy
|
||||
// complains about this branch being the same as the c >= pos one.
|
||||
@ -142,8 +141,8 @@ template <typename T> void Matrix<T>::insertColumns(unsigned pos, unsigned count
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::removeColumn(unsigned pos) { removeColumns(pos, 1); }
|
||||
template <typename T> void Matrix<T>::removeColumns(unsigned pos, unsigned count) {
|
||||
void Matrix::removeColumn(unsigned pos) { removeColumns(pos, 1); }
|
||||
void Matrix::removeColumns(unsigned pos, unsigned count) {
|
||||
if (count == 0)
|
||||
return;
|
||||
assert(pos + count - 1 < nColumns);
|
||||
@ -156,8 +155,8 @@ template <typename T> void Matrix<T>::removeColumns(unsigned pos, unsigned count
|
||||
nColumns -= count;
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::insertRow(unsigned pos) { insertRows(pos, 1); }
|
||||
template <typename T> void Matrix<T>::insertRows(unsigned pos, unsigned count) {
|
||||
void Matrix::insertRow(unsigned pos) { insertRows(pos, 1); }
|
||||
void Matrix::insertRows(unsigned pos, unsigned count) {
|
||||
if (count == 0)
|
||||
return;
|
||||
|
||||
@ -170,8 +169,8 @@ template <typename T> void Matrix<T>::insertRows(unsigned pos, unsigned count) {
|
||||
at(r, c) = 0;
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::removeRow(unsigned pos) { removeRows(pos, 1); }
|
||||
template <typename T> void Matrix<T>::removeRows(unsigned pos, unsigned count) {
|
||||
void Matrix::removeRow(unsigned pos) { removeRows(pos, 1); }
|
||||
void Matrix::removeRows(unsigned pos, unsigned count) {
|
||||
if (count == 0)
|
||||
return;
|
||||
assert(pos + count - 1 <= nRows);
|
||||
@ -180,73 +179,73 @@ template <typename T> void Matrix<T>::removeRows(unsigned pos, unsigned count) {
|
||||
resizeVertically(nRows - count);
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::copyRow(unsigned sourceRow, unsigned targetRow) {
|
||||
void Matrix::copyRow(unsigned sourceRow, unsigned targetRow) {
|
||||
if (sourceRow == targetRow)
|
||||
return;
|
||||
for (unsigned c = 0; c < nColumns; ++c)
|
||||
at(targetRow, c) = at(sourceRow, c);
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::fillRow(unsigned row, const T &value) {
|
||||
void Matrix::fillRow(unsigned row, const MPInt &value) {
|
||||
for (unsigned col = 0; col < nColumns; ++col)
|
||||
at(row, col) = value;
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::addToRow(unsigned sourceRow, unsigned targetRow,
|
||||
const T &scale) {
|
||||
void Matrix::addToRow(unsigned sourceRow, unsigned targetRow,
|
||||
const MPInt &scale) {
|
||||
addToRow(targetRow, getRow(sourceRow), scale);
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::addToRow(unsigned row, ArrayRef<T> rowVec,
|
||||
const T &scale) {
|
||||
void Matrix::addToRow(unsigned row, ArrayRef<MPInt> rowVec,
|
||||
const MPInt &scale) {
|
||||
if (scale == 0)
|
||||
return;
|
||||
for (unsigned col = 0; col < nColumns; ++col)
|
||||
at(row, col) += scale * rowVec[col];
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::addToColumn(unsigned sourceColumn, unsigned targetColumn,
|
||||
const T &scale) {
|
||||
void Matrix::addToColumn(unsigned sourceColumn, unsigned targetColumn,
|
||||
const MPInt &scale) {
|
||||
if (scale == 0)
|
||||
return;
|
||||
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
|
||||
at(row, targetColumn) += scale * at(row, sourceColumn);
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::negateColumn(unsigned column) {
|
||||
void Matrix::negateColumn(unsigned column) {
|
||||
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
|
||||
at(row, column) = -at(row, column);
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::negateRow(unsigned row) {
|
||||
void Matrix::negateRow(unsigned row) {
|
||||
for (unsigned column = 0, e = getNumColumns(); column < e; ++column)
|
||||
at(row, column) = -at(row, column);
|
||||
}
|
||||
|
||||
template <> MPInt Matrix<MPInt>::normalizeRow(unsigned row, unsigned cols) {
|
||||
MPInt Matrix::normalizeRow(unsigned row, unsigned cols) {
|
||||
return normalizeRange(getRow(row).slice(0, cols));
|
||||
}
|
||||
|
||||
template <> MPInt Matrix<MPInt>::normalizeRow(unsigned row) {
|
||||
MPInt Matrix::normalizeRow(unsigned row) {
|
||||
return normalizeRow(row, getNumColumns());
|
||||
}
|
||||
|
||||
template <typename T> SmallVector<T, 8> Matrix<T>::preMultiplyWithRow(ArrayRef<T> rowVec) const {
|
||||
SmallVector<MPInt, 8> Matrix::preMultiplyWithRow(ArrayRef<MPInt> rowVec) const {
|
||||
assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!");
|
||||
|
||||
SmallVector<T, 8> result(getNumColumns(), T(0));
|
||||
SmallVector<MPInt, 8> result(getNumColumns(), MPInt(0));
|
||||
for (unsigned col = 0, e = getNumColumns(); col < e; ++col)
|
||||
for (unsigned i = 0, e = getNumRows(); i < e; ++i)
|
||||
result[col] += rowVec[i] * at(i, col);
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T> SmallVector<T, 8>
|
||||
Matrix<T>::postMultiplyWithColumn(ArrayRef<T> colVec) const {
|
||||
SmallVector<MPInt, 8>
|
||||
Matrix::postMultiplyWithColumn(ArrayRef<MPInt> colVec) const {
|
||||
assert(getNumColumns() == colVec.size() &&
|
||||
"Invalid column vector dimension!");
|
||||
|
||||
SmallVector<T, 8> result(getNumRows(), T(0));
|
||||
SmallVector<MPInt, 8> result(getNumRows(), MPInt(0));
|
||||
for (unsigned row = 0, e = getNumRows(); row < e; row++)
|
||||
for (unsigned i = 0, e = getNumColumns(); i < e; i++)
|
||||
result[row] += at(row, i) * colVec[i];
|
||||
@ -258,8 +257,8 @@ Matrix<T>::postMultiplyWithColumn(ArrayRef<T> colVec) const {
|
||||
/// sourceCol. This brings M(row, targetCol) to the range [0, M(row,
|
||||
/// sourceCol)). Apply the same column operation to otherMatrix, with the same
|
||||
/// integer multiple.
|
||||
static void modEntryColumnOperation(Matrix<MPInt> &m, unsigned row, unsigned sourceCol,
|
||||
unsigned targetCol, Matrix<MPInt> &otherMatrix) {
|
||||
static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol,
|
||||
unsigned targetCol, Matrix &otherMatrix) {
|
||||
assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
|
||||
assert(m(row, sourceCol) > 0 && "Source must be positive!");
|
||||
MPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol));
|
||||
@ -267,12 +266,12 @@ static void modEntryColumnOperation(Matrix<MPInt> &m, unsigned row, unsigned sou
|
||||
otherMatrix.addToColumn(sourceCol, targetCol, ratio);
|
||||
}
|
||||
|
||||
template <> std::pair<Matrix<MPInt>, Matrix<MPInt>> Matrix<MPInt>::computeHermiteNormalForm() const {
|
||||
std::pair<Matrix, Matrix> Matrix::computeHermiteNormalForm() const {
|
||||
// We start with u as an identity matrix and perform operations on h until h
|
||||
// is in hermite normal form. We apply the same sequence of operations on u to
|
||||
// obtain a transform that takes h to hermite normal form.
|
||||
Matrix<MPInt> h = *this;
|
||||
Matrix<MPInt> u = Matrix<MPInt>::identity(h.getNumColumns());
|
||||
Matrix h = *this;
|
||||
Matrix u = Matrix::identity(h.getNumColumns());
|
||||
|
||||
unsigned echelonCol = 0;
|
||||
// Invariant: in all rows above row, all columns from echelonCol onwards
|
||||
@ -353,7 +352,7 @@ template <> std::pair<Matrix<MPInt>, Matrix<MPInt>> Matrix<MPInt>::computeHermit
|
||||
return {h, u};
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::print(raw_ostream &os) const {
|
||||
void Matrix::print(raw_ostream &os) const {
|
||||
for (unsigned row = 0; row < nRows; ++row) {
|
||||
for (unsigned column = 0; column < nColumns; ++column)
|
||||
os << at(row, column) << ' ';
|
||||
@ -361,9 +360,9 @@ template <typename T> void Matrix<T>::print(raw_ostream &os) const {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> void Matrix<T>::dump() const { print(llvm::errs()); }
|
||||
void Matrix::dump() const { print(llvm::errs()); }
|
||||
|
||||
template <typename T> bool Matrix<T>::hasConsistentState() const {
|
||||
bool Matrix::hasConsistentState() const {
|
||||
if (data.size() != nRows * nReservedColumns)
|
||||
return false;
|
||||
if (nColumns > nReservedColumns)
|
||||
@ -376,12 +375,3 @@ template <typename T> bool Matrix<T>::hasConsistentState() const {
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace mlir
|
||||
{
|
||||
namespace presburger
|
||||
{
|
||||
template class Matrix<MPInt>;
|
||||
template class Matrix<Fraction>;
|
||||
}
|
||||
}
|
@ -436,7 +436,7 @@ LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
|
||||
}
|
||||
|
||||
void SymbolicLexSimplex::recordOutput(SymbolicLexOpt &result) const {
|
||||
Matrix<MPInt> output(0, domainPoly.getNumVars() + 1);
|
||||
Matrix output(0, domainPoly.getNumVars() + 1);
|
||||
output.reserveRows(result.lexopt.getNumOutputs());
|
||||
for (const Unknown &u : var) {
|
||||
if (u.isSymbol)
|
||||
@ -1801,7 +1801,7 @@ private:
|
||||
///
|
||||
/// When incrementing i, no cached f values get invalidated. However, the cached
|
||||
/// duals do get invalidated as the duals for the higher levels are different.
|
||||
void Simplex::reduceBasis(Matrix<MPInt> &basis, unsigned level) {
|
||||
void Simplex::reduceBasis(Matrix &basis, unsigned level) {
|
||||
const Fraction epsilon(3, 4);
|
||||
|
||||
if (level == basis.getNumRows() - 1)
|
||||
@ -1975,7 +1975,7 @@ std::optional<SmallVector<MPInt, 8>> Simplex::findIntegerSample() {
|
||||
return {};
|
||||
|
||||
unsigned nDims = var.size();
|
||||
Matrix<MPInt> basis = Matrix<MPInt>::identity(nDims);
|
||||
Matrix basis = Matrix::identity(nDims);
|
||||
|
||||
unsigned level = 0;
|
||||
// The snapshot just before constraining a direction to a value at each level.
|
||||
|
@ -13,7 +13,7 @@
|
||||
using namespace mlir;
|
||||
using namespace presburger;
|
||||
|
||||
void testColumnEchelonForm(const Matrix<MPInt> &m, unsigned expectedRank) {
|
||||
void testColumnEchelonForm(const Matrix &m, unsigned expectedRank) {
|
||||
unsigned lastAllowedNonZeroCol = 0;
|
||||
std::pair<unsigned, LinearTransform> result =
|
||||
LinearTransform::makeTransformToColumnEchelon(m);
|
||||
@ -42,21 +42,21 @@ void testColumnEchelonForm(const Matrix<MPInt> &m, unsigned expectedRank) {
|
||||
|
||||
TEST(LinearTransformTest, transformToColumnEchelonTest) {
|
||||
// m1, m2, m3 are rank 1 matrices -- the first and second rows are identical.
|
||||
Matrix<MPInt> m1(2, 2);
|
||||
Matrix m1(2, 2);
|
||||
m1(0, 0) = 4;
|
||||
m1(0, 1) = -7;
|
||||
m1(1, 0) = 4;
|
||||
m1(1, 1) = -7;
|
||||
testColumnEchelonForm(m1, 1u);
|
||||
|
||||
Matrix<MPInt> m2(2, 2);
|
||||
Matrix m2(2, 2);
|
||||
m2(0, 0) = -4;
|
||||
m2(0, 1) = 7;
|
||||
m2(1, 0) = 4;
|
||||
m2(1, 1) = -7;
|
||||
testColumnEchelonForm(m2, 1u);
|
||||
|
||||
Matrix<MPInt> m3(2, 2);
|
||||
Matrix m3(2, 2);
|
||||
m3(0, 0) = -4;
|
||||
m3(0, 1) = -7;
|
||||
m3(1, 0) = -4;
|
||||
@ -64,21 +64,21 @@ TEST(LinearTransformTest, transformToColumnEchelonTest) {
|
||||
testColumnEchelonForm(m3, 1u);
|
||||
|
||||
// m4, m5, m6 are rank 2 matrices -- the first and second rows are different.
|
||||
Matrix<MPInt> m4(2, 2);
|
||||
Matrix m4(2, 2);
|
||||
m4(0, 0) = 4;
|
||||
m4(0, 1) = -7;
|
||||
m4(1, 0) = -4;
|
||||
m4(1, 1) = -7;
|
||||
testColumnEchelonForm(m4, 2u);
|
||||
|
||||
Matrix<MPInt> m5(2, 2);
|
||||
Matrix m5(2, 2);
|
||||
m5(0, 0) = -4;
|
||||
m5(0, 1) = 7;
|
||||
m5(1, 0) = 4;
|
||||
m5(1, 1) = 7;
|
||||
testColumnEchelonForm(m5, 2u);
|
||||
|
||||
Matrix<MPInt> m6(2, 2);
|
||||
Matrix m6(2, 2);
|
||||
m6(0, 0) = -4;
|
||||
m6(0, 1) = -7;
|
||||
m6(1, 0) = 4;
|
||||
|
@ -7,7 +7,6 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Analysis/Presburger/Matrix.h"
|
||||
#include "mlir/Analysis/Presburger/Fraction.h"
|
||||
#include "./Utils.h"
|
||||
#include <gmock/gmock.h>
|
||||
#include <gtest/gtest.h>
|
||||
@ -16,7 +15,7 @@ using namespace mlir;
|
||||
using namespace presburger;
|
||||
|
||||
TEST(MatrixTest, ReadWrite) {
|
||||
Matrix<MPInt> mat(5, 5);
|
||||
Matrix mat(5, 5);
|
||||
for (unsigned row = 0; row < 5; ++row)
|
||||
for (unsigned col = 0; col < 5; ++col)
|
||||
mat(row, col) = 10 * row + col;
|
||||
@ -26,7 +25,7 @@ TEST(MatrixTest, ReadWrite) {
|
||||
}
|
||||
|
||||
TEST(MatrixTest, SwapColumns) {
|
||||
Matrix<MPInt> mat(5, 5);
|
||||
Matrix mat(5, 5);
|
||||
for (unsigned row = 0; row < 5; ++row)
|
||||
for (unsigned col = 0; col < 5; ++col)
|
||||
mat(row, col) = col == 3 ? 1 : 0;
|
||||
@ -48,7 +47,7 @@ TEST(MatrixTest, SwapColumns) {
|
||||
}
|
||||
|
||||
TEST(MatrixTest, SwapRows) {
|
||||
Matrix<MPInt> mat(5, 5);
|
||||
Matrix mat(5, 5);
|
||||
for (unsigned row = 0; row < 5; ++row)
|
||||
for (unsigned col = 0; col < 5; ++col)
|
||||
mat(row, col) = row == 2 ? 1 : 0;
|
||||
@ -70,7 +69,7 @@ TEST(MatrixTest, SwapRows) {
|
||||
}
|
||||
|
||||
TEST(MatrixTest, resizeVertically) {
|
||||
Matrix<MPInt> mat(5, 5);
|
||||
Matrix mat(5, 5);
|
||||
EXPECT_EQ(mat.getNumRows(), 5u);
|
||||
EXPECT_EQ(mat.getNumColumns(), 5u);
|
||||
for (unsigned row = 0; row < 5; ++row)
|
||||
@ -95,7 +94,7 @@ TEST(MatrixTest, resizeVertically) {
|
||||
}
|
||||
|
||||
TEST(MatrixTest, insertColumns) {
|
||||
Matrix<MPInt> mat(5, 5, 5, 10);
|
||||
Matrix mat(5, 5, 5, 10);
|
||||
EXPECT_EQ(mat.getNumRows(), 5u);
|
||||
EXPECT_EQ(mat.getNumColumns(), 5u);
|
||||
for (unsigned row = 0; row < 5; ++row)
|
||||
@ -132,7 +131,7 @@ TEST(MatrixTest, insertColumns) {
|
||||
}
|
||||
|
||||
TEST(MatrixTest, insertRows) {
|
||||
Matrix<MPInt> mat(5, 5, 5, 10);
|
||||
Matrix mat(5, 5, 5, 10);
|
||||
ASSERT_TRUE(mat.hasConsistentState());
|
||||
EXPECT_EQ(mat.getNumRows(), 5u);
|
||||
EXPECT_EQ(mat.getNumColumns(), 5u);
|
||||
@ -170,7 +169,7 @@ TEST(MatrixTest, insertRows) {
|
||||
}
|
||||
|
||||
TEST(MatrixTest, resize) {
|
||||
Matrix<MPInt> mat(5, 5);
|
||||
Matrix mat(5, 5);
|
||||
EXPECT_EQ(mat.getNumRows(), 5u);
|
||||
EXPECT_EQ(mat.getNumColumns(), 5u);
|
||||
for (unsigned row = 0; row < 5; ++row)
|
||||
@ -194,8 +193,8 @@ TEST(MatrixTest, resize) {
|
||||
EXPECT_EQ(mat(row, col), row >= 3 || col >= 3 ? 0 : int(10 * row + col));
|
||||
}
|
||||
|
||||
static void checkHermiteNormalForm(const Matrix<MPInt> &mat,
|
||||
const Matrix<MPInt> &hermiteForm) {
|
||||
static void checkHermiteNormalForm(const Matrix &mat,
|
||||
const Matrix &hermiteForm) {
|
||||
auto [h, u] = mat.computeHermiteNormalForm();
|
||||
|
||||
for (unsigned row = 0; row < mat.getNumRows(); row++)
|
||||
@ -209,42 +208,42 @@ TEST(MatrixTest, computeHermiteNormalForm) {
|
||||
|
||||
{
|
||||
// Hermite form of a unimodular matrix is the identity matrix.
|
||||
Matrix<MPInt> mat = makeIntMatrix(3, 3, {{2, 3, 6}, {3, 2, 3}, {17, 11, 16}});
|
||||
Matrix<MPInt> hermiteForm = makeIntMatrix(3, 3, {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}});
|
||||
Matrix mat = makeMatrix(3, 3, {{2, 3, 6}, {3, 2, 3}, {17, 11, 16}});
|
||||
Matrix hermiteForm = makeMatrix(3, 3, {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}});
|
||||
checkHermiteNormalForm(mat, hermiteForm);
|
||||
}
|
||||
|
||||
{
|
||||
// Hermite form of a unimodular is the identity matrix.
|
||||
Matrix<MPInt> mat = makeIntMatrix(
|
||||
Matrix mat = makeMatrix(
|
||||
4, 4,
|
||||
{{-6, -1, -19, -20}, {0, 1, 0, 0}, {-5, 0, -15, -16}, {6, 0, 18, 19}});
|
||||
Matrix<MPInt> hermiteForm = makeIntMatrix(
|
||||
Matrix hermiteForm = makeMatrix(
|
||||
4, 4, {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}});
|
||||
checkHermiteNormalForm(mat, hermiteForm);
|
||||
}
|
||||
|
||||
{
|
||||
Matrix<MPInt> mat = makeIntMatrix(
|
||||
Matrix mat = makeMatrix(
|
||||
4, 4, {{3, 3, 1, 4}, {0, 1, 0, 0}, {0, 0, 19, 16}, {0, 0, 0, 3}});
|
||||
Matrix<MPInt> hermiteForm = makeIntMatrix(
|
||||
Matrix hermiteForm = makeMatrix(
|
||||
4, 4, {{1, 0, 0, 0}, {0, 1, 0, 0}, {1, 0, 3, 0}, {18, 0, 54, 57}});
|
||||
checkHermiteNormalForm(mat, hermiteForm);
|
||||
}
|
||||
|
||||
{
|
||||
Matrix<MPInt> mat = makeIntMatrix(
|
||||
Matrix mat = makeMatrix(
|
||||
4, 4, {{3, 3, 1, 4}, {0, 1, 0, 0}, {0, 0, 19, 16}, {0, 0, 0, 3}});
|
||||
Matrix<MPInt> hermiteForm = makeIntMatrix(
|
||||
Matrix hermiteForm = makeMatrix(
|
||||
4, 4, {{1, 0, 0, 0}, {0, 1, 0, 0}, {1, 0, 3, 0}, {18, 0, 54, 57}});
|
||||
checkHermiteNormalForm(mat, hermiteForm);
|
||||
}
|
||||
|
||||
{
|
||||
Matrix<MPInt> mat =
|
||||
makeIntMatrix(3, 5, {{0, 2, 0, 7, 1}, {-1, 0, 0, -3, 0}, {0, 4, 1, 0, 8}});
|
||||
Matrix<MPInt> hermiteForm =
|
||||
makeIntMatrix(3, 5, {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}});
|
||||
Matrix mat =
|
||||
makeMatrix(3, 5, {{0, 2, 0, 7, 1}, {-1, 0, 0, -3, 0}, {0, 4, 1, 0, 8}});
|
||||
Matrix hermiteForm =
|
||||
makeMatrix(3, 5, {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}});
|
||||
checkHermiteNormalForm(mat, hermiteForm);
|
||||
}
|
||||
}
|
||||
|
@ -52,7 +52,7 @@ inline MultiAffineFunction parseMultiAffineFunction(StringRef str) {
|
||||
|
||||
// TODO: Add default constructor for MultiAffineFunction.
|
||||
MultiAffineFunction multiAff(PresburgerSpace::getRelationSpace(),
|
||||
Matrix<MPInt>(0, 1));
|
||||
Matrix(0, 1));
|
||||
if (getMultiAffineFunctionFromMap(parseAffineMap(str, &context), multiAff)
|
||||
.failed())
|
||||
llvm_unreachable(
|
||||
|
@ -17,7 +17,6 @@
|
||||
#include "mlir/Analysis/Presburger/PWMAFunction.h"
|
||||
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
|
||||
#include "mlir/Analysis/Presburger/Simplex.h"
|
||||
#include "mlir/Analysis/Presburger/Matrix.h"
|
||||
#include "mlir/IR/MLIRContext.h"
|
||||
#include "mlir/Support/LLVM.h"
|
||||
|
||||
@ -27,22 +26,9 @@
|
||||
namespace mlir {
|
||||
namespace presburger {
|
||||
|
||||
inline Matrix<MPInt> makeIntMatrix(unsigned numRow, unsigned numColumns,
|
||||
ArrayRef<SmallVector<int, 8>> matrix) {
|
||||
Matrix<MPInt> results(numRow, numColumns);
|
||||
assert(matrix.size() == numRow);
|
||||
for (unsigned i = 0; i < numRow; ++i) {
|
||||
assert(matrix[i].size() == numColumns &&
|
||||
"Output expression has incorrect dimensionality!");
|
||||
for (unsigned j = 0; j < numColumns; ++j)
|
||||
results(i, j) = MPInt(matrix[i][j]);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
inline Matrix<Fraction> makeFracMatrix(unsigned numRow, unsigned numColumns,
|
||||
ArrayRef<SmallVector<Fraction, 8>> matrix) {
|
||||
Matrix<Fraction> results(numRow, numColumns);
|
||||
inline Matrix makeMatrix(unsigned numRow, unsigned numColumns,
|
||||
ArrayRef<SmallVector<int64_t, 8>> matrix) {
|
||||
Matrix results(numRow, numColumns);
|
||||
assert(matrix.size() == numRow);
|
||||
for (unsigned i = 0; i < numRow; ++i) {
|
||||
assert(matrix[i].size() == numColumns &&
|
||||
|
Loading…
x
Reference in New Issue
Block a user