[mlir][Vector] Add a vblendps-based impl for transpose8x8 (both intrin and inline_asm)

This revision follows up on the conversation titled:

```[llvm-dev] Understanding and controlling some of the AVX shuffle emission paths```

The revision adds a vblendps-based implementation for transpose8x8 and further distinguishes between and intrinsics and an inline_asm implementation.

This results in roughly 20% fewer cycles as reported by llvm-mca:

After this revision (intrinsic version, resolves to virtually identical assembly as per the llvm-dev discussion, no vblendps instruction is emitted):
```
Iterations:        100
Instructions:      5900
Total Cycles:      2415
Total uOps:        7300

Dispatch Width:    6
uOps Per Cycle:    3.02
IPC:               2.44
Block RThroughput: 24.0

Cycles with backend pressure increase [ 89.90% ]
Throughput Bottlenecks:
  Resource Pressure       [ 89.65% ]
  - SKXPort1  [ 0.04% ]
  - SKXPort2  [ 12.42% ]
  - SKXPort3  [ 12.42% ]
  - SKXPort5  [ 89.52% ]
  Data Dependencies:      [ 37.06% ]
  - Register Dependencies [ 37.06% ]
  - Memory Dependencies   [ 0.00% ]
```

After this revision (inline_asm version, vblendps instructions are indeed emitted):
```
Iterations:        100
Instructions:      6300
Total Cycles:      2015
Total uOps:        7700

Dispatch Width:    6
uOps Per Cycle:    3.82
IPC:               3.13
Block RThroughput: 20.0

Cycles with backend pressure increase [ 83.47% ]
Throughput Bottlenecks:
  Resource Pressure       [ 83.18% ]
  - SKXPort0  [ 14.49% ]
  - SKXPort1  [ 14.54% ]
  - SKXPort2  [ 19.70% ]
  - SKXPort3  [ 19.70% ]
  - SKXPort5  [ 83.03% ]
  - SKXPort6  [ 14.49% ]
  Data Dependencies:      [ 39.75% ]
  - Register Dependencies [ 39.75% ]
  - Memory Dependencies   [ 0.00% ]
```

An accessible copy of the conversation is available [here](https://gist.github.com/nicolasvasilache/68c7f34012584b0e00f335bcb374ede0).

Reviewed By: ftynse, dcaballe

Differential Revision: https://reviews.llvm.org/D114335
This commit is contained in:
Nicolas Vasilache 2021-11-22 10:22:37 +00:00
parent 4d21b64464
commit a9e236bed8
7 changed files with 196 additions and 45 deletions

View File

@ -23,19 +23,43 @@ namespace x86vector {
/// Helper class to factor out the creation and extraction of masks from nibs.
struct MaskHelper {
/// b0 captures the lowest bit, b7 captures the highest bit.
/// Meant to be used with instructions such as mm256BlendPs.
template <uint b0, uint b1, uint b2, uint b3, uint b4, uint b5, uint b6,
uint b7>
static uint8_t blend() {
static_assert(b0 <= 1 && b1 <= 1 && b2 <= 1 && b3 <= 1, "overflow");
static_assert(b4 <= 1 && b5 <= 1 && b6 <= 1 && b7 <= 1, "overflow");
return static_cast<uint8_t>((b7 << 7) | (b6 << 6) | (b5 << 5) | (b4 << 4) |
(b3 << 3) | (b2 << 2) | (b1 << 1) | b0);
}
/// b0 captures the lowest bit, b7 captures the highest bit.
/// Meant to be used with instructions such as mm256BlendPs.
static void extractBlend(uint8_t mask, uint8_t &b0, uint8_t &b1, uint8_t &b2,
uint8_t &b3, uint8_t &b4, uint8_t &b5, uint8_t &b6,
uint8_t &b7) {
b7 = mask & (1 << 7);
b6 = mask & (1 << 6);
b5 = mask & (1 << 5);
b4 = mask & (1 << 4);
b3 = mask & (1 << 3);
b2 = mask & (1 << 2);
b1 = mask & (1 << 1);
b0 = mask & 1;
}
/// b01 captures the lower 2 bits, b67 captures the higher 2 bits.
/// Meant to be used with instructions such as mm256ShufflePs.
template <unsigned b67, unsigned b45, unsigned b23, unsigned b01>
static int8_t shuffle() {
static uint8_t shuffle() {
static_assert(b01 <= 0x03, "overflow");
static_assert(b23 <= 0x03, "overflow");
static_assert(b45 <= 0x03, "overflow");
static_assert(b67 <= 0x03, "overflow");
return static_cast<int8_t>((b67 << 6) | (b45 << 4) | (b23 << 2) | b01);
return static_cast<uint8_t>((b67 << 6) | (b45 << 4) | (b23 << 2) | b01);
}
/// b01 captures the lower 2 bits, b67 captures the higher 2 bits.
static void extractShuffle(int8_t mask, int8_t &b01, int8_t &b23, int8_t &b45,
int8_t &b67) {
static void extractShuffle(uint8_t mask, uint8_t &b01, uint8_t &b23,
uint8_t &b45, uint8_t &b67) {
b67 = (mask & (0x03 << 6)) >> 6;
b45 = (mask & (0x03 << 4)) >> 4;
b23 = (mask & (0x03 << 2)) >> 2;
@ -44,13 +68,13 @@ struct MaskHelper {
/// b03 captures the lower 4 bits, b47 captures the higher 4 bits.
/// Meant to be used with instructions such as mm256Permute2f128Ps.
template <unsigned b47, unsigned b03>
static int8_t permute() {
static uint8_t permute() {
static_assert(b03 <= 0x0f, "overflow");
static_assert(b47 <= 0x0f, "overflow");
return static_cast<int8_t>((b47 << 4) + b03);
return static_cast<uint8_t>((b47 << 4) + b03);
}
/// b03 captures the lower 4 bits, b47 captures the higher 4 bits.
static void extractPermute(int8_t mask, int8_t &b03, int8_t &b47) {
static void extractPermute(uint8_t mask, uint8_t &b03, uint8_t &b47) {
b47 = (mask & (0x0f << 4)) >> 4;
b03 = mask & 0x0f;
}
@ -70,6 +94,20 @@ struct MaskHelper {
namespace avx2 {
namespace inline_asm {
//===----------------------------------------------------------------------===//
/// Methods in the inline_asm namespace emit calls to LLVM::InlineAsmOp.
//===----------------------------------------------------------------------===//
/// If bit i of `mask` is zero, take f32@i from v1 else take it from v2.
Value mm256BlendPsAsm(ImplicitLocOpBuilder &b, Value v1, Value v2,
uint8_t mask);
} // namespace inline_asm
namespace intrin {
//===----------------------------------------------------------------------===//
/// Methods in the intrin namespace emulate clang's impl. of X86 intrinsics.
//===----------------------------------------------------------------------===//
/// Lower to vector.shuffle v1, v2, [0, 8, 1, 9, 4, 12, 5, 13].
Value mm256UnpackLoPs(ImplicitLocOpBuilder &b, Value v1, Value v2);
@ -80,7 +118,7 @@ Value mm256UnpackHiPs(ImplicitLocOpBuilder &b, Value v1, Value v2);
/// Take an 8 bit mask, 2 bit for each position of a[0, 3) **and** b[0, 4):
/// 0:127 | 128:255
/// b01 b23 C8 D8 | b01+4 b23+4 C8+4 D8+4
Value mm256ShufflePs(ImplicitLocOpBuilder &b, Value v1, Value v2, int8_t mask);
Value mm256ShufflePs(ImplicitLocOpBuilder &b, Value v1, Value v2, uint8_t mask);
// imm[0:1] out of imm[0:3] is:
// 0 1 2 3
@ -89,8 +127,15 @@ Value mm256ShufflePs(ImplicitLocOpBuilder &b, Value v1, Value v2, int8_t mask);
// 0 1 2 3
// imm[0:1] out of imm[4:7].
Value mm256Permute2f128Ps(ImplicitLocOpBuilder &b, Value v1, Value v2,
int8_t mask);
uint8_t mask);
/// If bit i of `mask` is zero, take f32@i from v1 else take it from v2.
Value mm256BlendPs(ImplicitLocOpBuilder &b, Value v1, Value v2, uint8_t mask);
} // namespace intrin
//===----------------------------------------------------------------------===//
/// Generic lowerings may either use intrin or inline_asm depending on needs.
//===----------------------------------------------------------------------===//
/// 4x8xf32-specific AVX2 transpose lowering.
void transpose4x8xf32(ImplicitLocOpBuilder &ib, MutableArrayRef<Value> vs);

View File

@ -11,25 +11,43 @@
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/Dialect/X86Vector/Transforms.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
using namespace mlir::vector;
using namespace mlir::x86vector;
using namespace mlir::x86vector::avx2;
using namespace mlir::x86vector::avx2::inline_asm;
using namespace mlir::x86vector::avx2::intrin;
Value mlir::x86vector::avx2::mm256UnpackLoPs(ImplicitLocOpBuilder &b, Value v1,
Value v2) {
Value mlir::x86vector::avx2::inline_asm::mm256BlendPsAsm(
ImplicitLocOpBuilder &b, Value v1, Value v2, uint8_t mask) {
auto asmDialectAttr =
LLVM::AsmDialectAttr::get(b.getContext(), LLVM::AsmDialect::AD_Intel);
auto asmTp = "vblendps $0, $1, $2, {0}";
auto asmCstr = "=x,x,x"; // Careful: constraint parser is very brittle: no ws!
SmallVector<Value> asmVals{v1, v2};
auto asmStr = llvm::formatv(asmTp, llvm::format_hex(mask, /*width=*/2)).str();
auto asmOp = b.create<LLVM::InlineAsmOp>(
v1.getType(), asmVals, asmStr, asmCstr, false, false, asmDialectAttr);
return asmOp.getResult(0);
}
Value mlir::x86vector::avx2::intrin::mm256UnpackLoPs(ImplicitLocOpBuilder &b,
Value v1, Value v2) {
return b.create<vector::ShuffleOp>(
v1, v2, ArrayRef<int64_t>{0, 8, 1, 9, 4, 12, 5, 13});
}
Value mlir::x86vector::avx2::mm256UnpackHiPs(ImplicitLocOpBuilder &b, Value v1,
Value v2) {
Value mlir::x86vector::avx2::intrin::mm256UnpackHiPs(ImplicitLocOpBuilder &b,
Value v1, Value v2) {
return b.create<vector::ShuffleOp>(
v1, v2, ArrayRef<int64_t>{2, 10, 3, 11, 6, 14, 7, 15});
}
@ -37,9 +55,10 @@ Value mlir::x86vector::avx2::mm256UnpackHiPs(ImplicitLocOpBuilder &b, Value v1,
/// Takes an 8 bit mask, 2 bit for each position of a[0, 3) **and** b[0, 4):
/// 0:127 | 128:255
/// b01 b23 C8 D8 | b01+4 b23+4 C8+4 D8+4
Value mlir::x86vector::avx2::mm256ShufflePs(ImplicitLocOpBuilder &b, Value v1,
Value v2, int8_t mask) {
int8_t b01, b23, b45, b67;
Value mlir::x86vector::avx2::intrin::mm256ShufflePs(ImplicitLocOpBuilder &b,
Value v1, Value v2,
uint8_t mask) {
uint8_t b01, b23, b45, b67;
MaskHelper::extractShuffle(mask, b01, b23, b45, b67);
SmallVector<int64_t> shuffleMask{b01, b23, b45 + 8, b67 + 8,
b01 + 4, b23 + 4, b45 + 8 + 4, b67 + 8 + 4};
@ -52,11 +71,10 @@ Value mlir::x86vector::avx2::mm256ShufflePs(ImplicitLocOpBuilder &b, Value v1,
// a[0:127] or a[128:255] or b[0:127] or b[128:255]
// 0 1 2 3
// imm[0:1] out of imm[4:7].
Value mlir::x86vector::avx2::mm256Permute2f128Ps(ImplicitLocOpBuilder &b,
Value v1, Value v2,
int8_t mask) {
Value mlir::x86vector::avx2::intrin::mm256Permute2f128Ps(
ImplicitLocOpBuilder &b, Value v1, Value v2, uint8_t mask) {
SmallVector<int64_t> shuffleMask;
auto appendToMask = [&](int8_t control) {
auto appendToMask = [&](uint8_t control) {
if (control == 0)
llvm::append_range(shuffleMask, ArrayRef<int64_t>{0, 1, 2, 3});
else if (control == 1)
@ -68,13 +86,25 @@ Value mlir::x86vector::avx2::mm256Permute2f128Ps(ImplicitLocOpBuilder &b,
else
llvm_unreachable("control > 3 : overflow");
};
int8_t b03, b47;
uint8_t b03, b47;
MaskHelper::extractPermute(mask, b03, b47);
appendToMask(b03);
appendToMask(b47);
return b.create<vector::ShuffleOp>(v1, v2, shuffleMask);
}
/// If bit i of `mask` is zero, take f32@i from v1 else take it from v2.
Value mlir::x86vector::avx2::intrin::mm256BlendPs(ImplicitLocOpBuilder &b,
Value v1, Value v2,
uint8_t mask) {
SmallVector<int64_t, 8> shuffleMask;
for (int i = 0; i < 8; ++i) {
bool isSet = mask & (1 << i);
shuffleMask.push_back(!isSet ? i : i + 8);
}
return b.create<vector::ShuffleOp>(v1, v2, shuffleMask);
}
/// AVX2 4x8xf32-specific transpose lowering using a "C intrinsics" model.
void mlir::x86vector::avx2::transpose4x8xf32(ImplicitLocOpBuilder &ib,
MutableArrayRef<Value> vs) {
@ -118,14 +148,30 @@ void mlir::x86vector::avx2::transpose8x8xf32(ImplicitLocOpBuilder &ib,
Value T5 = mm256UnpackHiPs(ib, vs[4], vs[5]);
Value T6 = mm256UnpackLoPs(ib, vs[6], vs[7]);
Value T7 = mm256UnpackHiPs(ib, vs[6], vs[7]);
Value S0 = mm256ShufflePs(ib, T0, T2, MaskHelper::shuffle<1, 0, 1, 0>());
Value S1 = mm256ShufflePs(ib, T0, T2, MaskHelper::shuffle<3, 2, 3, 2>());
Value S2 = mm256ShufflePs(ib, T1, T3, MaskHelper::shuffle<1, 0, 1, 0>());
Value S3 = mm256ShufflePs(ib, T1, T3, MaskHelper::shuffle<3, 2, 3, 2>());
Value S4 = mm256ShufflePs(ib, T4, T6, MaskHelper::shuffle<1, 0, 1, 0>());
Value S5 = mm256ShufflePs(ib, T4, T6, MaskHelper::shuffle<3, 2, 3, 2>());
Value S6 = mm256ShufflePs(ib, T5, T7, MaskHelper::shuffle<1, 0, 1, 0>());
Value S7 = mm256ShufflePs(ib, T5, T7, MaskHelper::shuffle<3, 2, 3, 2>());
using inline_asm::mm256BlendPsAsm;
Value sh0 = mm256ShufflePs(ib, T0, T2, MaskHelper::shuffle<1, 0, 3, 2>());
Value sh2 = mm256ShufflePs(ib, T1, T3, MaskHelper::shuffle<1, 0, 3, 2>());
Value sh4 = mm256ShufflePs(ib, T4, T6, MaskHelper::shuffle<1, 0, 3, 2>());
Value sh6 = mm256ShufflePs(ib, T5, T7, MaskHelper::shuffle<1, 0, 3, 2>());
Value S0 =
mm256BlendPsAsm(ib, T0, sh0, MaskHelper::blend<0, 0, 1, 1, 0, 0, 1, 1>());
Value S1 =
mm256BlendPsAsm(ib, T2, sh0, MaskHelper::blend<1, 1, 0, 0, 1, 1, 0, 0>());
Value S2 =
mm256BlendPsAsm(ib, T1, sh2, MaskHelper::blend<0, 0, 1, 1, 0, 0, 1, 1>());
Value S3 =
mm256BlendPsAsm(ib, T3, sh2, MaskHelper::blend<1, 1, 0, 0, 1, 1, 0, 0>());
Value S4 =
mm256BlendPsAsm(ib, T4, sh4, MaskHelper::blend<0, 0, 1, 1, 0, 0, 1, 1>());
Value S5 =
mm256BlendPsAsm(ib, T6, sh4, MaskHelper::blend<1, 1, 0, 0, 1, 1, 0, 0>());
Value S6 =
mm256BlendPsAsm(ib, T5, sh6, MaskHelper::blend<0, 0, 1, 1, 0, 0, 1, 1>());
Value S7 =
mm256BlendPsAsm(ib, T7, sh6, MaskHelper::blend<1, 1, 0, 0, 1, 1, 0, 0>());
vs[0] = mm256Permute2f128Ps(ib, S0, S4, MaskHelper::permute<2, 0>());
vs[1] = mm256Permute2f128Ps(ib, S1, S5, MaskHelper::permute<2, 0>());
vs[2] = mm256Permute2f128Ps(ib, S2, S6, MaskHelper::permute<2, 0>());

View File

@ -80,22 +80,17 @@ func @transpose8x8xf32(%arg0: vector<8x8xf32>) -> vector<8x8xf32> {
// AVX2-NEXT: vector.shuffle {{.*}} [2, 10, 3, 11, 6, 14, 7, 15] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [0, 8, 1, 9, 4, 12, 5, 13] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [2, 10, 3, 11, 6, 14, 7, 15] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [0, 1, 8, 9, 4, 5, 12, 13] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [2, 3, 10, 11, 6, 7, 14, 15] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [0, 1, 8, 9, 4, 5, 12, 13] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [2, 3, 10, 11, 6, 7, 14, 15] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [0, 1, 8, 9, 4, 5, 12, 13] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [2, 3, 10, 11, 6, 7, 14, 15] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [0, 1, 8, 9, 4, 5, 12, 13] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [2, 3, 10, 11, 6, 7, 14, 15] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [0, 1, 2, 3, 8, 9, 10, 11] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [0, 1, 2, 3, 8, 9, 10, 11] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [0, 1, 2, 3, 8, 9, 10, 11] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [0, 1, 2, 3, 8, 9, 10, 11] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [4, 5, 6, 7, 12, 13, 14, 15] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [4, 5, 6, 7, 12, 13, 14, 15] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [4, 5, 6, 7, 12, 13, 14, 15] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: vector.shuffle {{.*}} [4, 5, 6, 7, 12, 13, 14, 15] : vector<8xf32>, vector<8xf32>
// AVX2-COUNT-4: vector.shuffle {{.*}} [2, 3, 8, 9, 6, 7, 12, 13] : vector<8xf32>, vector<8xf32>
// AVX2-NEXT: llvm.inline_asm asm_dialect = intel "vblendps $0, $1, $2, 0xcc", "=x,x,x" {{.*}} : (vector<8xf32>, vector<8xf32>) -> vector<8xf32>
// AVX2-NEXT: llvm.inline_asm asm_dialect = intel "vblendps $0, $1, $2, 0x33", "=x,x,x" {{.*}} : (vector<8xf32>, vector<8xf32>) -> vector<8xf32>
// AVX2-NEXT: llvm.inline_asm asm_dialect = intel "vblendps $0, $1, $2, 0xcc", "=x,x,x" {{.*}} : (vector<8xf32>, vector<8xf32>) -> vector<8xf32>
// AVX2-NEXT: llvm.inline_asm asm_dialect = intel "vblendps $0, $1, $2, 0x33", "=x,x,x" {{.*}} : (vector<8xf32>, vector<8xf32>) -> vector<8xf32>
// AVX2-NEXT: llvm.inline_asm asm_dialect = intel "vblendps $0, $1, $2, 0xcc", "=x,x,x" {{.*}} : (vector<8xf32>, vector<8xf32>) -> vector<8xf32>
// AVX2-NEXT: llvm.inline_asm asm_dialect = intel "vblendps $0, $1, $2, 0x33", "=x,x,x" {{.*}} : (vector<8xf32>, vector<8xf32>) -> vector<8xf32>
// AVX2-NEXT: llvm.inline_asm asm_dialect = intel "vblendps $0, $1, $2, 0xcc", "=x,x,x" {{.*}} : (vector<8xf32>, vector<8xf32>) -> vector<8xf32>
// AVX2-NEXT: llvm.inline_asm asm_dialect = intel "vblendps $0, $1, $2, 0x33", "=x,x,x" {{.*}} : (vector<8xf32>, vector<8xf32>) -> vector<8xf32>
// AVX2-COUNT-4: vector.shuffle {{.*}} [0, 1, 2, 3, 8, 9, 10, 11] : vector<8xf32>, vector<8xf32>
// AVX2-COUNT-4: vector.shuffle {{.*}} [4, 5, 6, 7, 12, 13, 14, 15] : vector<8xf32>, vector<8xf32>
%0 = vector.transpose %arg0, [1, 0] : vector<8x8xf32> to vector<8x8xf32>
return %0 : vector<8x8xf32>
}

View File

@ -0,0 +1,56 @@
// RUN: mlir-opt %s -convert-vector-to-llvm | \
// RUN: mlir-cpu-runner -e entry_point_with_all_constants -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext
module {
llvm.func @function_to_run(%a: vector<8xf32>, %b: vector<8xf32>) {
// CHECK: ( 8, 10, 12, 14, 16, 18, 20, 22 )
%r0 = llvm.inline_asm asm_dialect = intel
"vaddps $0, $1, $2", "=x,x,x" %a, %b:
(vector<8xf32>, vector<8xf32>) -> vector<8xf32>
vector.print %r0: vector<8xf32>
// vblendps implemented with inline_asm.
// CHECK: ( 0, 1, 10, 11, 4, 5, 14, 15 )
%r1 = llvm.inline_asm asm_dialect = intel
"vblendps $0, $1, $2, 0xCC", "=x,x,x" %a, %b:
(vector<8xf32>, vector<8xf32>) -> vector<8xf32>
vector.print %r1: vector<8xf32>
// vblendps 0xCC via vector.shuffle (emulates clang intrinsics impl)
// CHECK: ( 0, 1, 10, 11, 4, 5, 14, 15 )
%r2 = vector.shuffle %a, %b[0, 1, 10, 11, 4, 5, 14, 15]
: vector<8xf32>, vector<8xf32>
vector.print %r2: vector<8xf32>
// vblendps 0x33 implemented with inline_asm.
// CHECK: ( 8, 9, 2, 3, 12, 13, 6, 7 )
%r3 = llvm.inline_asm asm_dialect = intel
"vblendps $0, $1, $2, 0x33", "=x,x,x" %a, %b:
(vector<8xf32>, vector<8xf32>) -> vector<8xf32>
vector.print %r3: vector<8xf32>
// vblendps 0x33 via vector.shuffle (emulates clang intrinsics impl)
// CHECK: ( 8, 9, 2, 3, 12, 13, 6, 7 )
%r4 = vector.shuffle %a, %b[8, 9, 2, 3, 12, 13, 6, 7]
: vector<8xf32>, vector<8xf32>
vector.print %r4: vector<8xf32>
llvm.return
}
// Solely exists to prevent inlining and get the expected assembly.
llvm.func @entry_point(%a: vector<8xf32>, %b: vector<8xf32>) {
llvm.call @function_to_run(%a, %b) : (vector<8xf32>, vector<8xf32>) -> ()
llvm.return
}
llvm.func @entry_point_with_all_constants() {
%a = llvm.mlir.constant(dense<[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]>
: vector<8xf32>) : vector<8xf32>
%b = llvm.mlir.constant(dense<[8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]>
: vector<8xf32>) : vector<8xf32>
llvm.call @function_to_run(%a, %b) : (vector<8xf32>, vector<8xf32>) -> ()
llvm.return
}
}

View File

@ -9,6 +9,7 @@ add_mlir_library(MLIRVectorTestPasses
MLIRAnalysis
MLIRLinalg
MLIRLinalgTransforms
MLIRLLVMIR
MLIRMemRef
MLIRPass
MLIRSCF
@ -16,4 +17,5 @@ add_mlir_library(MLIRVectorTestPasses
MLIRTransformUtils
MLIRVector
MLIRVectorToSCF
MLIRX86Vector
)

View File

@ -10,6 +10,7 @@
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
@ -200,6 +201,10 @@ struct TestVectorTransposeLowering
llvm::cl::desc("Lower vector.transpose to avx2-specific patterns"),
llvm::cl::init(false)};
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<LLVM::LLVMDialect>();
}
void runOnFunction() override {
RewritePatternSet patterns(&getContext());

View File

@ -483,6 +483,7 @@ cc_library(
deps = [
"//mlir:Affine",
"//mlir:Analysis",
"//mlir:LLVMDialect",
"//mlir:LinalgOps",
"//mlir:LinalgTransforms",
"//mlir:MemRefDialect",
@ -492,6 +493,7 @@ cc_library(
"//mlir:TransformUtils",
"//mlir:VectorOps",
"//mlir:VectorToSCF",
"//mlir:X86Vector",
],
)