Switch more uses of DominatorTree over to ETForest.

llvm-svn: 36254
This commit is contained in:
Owen Anderson 2007-04-18 05:43:13 +00:00
parent 550e8db9c7
commit 9a6091dec1

View File

@ -72,7 +72,8 @@ namespace {
AU.setPreservesCFG();
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
AU.addRequired<DominatorTree>();
AU.addRequired<ETForest>();
AU.addRequired<DominatorTree>(); // For scalar promotion (mem2reg)
AU.addRequired<DominanceFrontier>(); // For scalar promotion (mem2reg)
AU.addRequired<AliasAnalysis>();
}
@ -86,6 +87,7 @@ namespace {
// Various analyses that we use...
AliasAnalysis *AA; // Current AliasAnalysis information
LoopInfo *LI; // Current LoopInfo
ETForest *ET; // ETForest for the current Loop...
DominatorTree *DT; // Dominator Tree for the current Loop...
DominanceFrontier *DF; // Current Dominance Frontier
@ -98,19 +100,19 @@ namespace {
/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to
/// reverse depth first order w.r.t the ETForest. This allows us to
/// visit uses before definitions, allowing us to sink a loop body in one
/// pass without iteration.
///
void SinkRegion(DominatorTree::Node *N);
void SinkRegion(BasicBlock *BB);
/// HoistRegion - Walk the specified region of the CFG (defined by all
/// blocks dominated by the specified block, and that are in the current
/// loop) in depth first order w.r.t the DominatorTree. This allows us to
/// loop) in depth first order w.r.t the ETForest. This allows us to
/// visit definitions before uses, allowing us to hoist a loop body in one
/// pass without iteration.
///
void HoistRegion(DominatorTree::Node *N);
void HoistRegion(BasicBlock *BB);
/// inSubLoop - Little predicate that returns true if the specified basic
/// block is in a subloop of the current one, not the current one itself.
@ -135,21 +137,20 @@ namespace {
if (BlockInLoop == LoopHeader)
return true;
DominatorTree::Node *BlockInLoopNode = DT->getNode(BlockInLoop);
DominatorTree::Node *IDom = DT->getNode(ExitBlock);
BasicBlock *IDom = ExitBlock;
// Because the exit block is not in the loop, we know we have to get _at
// least_ its immediate dominator.
do {
// Get next Immediate Dominator.
IDom = IDom->getIDom();
IDom = ET->getIDom(IDom);
// If we have got to the header of the loop, then the instructions block
// did not dominate the exit node, so we can't hoist it.
if (IDom->getBlock() == LoopHeader)
if (IDom == LoopHeader)
return false;
} while (IDom != BlockInLoopNode);
} while (IDom != BlockInLoop);
return true;
}
@ -213,6 +214,7 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfo>();
AA = &getAnalysis<AliasAnalysis>();
DF = &getAnalysis<DominanceFrontier>();
ET = &getAnalysis<ETForest>();
DT = &getAnalysis<DominatorTree>();
CurAST = new AliasSetTracker(*AA);
@ -252,8 +254,8 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
// us to sink instructions in one pass, without iteration. AFter sinking
// instructions, we perform another pass to hoist them out of the loop.
//
SinkRegion(DT->getNode(L->getHeader()));
HoistRegion(DT->getNode(L->getHeader()));
SinkRegion(L->getHeader());
HoistRegion(L->getHeader());
// Now that all loop invariants have been removed from the loop, promote any
// memory references to scalars that we can...
@ -270,19 +272,19 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
/// reverse depth first order w.r.t the ETForest. This allows us to visit
/// uses before definitions, allowing us to sink a loop body in one pass without
/// iteration.
///
void LICM::SinkRegion(DominatorTree::Node *N) {
assert(N != 0 && "Null dominator tree node?");
BasicBlock *BB = N->getBlock();
void LICM::SinkRegion(BasicBlock *BB) {
assert(BB != 0 && "Null sink block?");
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return;
// We are processing blocks in reverse dfo, so process children first...
const std::vector<DominatorTree::Node*> &Children = N->getChildren();
std::vector<BasicBlock*> Children;
ET->getChildren(BB, Children);
for (unsigned i = 0, e = Children.size(); i != e; ++i)
SinkRegion(Children[i]);
@ -311,9 +313,8 @@ void LICM::SinkRegion(DominatorTree::Node *N) {
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
///
void LICM::HoistRegion(DominatorTree::Node *N) {
assert(N != 0 && "Null dominator tree node?");
BasicBlock *BB = N->getBlock();
void LICM::HoistRegion(BasicBlock *BB) {
assert(BB != 0 && "Null hoist block?");
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return;
@ -333,7 +334,8 @@ void LICM::HoistRegion(DominatorTree::Node *N) {
hoist(I);
}
const std::vector<DominatorTree::Node*> &Children = N->getChildren();
std::vector<BasicBlock*> Children;
ET->getChildren(BB, Children);
for (unsigned i = 0, e = Children.size(); i != e; ++i)
HoistRegion(Children[i]);
}
@ -604,7 +606,7 @@ bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
std::vector<BasicBlock*> ExitBlocks;
CurLoop->getExitBlocks(ExitBlocks);
// For each exit block, get the DT node and walk up the DT until the
// For each exit block, walk up the ET until the
// instruction's basic block is found or we exit the loop.
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))