Revert "[mlir] Add config for PDL (#69927)"

This reverts commit 5930725c89.
This commit is contained in:
max 2024-01-03 12:16:19 -06:00
parent 5930725c89
commit b49e0ebedf
24 changed files with 1070 additions and 1297 deletions

View File

@ -133,8 +133,6 @@ set(MLIR_ENABLE_NVPTXCOMPILER 0 CACHE BOOL
"Statically link the nvptxlibrary instead of calling ptxas as a subprocess \
for compiling PTX to cubin")
set(MLIR_ENABLE_PDL_IN_PATTERNMATCH 1 CACHE BOOL "Enable PDL in PatternMatch")
option(MLIR_INCLUDE_TESTS
"Generate build targets for the MLIR unit tests."
${LLVM_INCLUDE_TESTS})
@ -180,9 +178,10 @@ include_directories( ${MLIR_INCLUDE_DIR})
# Adding tools/mlir-tblgen here as calling add_tablegen sets some variables like
# MLIR_TABLEGEN_EXE in PARENT_SCOPE which gets lost if that folder is included
# from another directory like tools
add_subdirectory(tools/mlir-tblgen)
add_subdirectory(tools/mlir-linalg-ods-gen)
add_subdirectory(tools/mlir-pdll)
add_subdirectory(tools/mlir-tblgen)
set(MLIR_TABLEGEN_EXE "${MLIR_TABLEGEN_EXE}" CACHE INTERNAL "")
set(MLIR_TABLEGEN_TARGET "${MLIR_TABLEGEN_TARGET}" CACHE INTERNAL "")
set(MLIR_LINALG_ODS_YAML_GEN_TABLEGEN_EXE "${MLIR_LINALG_ODS_YAML_GEN_TABLEGEN_EXE}" CACHE INTERNAL "")

View File

@ -14,10 +14,10 @@ Below are some example measurements taken at the time of the LLVM 17 release,
using clang-14 on a X86 Ubuntu and [bloaty](https://github.com/google/bloaty).
| | Base | Os | Oz | Os LTO | Oz LTO |
| :------------------------------: | ------ | ------ | ------ | ------ | ------ |
| `mlir-cat` | 1024KB | 840KB | 885KB | 706KB | 657KB |
| `mlir-minimal-opt` | 1.62MB | 1.32MB | 1.36MB | 1.17MB | 1.07MB |
| `mlir-minimal-opt-canonicalize` | 1.83MB | 1.40MB | 1.45MB | 1.25MB | 1.14MB |
| :-----------------------------: | ------ | ------ | ------ | ------ | ------ |
| `mlir-cat` | 1018kB | 836KB | 879KB | 697KB | 649KB |
| `mlir-minimal-opt` | 1.54MB | 1.25MB | 1.29MB | 1.10MB | 1.00MB |
| `mlir-minimal-opt-canonicalize` | 2.24MB | 1.81MB | 1.86MB | 1.62MB | 1.48MB |
Base configuration:
@ -32,7 +32,6 @@ cmake ../llvm/ -G Ninja \
-DCMAKE_CXX_COMPILER=clang++ \
-DLLVM_ENABLE_LLD=ON \
-DLLVM_ENABLE_BACKTRACES=OFF \
-DMLIR_ENABLE_PDL_IN_PATTERNMATCH=OFF \
-DCMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO=-Wl,-icf=all
```

View File

@ -26,7 +26,4 @@
numeric seed that is passed to the random number generator. */
#cmakedefine MLIR_GREEDY_REWRITE_RANDOMIZER_SEED ${MLIR_GREEDY_REWRITE_RANDOMIZER_SEED}
/* If set, enables PDL usage. */
#cmakedefine01 MLIR_ENABLE_PDL_IN_PATTERNMATCH
#endif

View File

@ -15,7 +15,6 @@
#define MLIR_CONVERSION_LLVMCOMMON_TYPECONVERTER_H
#include "mlir/Conversion/LLVMCommon/LoweringOptions.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {

View File

@ -29,7 +29,6 @@
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
// Pull in all enum type definitions and utility function declarations.

View File

@ -1,995 +0,0 @@
//===- PDLPatternMatch.h - PDLPatternMatcher classes -------==---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_IR_PDLPATTERNMATCH_H
#define MLIR_IR_PDLPATTERNMATCH_H
#include "mlir/Config/mlir-config.h"
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
namespace mlir {
//===----------------------------------------------------------------------===//
// PDL Patterns
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// PDLValue
/// Storage type of byte-code interpreter values. These are passed to constraint
/// functions as arguments.
class PDLValue {
public:
/// The underlying kind of a PDL value.
enum class Kind { Attribute, Operation, Type, TypeRange, Value, ValueRange };
/// Construct a new PDL value.
PDLValue(const PDLValue &other) = default;
PDLValue(std::nullptr_t = nullptr) {}
PDLValue(Attribute value)
: value(value.getAsOpaquePointer()), kind(Kind::Attribute) {}
PDLValue(Operation *value) : value(value), kind(Kind::Operation) {}
PDLValue(Type value) : value(value.getAsOpaquePointer()), kind(Kind::Type) {}
PDLValue(TypeRange *value) : value(value), kind(Kind::TypeRange) {}
PDLValue(Value value)
: value(value.getAsOpaquePointer()), kind(Kind::Value) {}
PDLValue(ValueRange *value) : value(value), kind(Kind::ValueRange) {}
/// Returns true if the type of the held value is `T`.
template <typename T>
bool isa() const {
assert(value && "isa<> used on a null value");
return kind == getKindOf<T>();
}
/// Attempt to dynamically cast this value to type `T`, returns null if this
/// value is not an instance of `T`.
template <typename T,
typename ResultT = std::conditional_t<
std::is_convertible<T, bool>::value, T, std::optional<T>>>
ResultT dyn_cast() const {
return isa<T>() ? castImpl<T>() : ResultT();
}
/// Cast this value to type `T`, asserts if this value is not an instance of
/// `T`.
template <typename T>
T cast() const {
assert(isa<T>() && "expected value to be of type `T`");
return castImpl<T>();
}
/// Get an opaque pointer to the value.
const void *getAsOpaquePointer() const { return value; }
/// Return if this value is null or not.
explicit operator bool() const { return value; }
/// Return the kind of this value.
Kind getKind() const { return kind; }
/// Print this value to the provided output stream.
void print(raw_ostream &os) const;
/// Print the specified value kind to an output stream.
static void print(raw_ostream &os, Kind kind);
private:
/// Find the index of a given type in a range of other types.
template <typename...>
struct index_of_t;
template <typename T, typename... R>
struct index_of_t<T, T, R...> : std::integral_constant<size_t, 0> {};
template <typename T, typename F, typename... R>
struct index_of_t<T, F, R...>
: std::integral_constant<size_t, 1 + index_of_t<T, R...>::value> {};
/// Return the kind used for the given T.
template <typename T>
static Kind getKindOf() {
return static_cast<Kind>(index_of_t<T, Attribute, Operation *, Type,
TypeRange, Value, ValueRange>::value);
}
/// The internal implementation of `cast`, that returns the underlying value
/// as the given type `T`.
template <typename T>
std::enable_if_t<llvm::is_one_of<T, Attribute, Type, Value>::value, T>
castImpl() const {
return T::getFromOpaquePointer(value);
}
template <typename T>
std::enable_if_t<llvm::is_one_of<T, TypeRange, ValueRange>::value, T>
castImpl() const {
return *reinterpret_cast<T *>(const_cast<void *>(value));
}
template <typename T>
std::enable_if_t<std::is_pointer<T>::value, T> castImpl() const {
return reinterpret_cast<T>(const_cast<void *>(value));
}
/// The internal opaque representation of a PDLValue.
const void *value{nullptr};
/// The kind of the opaque value.
Kind kind{Kind::Attribute};
};
inline raw_ostream &operator<<(raw_ostream &os, PDLValue value) {
value.print(os);
return os;
}
inline raw_ostream &operator<<(raw_ostream &os, PDLValue::Kind kind) {
PDLValue::print(os, kind);
return os;
}
//===----------------------------------------------------------------------===//
// PDLResultList
/// The class represents a list of PDL results, returned by a native rewrite
/// method. It provides the mechanism with which to pass PDLValues back to the
/// PDL bytecode.
class PDLResultList {
public:
/// Push a new Attribute value onto the result list.
void push_back(Attribute value) { results.push_back(value); }
/// Push a new Operation onto the result list.
void push_back(Operation *value) { results.push_back(value); }
/// Push a new Type onto the result list.
void push_back(Type value) { results.push_back(value); }
/// Push a new TypeRange onto the result list.
void push_back(TypeRange value) {
// The lifetime of a TypeRange can't be guaranteed, so we'll need to
// allocate a storage for it.
llvm::OwningArrayRef<Type> storage(value.size());
llvm::copy(value, storage.begin());
allocatedTypeRanges.emplace_back(std::move(storage));
typeRanges.push_back(allocatedTypeRanges.back());
results.push_back(&typeRanges.back());
}
void push_back(ValueTypeRange<OperandRange> value) {
typeRanges.push_back(value);
results.push_back(&typeRanges.back());
}
void push_back(ValueTypeRange<ResultRange> value) {
typeRanges.push_back(value);
results.push_back(&typeRanges.back());
}
/// Push a new Value onto the result list.
void push_back(Value value) { results.push_back(value); }
/// Push a new ValueRange onto the result list.
void push_back(ValueRange value) {
// The lifetime of a ValueRange can't be guaranteed, so we'll need to
// allocate a storage for it.
llvm::OwningArrayRef<Value> storage(value.size());
llvm::copy(value, storage.begin());
allocatedValueRanges.emplace_back(std::move(storage));
valueRanges.push_back(allocatedValueRanges.back());
results.push_back(&valueRanges.back());
}
void push_back(OperandRange value) {
valueRanges.push_back(value);
results.push_back(&valueRanges.back());
}
void push_back(ResultRange value) {
valueRanges.push_back(value);
results.push_back(&valueRanges.back());
}
protected:
/// Create a new result list with the expected number of results.
PDLResultList(unsigned maxNumResults) {
// For now just reserve enough space for all of the results. We could do
// separate counts per range type, but it isn't really worth it unless there
// are a "large" number of results.
typeRanges.reserve(maxNumResults);
valueRanges.reserve(maxNumResults);
}
/// The PDL results held by this list.
SmallVector<PDLValue> results;
/// Memory used to store ranges held by the list.
SmallVector<TypeRange> typeRanges;
SmallVector<ValueRange> valueRanges;
/// Memory allocated to store ranges in the result list whose lifetime was
/// generated in the native function.
SmallVector<llvm::OwningArrayRef<Type>> allocatedTypeRanges;
SmallVector<llvm::OwningArrayRef<Value>> allocatedValueRanges;
};
//===----------------------------------------------------------------------===//
// PDLPatternConfig
/// An individual configuration for a pattern, which can be accessed by native
/// functions via the PDLPatternConfigSet. This allows for injecting additional
/// configuration into PDL patterns that is specific to certain compilation
/// flows.
class PDLPatternConfig {
public:
virtual ~PDLPatternConfig() = default;
/// Hooks that are invoked at the beginning and end of a rewrite of a matched
/// pattern. These can be used to setup any specific state necessary for the
/// rewrite.
virtual void notifyRewriteBegin(PatternRewriter &rewriter) {}
virtual void notifyRewriteEnd(PatternRewriter &rewriter) {}
/// Return the TypeID that represents this configuration.
TypeID getTypeID() const { return id; }
protected:
PDLPatternConfig(TypeID id) : id(id) {}
private:
TypeID id;
};
/// This class provides a base class for users implementing a type of pattern
/// configuration.
template <typename T>
class PDLPatternConfigBase : public PDLPatternConfig {
public:
/// Support LLVM style casting.
static bool classof(const PDLPatternConfig *config) {
return config->getTypeID() == getConfigID();
}
/// Return the type id used for this configuration.
static TypeID getConfigID() { return TypeID::get<T>(); }
protected:
PDLPatternConfigBase() : PDLPatternConfig(getConfigID()) {}
};
/// This class contains a set of configurations for a specific pattern.
/// Configurations are uniqued by TypeID, meaning that only one configuration of
/// each type is allowed.
class PDLPatternConfigSet {
public:
PDLPatternConfigSet() = default;
/// Construct a set with the given configurations.
template <typename... ConfigsT>
PDLPatternConfigSet(ConfigsT &&...configs) {
(addConfig(std::forward<ConfigsT>(configs)), ...);
}
/// Get the configuration defined by the given type. Asserts that the
/// configuration of the provided type exists.
template <typename T>
const T &get() const {
const T *config = tryGet<T>();
assert(config && "configuration not found");
return *config;
}
/// Get the configuration defined by the given type, returns nullptr if the
/// configuration does not exist.
template <typename T>
const T *tryGet() const {
for (const auto &configIt : configs)
if (const T *config = dyn_cast<T>(configIt.get()))
return config;
return nullptr;
}
/// Notify the configurations within this set at the beginning or end of a
/// rewrite of a matched pattern.
void notifyRewriteBegin(PatternRewriter &rewriter) {
for (const auto &config : configs)
config->notifyRewriteBegin(rewriter);
}
void notifyRewriteEnd(PatternRewriter &rewriter) {
for (const auto &config : configs)
config->notifyRewriteEnd(rewriter);
}
protected:
/// Add a configuration to the set.
template <typename T>
void addConfig(T &&config) {
assert(!tryGet<std::decay_t<T>>() && "configuration already exists");
configs.emplace_back(
std::make_unique<std::decay_t<T>>(std::forward<T>(config)));
}
/// The set of configurations for this pattern. This uses a vector instead of
/// a map with the expectation that the number of configurations per set is
/// small (<= 1).
SmallVector<std::unique_ptr<PDLPatternConfig>> configs;
};
//===----------------------------------------------------------------------===//
// PDLPatternModule
/// A generic PDL pattern constraint function. This function applies a
/// constraint to a given set of opaque PDLValue entities. Returns success if
/// the constraint successfully held, failure otherwise.
using PDLConstraintFunction =
std::function<LogicalResult(PatternRewriter &, ArrayRef<PDLValue>)>;
/// A native PDL rewrite function. This function performs a rewrite on the
/// given set of values. Any results from this rewrite that should be passed
/// back to PDL should be added to the provided result list. This method is only
/// invoked when the corresponding match was successful. Returns failure if an
/// invariant of the rewrite was broken (certain rewriters may recover from
/// partial pattern application).
using PDLRewriteFunction = std::function<LogicalResult(
PatternRewriter &, PDLResultList &, ArrayRef<PDLValue>)>;
namespace detail {
namespace pdl_function_builder {
/// A utility variable that always resolves to false. This is useful for static
/// asserts that are always false, but only should fire in certain templated
/// constructs. For example, if a templated function should never be called, the
/// function could be defined as:
///
/// template <typename T>
/// void foo() {
/// static_assert(always_false<T>, "This function should never be called");
/// }
///
template <class... T>
constexpr bool always_false = false;
//===----------------------------------------------------------------------===//
// PDL Function Builder: Type Processing
//===----------------------------------------------------------------------===//
/// This struct provides a convenient way to determine how to process a given
/// type as either a PDL parameter, or a result value. This allows for
/// supporting complex types in constraint and rewrite functions, without
/// requiring the user to hand-write the necessary glue code themselves.
/// Specializations of this class should implement the following methods to
/// enable support as a PDL argument or result type:
///
/// static LogicalResult verifyAsArg(
/// function_ref<LogicalResult(const Twine &)> errorFn, PDLValue pdlValue,
/// size_t argIdx);
///
/// * This method verifies that the given PDLValue is valid for use as a
/// value of `T`.
///
/// static T processAsArg(PDLValue pdlValue);
///
/// * This method processes the given PDLValue as a value of `T`.
///
/// static void processAsResult(PatternRewriter &, PDLResultList &results,
/// const T &value);
///
/// * This method processes the given value of `T` as the result of a
/// function invocation. The method should package the value into an
/// appropriate form and append it to the given result list.
///
/// If the type `T` is based on a higher order value, consider using
/// `ProcessPDLValueBasedOn` as a base class of the specialization to simplify
/// the implementation.
///
template <typename T, typename Enable = void>
struct ProcessPDLValue;
/// This struct provides a simplified model for processing types that are based
/// on another type, e.g. APInt is based on the handling for IntegerAttr. This
/// allows for building the necessary processing functions on top of the base
/// value instead of a PDLValue. Derived users should implement the following
/// (which subsume the ProcessPDLValue variants):
///
/// static LogicalResult verifyAsArg(
/// function_ref<LogicalResult(const Twine &)> errorFn,
/// const BaseT &baseValue, size_t argIdx);
///
/// * This method verifies that the given PDLValue is valid for use as a
/// value of `T`.
///
/// static T processAsArg(BaseT baseValue);
///
/// * This method processes the given base value as a value of `T`.
///
template <typename T, typename BaseT>
struct ProcessPDLValueBasedOn {
static LogicalResult
verifyAsArg(function_ref<LogicalResult(const Twine &)> errorFn,
PDLValue pdlValue, size_t argIdx) {
// Verify the base class before continuing.
if (failed(ProcessPDLValue<BaseT>::verifyAsArg(errorFn, pdlValue, argIdx)))
return failure();
return ProcessPDLValue<T>::verifyAsArg(
errorFn, ProcessPDLValue<BaseT>::processAsArg(pdlValue), argIdx);
}
static T processAsArg(PDLValue pdlValue) {
return ProcessPDLValue<T>::processAsArg(
ProcessPDLValue<BaseT>::processAsArg(pdlValue));
}
/// Explicitly add the expected parent API to ensure the parent class
/// implements the necessary API (and doesn't implicitly inherit it from
/// somewhere else).
static LogicalResult
verifyAsArg(function_ref<LogicalResult(const Twine &)> errorFn, BaseT value,
size_t argIdx) {
return success();
}
static T processAsArg(BaseT baseValue);
};
/// This struct provides a simplified model for processing types that have
/// "builtin" PDLValue support:
/// * Attribute, Operation *, Type, TypeRange, ValueRange
template <typename T>
struct ProcessBuiltinPDLValue {
static LogicalResult
verifyAsArg(function_ref<LogicalResult(const Twine &)> errorFn,
PDLValue pdlValue, size_t argIdx) {
if (pdlValue)
return success();
return errorFn("expected a non-null value for argument " + Twine(argIdx) +
" of type: " + llvm::getTypeName<T>());
}
static T processAsArg(PDLValue pdlValue) { return pdlValue.cast<T>(); }
static void processAsResult(PatternRewriter &, PDLResultList &results,
T value) {
results.push_back(value);
}
};
/// This struct provides a simplified model for processing types that inherit
/// from builtin PDLValue types. For example, derived attributes like
/// IntegerAttr, derived types like IntegerType, derived operations like
/// ModuleOp, Interfaces, etc.
template <typename T, typename BaseT>
struct ProcessDerivedPDLValue : public ProcessPDLValueBasedOn<T, BaseT> {
static LogicalResult
verifyAsArg(function_ref<LogicalResult(const Twine &)> errorFn,
BaseT baseValue, size_t argIdx) {
return TypeSwitch<BaseT, LogicalResult>(baseValue)
.Case([&](T) { return success(); })
.Default([&](BaseT) {
return errorFn("expected argument " + Twine(argIdx) +
" to be of type: " + llvm::getTypeName<T>());
});
}
using ProcessPDLValueBasedOn<T, BaseT>::verifyAsArg;
static T processAsArg(BaseT baseValue) {
return baseValue.template cast<T>();
}
using ProcessPDLValueBasedOn<T, BaseT>::processAsArg;
static void processAsResult(PatternRewriter &, PDLResultList &results,
T value) {
results.push_back(value);
}
};
//===----------------------------------------------------------------------===//
// Attribute
template <>
struct ProcessPDLValue<Attribute> : public ProcessBuiltinPDLValue<Attribute> {};
template <typename T>
struct ProcessPDLValue<T,
std::enable_if_t<std::is_base_of<Attribute, T>::value>>
: public ProcessDerivedPDLValue<T, Attribute> {};
/// Handling for various Attribute value types.
template <>
struct ProcessPDLValue<StringRef>
: public ProcessPDLValueBasedOn<StringRef, StringAttr> {
static StringRef processAsArg(StringAttr value) { return value.getValue(); }
using ProcessPDLValueBasedOn<StringRef, StringAttr>::processAsArg;
static void processAsResult(PatternRewriter &rewriter, PDLResultList &results,
StringRef value) {
results.push_back(rewriter.getStringAttr(value));
}
};
template <>
struct ProcessPDLValue<std::string>
: public ProcessPDLValueBasedOn<std::string, StringAttr> {
template <typename T>
static std::string processAsArg(T value) {
static_assert(always_false<T>,
"`std::string` arguments require a string copy, use "
"`StringRef` for string-like arguments instead");
return {};
}
static void processAsResult(PatternRewriter &rewriter, PDLResultList &results,
StringRef value) {
results.push_back(rewriter.getStringAttr(value));
}
};
//===----------------------------------------------------------------------===//
// Operation
template <>
struct ProcessPDLValue<Operation *>
: public ProcessBuiltinPDLValue<Operation *> {};
template <typename T>
struct ProcessPDLValue<T, std::enable_if_t<std::is_base_of<OpState, T>::value>>
: public ProcessDerivedPDLValue<T, Operation *> {
static T processAsArg(Operation *value) { return cast<T>(value); }
};
//===----------------------------------------------------------------------===//
// Type
template <>
struct ProcessPDLValue<Type> : public ProcessBuiltinPDLValue<Type> {};
template <typename T>
struct ProcessPDLValue<T, std::enable_if_t<std::is_base_of<Type, T>::value>>
: public ProcessDerivedPDLValue<T, Type> {};
//===----------------------------------------------------------------------===//
// TypeRange
template <>
struct ProcessPDLValue<TypeRange> : public ProcessBuiltinPDLValue<TypeRange> {};
template <>
struct ProcessPDLValue<ValueTypeRange<OperandRange>> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
ValueTypeRange<OperandRange> types) {
results.push_back(types);
}
};
template <>
struct ProcessPDLValue<ValueTypeRange<ResultRange>> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
ValueTypeRange<ResultRange> types) {
results.push_back(types);
}
};
template <unsigned N>
struct ProcessPDLValue<SmallVector<Type, N>> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
SmallVector<Type, N> values) {
results.push_back(TypeRange(values));
}
};
//===----------------------------------------------------------------------===//
// Value
template <>
struct ProcessPDLValue<Value> : public ProcessBuiltinPDLValue<Value> {};
//===----------------------------------------------------------------------===//
// ValueRange
template <>
struct ProcessPDLValue<ValueRange> : public ProcessBuiltinPDLValue<ValueRange> {
};
template <>
struct ProcessPDLValue<OperandRange> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
OperandRange values) {
results.push_back(values);
}
};
template <>
struct ProcessPDLValue<ResultRange> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
ResultRange values) {
results.push_back(values);
}
};
template <unsigned N>
struct ProcessPDLValue<SmallVector<Value, N>> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
SmallVector<Value, N> values) {
results.push_back(ValueRange(values));
}
};
//===----------------------------------------------------------------------===//
// PDL Function Builder: Argument Handling
//===----------------------------------------------------------------------===//
/// Validate the given PDLValues match the constraints defined by the argument
/// types of the given function. In the case of failure, a match failure
/// diagnostic is emitted.
/// FIXME: This should be completely removed in favor of `assertArgs`, but PDL
/// does not currently preserve Constraint application ordering.
template <typename PDLFnT, std::size_t... I>
LogicalResult verifyAsArgs(PatternRewriter &rewriter, ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
using FnTraitsT = llvm::function_traits<PDLFnT>;
auto errorFn = [&](const Twine &msg) {
return rewriter.notifyMatchFailure(rewriter.getUnknownLoc(), msg);
};
return success(
(succeeded(ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::
verifyAsArg(errorFn, values[I], I)) &&
...));
}
/// Assert that the given PDLValues match the constraints defined by the
/// arguments of the given function. In the case of failure, a fatal error
/// is emitted.
template <typename PDLFnT, std::size_t... I>
void assertArgs(PatternRewriter &rewriter, ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
// We only want to do verification in debug builds, same as with `assert`.
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
using FnTraitsT = llvm::function_traits<PDLFnT>;
auto errorFn = [&](const Twine &msg) -> LogicalResult {
llvm::report_fatal_error(msg);
};
(void)errorFn;
assert((succeeded(ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::
verifyAsArg(errorFn, values[I], I)) &&
...));
#endif
(void)values;
}
//===----------------------------------------------------------------------===//
// PDL Function Builder: Results Handling
//===----------------------------------------------------------------------===//
/// Store a single result within the result list.
template <typename T>
static LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results, T &&value) {
ProcessPDLValue<T>::processAsResult(rewriter, results,
std::forward<T>(value));
return success();
}
/// Store a std::pair<> as individual results within the result list.
template <typename T1, typename T2>
static LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results,
std::pair<T1, T2> &&pair) {
if (failed(processResults(rewriter, results, std::move(pair.first))) ||
failed(processResults(rewriter, results, std::move(pair.second))))
return failure();
return success();
}
/// Store a std::tuple<> as individual results within the result list.
template <typename... Ts>
static LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results,
std::tuple<Ts...> &&tuple) {
auto applyFn = [&](auto &&...args) {
return (succeeded(processResults(rewriter, results, std::move(args))) &&
...);
};
return success(std::apply(applyFn, std::move(tuple)));
}
/// Handle LogicalResult propagation.
inline LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results,
LogicalResult &&result) {
return result;
}
template <typename T>
static LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results,
FailureOr<T> &&result) {
if (failed(result))
return failure();
return processResults(rewriter, results, std::move(*result));
}
//===----------------------------------------------------------------------===//
// PDL Constraint Builder
//===----------------------------------------------------------------------===//
/// Process the arguments of a native constraint and invoke it.
template <typename PDLFnT, std::size_t... I,
typename FnTraitsT = llvm::function_traits<PDLFnT>>
typename FnTraitsT::result_t
processArgsAndInvokeConstraint(PDLFnT &fn, PatternRewriter &rewriter,
ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
return fn(
rewriter,
(ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::processAsArg(
values[I]))...);
}
/// Build a constraint function from the given function `ConstraintFnT`. This
/// allows for enabling the user to define simpler, more direct constraint
/// functions without needing to handle the low-level PDL goop.
///
/// If the constraint function is already in the correct form, we just forward
/// it directly.
template <typename ConstraintFnT>
std::enable_if_t<
std::is_convertible<ConstraintFnT, PDLConstraintFunction>::value,
PDLConstraintFunction>
buildConstraintFn(ConstraintFnT &&constraintFn) {
return std::forward<ConstraintFnT>(constraintFn);
}
/// Otherwise, we generate a wrapper that will unpack the PDLValues in the form
/// we desire.
template <typename ConstraintFnT>
std::enable_if_t<
!std::is_convertible<ConstraintFnT, PDLConstraintFunction>::value,
PDLConstraintFunction>
buildConstraintFn(ConstraintFnT &&constraintFn) {
return [constraintFn = std::forward<ConstraintFnT>(constraintFn)](
PatternRewriter &rewriter,
ArrayRef<PDLValue> values) -> LogicalResult {
auto argIndices = std::make_index_sequence<
llvm::function_traits<ConstraintFnT>::num_args - 1>();
if (failed(verifyAsArgs<ConstraintFnT>(rewriter, values, argIndices)))
return failure();
return processArgsAndInvokeConstraint(constraintFn, rewriter, values,
argIndices);
};
}
//===----------------------------------------------------------------------===//
// PDL Rewrite Builder
//===----------------------------------------------------------------------===//
/// Process the arguments of a native rewrite and invoke it.
/// This overload handles the case of no return values.
template <typename PDLFnT, std::size_t... I,
typename FnTraitsT = llvm::function_traits<PDLFnT>>
std::enable_if_t<std::is_same<typename FnTraitsT::result_t, void>::value,
LogicalResult>
processArgsAndInvokeRewrite(PDLFnT &fn, PatternRewriter &rewriter,
PDLResultList &, ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
fn(rewriter,
(ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::processAsArg(
values[I]))...);
return success();
}
/// This overload handles the case of return values, which need to be packaged
/// into the result list.
template <typename PDLFnT, std::size_t... I,
typename FnTraitsT = llvm::function_traits<PDLFnT>>
std::enable_if_t<!std::is_same<typename FnTraitsT::result_t, void>::value,
LogicalResult>
processArgsAndInvokeRewrite(PDLFnT &fn, PatternRewriter &rewriter,
PDLResultList &results, ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
return processResults(
rewriter, results,
fn(rewriter, (ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::
processAsArg(values[I]))...));
(void)values;
}
/// Build a rewrite function from the given function `RewriteFnT`. This
/// allows for enabling the user to define simpler, more direct rewrite
/// functions without needing to handle the low-level PDL goop.
///
/// If the rewrite function is already in the correct form, we just forward
/// it directly.
template <typename RewriteFnT>
std::enable_if_t<std::is_convertible<RewriteFnT, PDLRewriteFunction>::value,
PDLRewriteFunction>
buildRewriteFn(RewriteFnT &&rewriteFn) {
return std::forward<RewriteFnT>(rewriteFn);
}
/// Otherwise, we generate a wrapper that will unpack the PDLValues in the form
/// we desire.
template <typename RewriteFnT>
std::enable_if_t<!std::is_convertible<RewriteFnT, PDLRewriteFunction>::value,
PDLRewriteFunction>
buildRewriteFn(RewriteFnT &&rewriteFn) {
return [rewriteFn = std::forward<RewriteFnT>(rewriteFn)](
PatternRewriter &rewriter, PDLResultList &results,
ArrayRef<PDLValue> values) {
auto argIndices =
std::make_index_sequence<llvm::function_traits<RewriteFnT>::num_args -
1>();
assertArgs<RewriteFnT>(rewriter, values, argIndices);
return processArgsAndInvokeRewrite(rewriteFn, rewriter, results, values,
argIndices);
};
}
} // namespace pdl_function_builder
} // namespace detail
//===----------------------------------------------------------------------===//
// PDLPatternModule
/// This class contains all of the necessary data for a set of PDL patterns, or
/// pattern rewrites specified in the form of the PDL dialect. This PDL module
/// contained by this pattern may contain any number of `pdl.pattern`
/// operations.
class PDLPatternModule {
public:
PDLPatternModule() = default;
/// Construct a PDL pattern with the given module and configurations.
PDLPatternModule(OwningOpRef<ModuleOp> module)
: pdlModule(std::move(module)) {}
template <typename... ConfigsT>
PDLPatternModule(OwningOpRef<ModuleOp> module, ConfigsT &&...patternConfigs)
: PDLPatternModule(std::move(module)) {
auto configSet = std::make_unique<PDLPatternConfigSet>(
std::forward<ConfigsT>(patternConfigs)...);
attachConfigToPatterns(*pdlModule, *configSet);
configs.emplace_back(std::move(configSet));
}
/// Merge the state in `other` into this pattern module.
void mergeIn(PDLPatternModule &&other);
/// Return the internal PDL module of this pattern.
ModuleOp getModule() { return pdlModule.get(); }
/// Return the MLIR context of this pattern.
MLIRContext *getContext() { return getModule()->getContext(); }
//===--------------------------------------------------------------------===//
// Function Registry
/// Register a constraint function with PDL. A constraint function may be
/// specified in one of two ways:
///
/// * `LogicalResult (PatternRewriter &, ArrayRef<PDLValue>)`
///
/// In this overload the arguments of the constraint function are passed via
/// the low-level PDLValue form.
///
/// * `LogicalResult (PatternRewriter &, ValueTs... values)`
///
/// In this form the arguments of the constraint function are passed via the
/// expected high level C++ type. In this form, the framework will
/// automatically unwrap PDLValues and convert them to the expected ValueTs.
/// For example, if the constraint function accepts a `Operation *`, the
/// framework will automatically cast the input PDLValue. In the case of a
/// `StringRef`, the framework will automatically unwrap the argument as a
/// StringAttr and pass the underlying string value. To see the full list of
/// supported types, or to see how to add handling for custom types, view
/// the definition of `ProcessPDLValue` above.
void registerConstraintFunction(StringRef name,
PDLConstraintFunction constraintFn);
template <typename ConstraintFnT>
void registerConstraintFunction(StringRef name,
ConstraintFnT &&constraintFn) {
registerConstraintFunction(name,
detail::pdl_function_builder::buildConstraintFn(
std::forward<ConstraintFnT>(constraintFn)));
}
/// Register a rewrite function with PDL. A rewrite function may be specified
/// in one of two ways:
///
/// * `void (PatternRewriter &, PDLResultList &, ArrayRef<PDLValue>)`
///
/// In this overload the arguments of the constraint function are passed via
/// the low-level PDLValue form, and the results are manually appended to
/// the given result list.
///
/// * `ResultT (PatternRewriter &, ValueTs... values)`
///
/// In this form the arguments and result of the rewrite function are passed
/// via the expected high level C++ type. In this form, the framework will
/// automatically unwrap the PDLValues arguments and convert them to the
/// expected ValueTs. It will also automatically handle the processing and
/// packaging of the result value to the result list. For example, if the
/// rewrite function takes a `Operation *`, the framework will automatically
/// cast the input PDLValue. In the case of a `StringRef`, the framework
/// will automatically unwrap the argument as a StringAttr and pass the
/// underlying string value. In the reverse case, if the rewrite returns a
/// StringRef or std::string, it will automatically package this as a
/// StringAttr and append it to the result list. To see the full list of
/// supported types, or to see how to add handling for custom types, view
/// the definition of `ProcessPDLValue` above.
void registerRewriteFunction(StringRef name, PDLRewriteFunction rewriteFn);
template <typename RewriteFnT>
void registerRewriteFunction(StringRef name, RewriteFnT &&rewriteFn) {
registerRewriteFunction(name, detail::pdl_function_builder::buildRewriteFn(
std::forward<RewriteFnT>(rewriteFn)));
}
/// Return the set of the registered constraint functions.
const llvm::StringMap<PDLConstraintFunction> &getConstraintFunctions() const {
return constraintFunctions;
}
llvm::StringMap<PDLConstraintFunction> takeConstraintFunctions() {
return constraintFunctions;
}
/// Return the set of the registered rewrite functions.
const llvm::StringMap<PDLRewriteFunction> &getRewriteFunctions() const {
return rewriteFunctions;
}
llvm::StringMap<PDLRewriteFunction> takeRewriteFunctions() {
return rewriteFunctions;
}
/// Return the set of the registered pattern configs.
SmallVector<std::unique_ptr<PDLPatternConfigSet>> takeConfigs() {
return std::move(configs);
}
DenseMap<Operation *, PDLPatternConfigSet *> takeConfigMap() {
return std::move(configMap);
}
/// Clear out the patterns and functions within this module.
void clear() {
pdlModule = nullptr;
constraintFunctions.clear();
rewriteFunctions.clear();
}
private:
/// Attach the given pattern config set to the patterns defined within the
/// given module.
void attachConfigToPatterns(ModuleOp module, PDLPatternConfigSet &configSet);
/// The module containing the `pdl.pattern` operations.
OwningOpRef<ModuleOp> pdlModule;
/// The set of configuration sets referenced by patterns within `pdlModule`.
SmallVector<std::unique_ptr<PDLPatternConfigSet>> configs;
DenseMap<Operation *, PDLPatternConfigSet *> configMap;
/// The external functions referenced from within the PDL module.
llvm::StringMap<PDLConstraintFunction> constraintFunctions;
llvm::StringMap<PDLRewriteFunction> rewriteFunctions;
};
} // namespace mlir
#else
namespace mlir {
// Stubs for when PDL in pattern rewrites is not enabled.
class PDLValue {
public:
template <typename T>
T dyn_cast() const {
return nullptr;
}
};
class PDLResultList {};
using PDLConstraintFunction =
std::function<LogicalResult(PatternRewriter &, ArrayRef<PDLValue>)>;
using PDLRewriteFunction = std::function<LogicalResult(
PatternRewriter &, PDLResultList &, ArrayRef<PDLValue>)>;
class PDLPatternModule {
public:
PDLPatternModule() = default;
PDLPatternModule(OwningOpRef<ModuleOp> /*module*/) {}
MLIRContext *getContext() {
llvm_unreachable("Error: PDL for rewrites when PDL is not enabled");
}
void mergeIn(PDLPatternModule &&other) {}
void clear() {}
template <typename ConstraintFnT>
void registerConstraintFunction(StringRef name,
ConstraintFnT &&constraintFn) {}
void registerRewriteFunction(StringRef name, PDLRewriteFunction rewriteFn) {}
template <typename RewriteFnT>
void registerRewriteFunction(StringRef name, RewriteFnT &&rewriteFn) {}
const llvm::StringMap<PDLConstraintFunction> &getConstraintFunctions() const {
return constraintFunctions;
}
private:
llvm::StringMap<PDLConstraintFunction> constraintFunctions;
};
} // namespace mlir
#endif
#endif // MLIR_IR_PDLPATTERNMATCH_H

View File

@ -735,12 +735,932 @@ public:
virtual bool canRecoverFromRewriteFailure() const { return false; }
};
} // namespace mlir
//===----------------------------------------------------------------------===//
// PDL Patterns
//===----------------------------------------------------------------------===//
// Optionally expose PDL pattern matching methods.
#include "PDLPatternMatch.h.inc"
//===----------------------------------------------------------------------===//
// PDLValue
namespace mlir {
/// Storage type of byte-code interpreter values. These are passed to constraint
/// functions as arguments.
class PDLValue {
public:
/// The underlying kind of a PDL value.
enum class Kind { Attribute, Operation, Type, TypeRange, Value, ValueRange };
/// Construct a new PDL value.
PDLValue(const PDLValue &other) = default;
PDLValue(std::nullptr_t = nullptr) {}
PDLValue(Attribute value)
: value(value.getAsOpaquePointer()), kind(Kind::Attribute) {}
PDLValue(Operation *value) : value(value), kind(Kind::Operation) {}
PDLValue(Type value) : value(value.getAsOpaquePointer()), kind(Kind::Type) {}
PDLValue(TypeRange *value) : value(value), kind(Kind::TypeRange) {}
PDLValue(Value value)
: value(value.getAsOpaquePointer()), kind(Kind::Value) {}
PDLValue(ValueRange *value) : value(value), kind(Kind::ValueRange) {}
/// Returns true if the type of the held value is `T`.
template <typename T>
bool isa() const {
assert(value && "isa<> used on a null value");
return kind == getKindOf<T>();
}
/// Attempt to dynamically cast this value to type `T`, returns null if this
/// value is not an instance of `T`.
template <typename T,
typename ResultT = std::conditional_t<
std::is_convertible<T, bool>::value, T, std::optional<T>>>
ResultT dyn_cast() const {
return isa<T>() ? castImpl<T>() : ResultT();
}
/// Cast this value to type `T`, asserts if this value is not an instance of
/// `T`.
template <typename T>
T cast() const {
assert(isa<T>() && "expected value to be of type `T`");
return castImpl<T>();
}
/// Get an opaque pointer to the value.
const void *getAsOpaquePointer() const { return value; }
/// Return if this value is null or not.
explicit operator bool() const { return value; }
/// Return the kind of this value.
Kind getKind() const { return kind; }
/// Print this value to the provided output stream.
void print(raw_ostream &os) const;
/// Print the specified value kind to an output stream.
static void print(raw_ostream &os, Kind kind);
private:
/// Find the index of a given type in a range of other types.
template <typename...>
struct index_of_t;
template <typename T, typename... R>
struct index_of_t<T, T, R...> : std::integral_constant<size_t, 0> {};
template <typename T, typename F, typename... R>
struct index_of_t<T, F, R...>
: std::integral_constant<size_t, 1 + index_of_t<T, R...>::value> {};
/// Return the kind used for the given T.
template <typename T>
static Kind getKindOf() {
return static_cast<Kind>(index_of_t<T, Attribute, Operation *, Type,
TypeRange, Value, ValueRange>::value);
}
/// The internal implementation of `cast`, that returns the underlying value
/// as the given type `T`.
template <typename T>
std::enable_if_t<llvm::is_one_of<T, Attribute, Type, Value>::value, T>
castImpl() const {
return T::getFromOpaquePointer(value);
}
template <typename T>
std::enable_if_t<llvm::is_one_of<T, TypeRange, ValueRange>::value, T>
castImpl() const {
return *reinterpret_cast<T *>(const_cast<void *>(value));
}
template <typename T>
std::enable_if_t<std::is_pointer<T>::value, T> castImpl() const {
return reinterpret_cast<T>(const_cast<void *>(value));
}
/// The internal opaque representation of a PDLValue.
const void *value{nullptr};
/// The kind of the opaque value.
Kind kind{Kind::Attribute};
};
inline raw_ostream &operator<<(raw_ostream &os, PDLValue value) {
value.print(os);
return os;
}
inline raw_ostream &operator<<(raw_ostream &os, PDLValue::Kind kind) {
PDLValue::print(os, kind);
return os;
}
//===----------------------------------------------------------------------===//
// PDLResultList
/// The class represents a list of PDL results, returned by a native rewrite
/// method. It provides the mechanism with which to pass PDLValues back to the
/// PDL bytecode.
class PDLResultList {
public:
/// Push a new Attribute value onto the result list.
void push_back(Attribute value) { results.push_back(value); }
/// Push a new Operation onto the result list.
void push_back(Operation *value) { results.push_back(value); }
/// Push a new Type onto the result list.
void push_back(Type value) { results.push_back(value); }
/// Push a new TypeRange onto the result list.
void push_back(TypeRange value) {
// The lifetime of a TypeRange can't be guaranteed, so we'll need to
// allocate a storage for it.
llvm::OwningArrayRef<Type> storage(value.size());
llvm::copy(value, storage.begin());
allocatedTypeRanges.emplace_back(std::move(storage));
typeRanges.push_back(allocatedTypeRanges.back());
results.push_back(&typeRanges.back());
}
void push_back(ValueTypeRange<OperandRange> value) {
typeRanges.push_back(value);
results.push_back(&typeRanges.back());
}
void push_back(ValueTypeRange<ResultRange> value) {
typeRanges.push_back(value);
results.push_back(&typeRanges.back());
}
/// Push a new Value onto the result list.
void push_back(Value value) { results.push_back(value); }
/// Push a new ValueRange onto the result list.
void push_back(ValueRange value) {
// The lifetime of a ValueRange can't be guaranteed, so we'll need to
// allocate a storage for it.
llvm::OwningArrayRef<Value> storage(value.size());
llvm::copy(value, storage.begin());
allocatedValueRanges.emplace_back(std::move(storage));
valueRanges.push_back(allocatedValueRanges.back());
results.push_back(&valueRanges.back());
}
void push_back(OperandRange value) {
valueRanges.push_back(value);
results.push_back(&valueRanges.back());
}
void push_back(ResultRange value) {
valueRanges.push_back(value);
results.push_back(&valueRanges.back());
}
protected:
/// Create a new result list with the expected number of results.
PDLResultList(unsigned maxNumResults) {
// For now just reserve enough space for all of the results. We could do
// separate counts per range type, but it isn't really worth it unless there
// are a "large" number of results.
typeRanges.reserve(maxNumResults);
valueRanges.reserve(maxNumResults);
}
/// The PDL results held by this list.
SmallVector<PDLValue> results;
/// Memory used to store ranges held by the list.
SmallVector<TypeRange> typeRanges;
SmallVector<ValueRange> valueRanges;
/// Memory allocated to store ranges in the result list whose lifetime was
/// generated in the native function.
SmallVector<llvm::OwningArrayRef<Type>> allocatedTypeRanges;
SmallVector<llvm::OwningArrayRef<Value>> allocatedValueRanges;
};
//===----------------------------------------------------------------------===//
// PDLPatternConfig
/// An individual configuration for a pattern, which can be accessed by native
/// functions via the PDLPatternConfigSet. This allows for injecting additional
/// configuration into PDL patterns that is specific to certain compilation
/// flows.
class PDLPatternConfig {
public:
virtual ~PDLPatternConfig() = default;
/// Hooks that are invoked at the beginning and end of a rewrite of a matched
/// pattern. These can be used to setup any specific state necessary for the
/// rewrite.
virtual void notifyRewriteBegin(PatternRewriter &rewriter) {}
virtual void notifyRewriteEnd(PatternRewriter &rewriter) {}
/// Return the TypeID that represents this configuration.
TypeID getTypeID() const { return id; }
protected:
PDLPatternConfig(TypeID id) : id(id) {}
private:
TypeID id;
};
/// This class provides a base class for users implementing a type of pattern
/// configuration.
template <typename T>
class PDLPatternConfigBase : public PDLPatternConfig {
public:
/// Support LLVM style casting.
static bool classof(const PDLPatternConfig *config) {
return config->getTypeID() == getConfigID();
}
/// Return the type id used for this configuration.
static TypeID getConfigID() { return TypeID::get<T>(); }
protected:
PDLPatternConfigBase() : PDLPatternConfig(getConfigID()) {}
};
/// This class contains a set of configurations for a specific pattern.
/// Configurations are uniqued by TypeID, meaning that only one configuration of
/// each type is allowed.
class PDLPatternConfigSet {
public:
PDLPatternConfigSet() = default;
/// Construct a set with the given configurations.
template <typename... ConfigsT>
PDLPatternConfigSet(ConfigsT &&...configs) {
(addConfig(std::forward<ConfigsT>(configs)), ...);
}
/// Get the configuration defined by the given type. Asserts that the
/// configuration of the provided type exists.
template <typename T>
const T &get() const {
const T *config = tryGet<T>();
assert(config && "configuration not found");
return *config;
}
/// Get the configuration defined by the given type, returns nullptr if the
/// configuration does not exist.
template <typename T>
const T *tryGet() const {
for (const auto &configIt : configs)
if (const T *config = dyn_cast<T>(configIt.get()))
return config;
return nullptr;
}
/// Notify the configurations within this set at the beginning or end of a
/// rewrite of a matched pattern.
void notifyRewriteBegin(PatternRewriter &rewriter) {
for (const auto &config : configs)
config->notifyRewriteBegin(rewriter);
}
void notifyRewriteEnd(PatternRewriter &rewriter) {
for (const auto &config : configs)
config->notifyRewriteEnd(rewriter);
}
protected:
/// Add a configuration to the set.
template <typename T>
void addConfig(T &&config) {
assert(!tryGet<std::decay_t<T>>() && "configuration already exists");
configs.emplace_back(
std::make_unique<std::decay_t<T>>(std::forward<T>(config)));
}
/// The set of configurations for this pattern. This uses a vector instead of
/// a map with the expectation that the number of configurations per set is
/// small (<= 1).
SmallVector<std::unique_ptr<PDLPatternConfig>> configs;
};
//===----------------------------------------------------------------------===//
// PDLPatternModule
/// A generic PDL pattern constraint function. This function applies a
/// constraint to a given set of opaque PDLValue entities. Returns success if
/// the constraint successfully held, failure otherwise.
using PDLConstraintFunction =
std::function<LogicalResult(PatternRewriter &, ArrayRef<PDLValue>)>;
/// A native PDL rewrite function. This function performs a rewrite on the
/// given set of values. Any results from this rewrite that should be passed
/// back to PDL should be added to the provided result list. This method is only
/// invoked when the corresponding match was successful. Returns failure if an
/// invariant of the rewrite was broken (certain rewriters may recover from
/// partial pattern application).
using PDLRewriteFunction = std::function<LogicalResult(
PatternRewriter &, PDLResultList &, ArrayRef<PDLValue>)>;
namespace detail {
namespace pdl_function_builder {
/// A utility variable that always resolves to false. This is useful for static
/// asserts that are always false, but only should fire in certain templated
/// constructs. For example, if a templated function should never be called, the
/// function could be defined as:
///
/// template <typename T>
/// void foo() {
/// static_assert(always_false<T>, "This function should never be called");
/// }
///
template <class... T>
constexpr bool always_false = false;
//===----------------------------------------------------------------------===//
// PDL Function Builder: Type Processing
//===----------------------------------------------------------------------===//
/// This struct provides a convenient way to determine how to process a given
/// type as either a PDL parameter, or a result value. This allows for
/// supporting complex types in constraint and rewrite functions, without
/// requiring the user to hand-write the necessary glue code themselves.
/// Specializations of this class should implement the following methods to
/// enable support as a PDL argument or result type:
///
/// static LogicalResult verifyAsArg(
/// function_ref<LogicalResult(const Twine &)> errorFn, PDLValue pdlValue,
/// size_t argIdx);
///
/// * This method verifies that the given PDLValue is valid for use as a
/// value of `T`.
///
/// static T processAsArg(PDLValue pdlValue);
///
/// * This method processes the given PDLValue as a value of `T`.
///
/// static void processAsResult(PatternRewriter &, PDLResultList &results,
/// const T &value);
///
/// * This method processes the given value of `T` as the result of a
/// function invocation. The method should package the value into an
/// appropriate form and append it to the given result list.
///
/// If the type `T` is based on a higher order value, consider using
/// `ProcessPDLValueBasedOn` as a base class of the specialization to simplify
/// the implementation.
///
template <typename T, typename Enable = void>
struct ProcessPDLValue;
/// This struct provides a simplified model for processing types that are based
/// on another type, e.g. APInt is based on the handling for IntegerAttr. This
/// allows for building the necessary processing functions on top of the base
/// value instead of a PDLValue. Derived users should implement the following
/// (which subsume the ProcessPDLValue variants):
///
/// static LogicalResult verifyAsArg(
/// function_ref<LogicalResult(const Twine &)> errorFn,
/// const BaseT &baseValue, size_t argIdx);
///
/// * This method verifies that the given PDLValue is valid for use as a
/// value of `T`.
///
/// static T processAsArg(BaseT baseValue);
///
/// * This method processes the given base value as a value of `T`.
///
template <typename T, typename BaseT>
struct ProcessPDLValueBasedOn {
static LogicalResult
verifyAsArg(function_ref<LogicalResult(const Twine &)> errorFn,
PDLValue pdlValue, size_t argIdx) {
// Verify the base class before continuing.
if (failed(ProcessPDLValue<BaseT>::verifyAsArg(errorFn, pdlValue, argIdx)))
return failure();
return ProcessPDLValue<T>::verifyAsArg(
errorFn, ProcessPDLValue<BaseT>::processAsArg(pdlValue), argIdx);
}
static T processAsArg(PDLValue pdlValue) {
return ProcessPDLValue<T>::processAsArg(
ProcessPDLValue<BaseT>::processAsArg(pdlValue));
}
/// Explicitly add the expected parent API to ensure the parent class
/// implements the necessary API (and doesn't implicitly inherit it from
/// somewhere else).
static LogicalResult
verifyAsArg(function_ref<LogicalResult(const Twine &)> errorFn, BaseT value,
size_t argIdx) {
return success();
}
static T processAsArg(BaseT baseValue);
};
/// This struct provides a simplified model for processing types that have
/// "builtin" PDLValue support:
/// * Attribute, Operation *, Type, TypeRange, ValueRange
template <typename T>
struct ProcessBuiltinPDLValue {
static LogicalResult
verifyAsArg(function_ref<LogicalResult(const Twine &)> errorFn,
PDLValue pdlValue, size_t argIdx) {
if (pdlValue)
return success();
return errorFn("expected a non-null value for argument " + Twine(argIdx) +
" of type: " + llvm::getTypeName<T>());
}
static T processAsArg(PDLValue pdlValue) { return pdlValue.cast<T>(); }
static void processAsResult(PatternRewriter &, PDLResultList &results,
T value) {
results.push_back(value);
}
};
/// This struct provides a simplified model for processing types that inherit
/// from builtin PDLValue types. For example, derived attributes like
/// IntegerAttr, derived types like IntegerType, derived operations like
/// ModuleOp, Interfaces, etc.
template <typename T, typename BaseT>
struct ProcessDerivedPDLValue : public ProcessPDLValueBasedOn<T, BaseT> {
static LogicalResult
verifyAsArg(function_ref<LogicalResult(const Twine &)> errorFn,
BaseT baseValue, size_t argIdx) {
return TypeSwitch<BaseT, LogicalResult>(baseValue)
.Case([&](T) { return success(); })
.Default([&](BaseT) {
return errorFn("expected argument " + Twine(argIdx) +
" to be of type: " + llvm::getTypeName<T>());
});
}
using ProcessPDLValueBasedOn<T, BaseT>::verifyAsArg;
static T processAsArg(BaseT baseValue) {
return baseValue.template cast<T>();
}
using ProcessPDLValueBasedOn<T, BaseT>::processAsArg;
static void processAsResult(PatternRewriter &, PDLResultList &results,
T value) {
results.push_back(value);
}
};
//===----------------------------------------------------------------------===//
// Attribute
template <>
struct ProcessPDLValue<Attribute> : public ProcessBuiltinPDLValue<Attribute> {};
template <typename T>
struct ProcessPDLValue<T,
std::enable_if_t<std::is_base_of<Attribute, T>::value>>
: public ProcessDerivedPDLValue<T, Attribute> {};
/// Handling for various Attribute value types.
template <>
struct ProcessPDLValue<StringRef>
: public ProcessPDLValueBasedOn<StringRef, StringAttr> {
static StringRef processAsArg(StringAttr value) { return value.getValue(); }
using ProcessPDLValueBasedOn<StringRef, StringAttr>::processAsArg;
static void processAsResult(PatternRewriter &rewriter, PDLResultList &results,
StringRef value) {
results.push_back(rewriter.getStringAttr(value));
}
};
template <>
struct ProcessPDLValue<std::string>
: public ProcessPDLValueBasedOn<std::string, StringAttr> {
template <typename T>
static std::string processAsArg(T value) {
static_assert(always_false<T>,
"`std::string` arguments require a string copy, use "
"`StringRef` for string-like arguments instead");
return {};
}
static void processAsResult(PatternRewriter &rewriter, PDLResultList &results,
StringRef value) {
results.push_back(rewriter.getStringAttr(value));
}
};
//===----------------------------------------------------------------------===//
// Operation
template <>
struct ProcessPDLValue<Operation *>
: public ProcessBuiltinPDLValue<Operation *> {};
template <typename T>
struct ProcessPDLValue<T, std::enable_if_t<std::is_base_of<OpState, T>::value>>
: public ProcessDerivedPDLValue<T, Operation *> {
static T processAsArg(Operation *value) { return cast<T>(value); }
};
//===----------------------------------------------------------------------===//
// Type
template <>
struct ProcessPDLValue<Type> : public ProcessBuiltinPDLValue<Type> {};
template <typename T>
struct ProcessPDLValue<T, std::enable_if_t<std::is_base_of<Type, T>::value>>
: public ProcessDerivedPDLValue<T, Type> {};
//===----------------------------------------------------------------------===//
// TypeRange
template <>
struct ProcessPDLValue<TypeRange> : public ProcessBuiltinPDLValue<TypeRange> {};
template <>
struct ProcessPDLValue<ValueTypeRange<OperandRange>> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
ValueTypeRange<OperandRange> types) {
results.push_back(types);
}
};
template <>
struct ProcessPDLValue<ValueTypeRange<ResultRange>> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
ValueTypeRange<ResultRange> types) {
results.push_back(types);
}
};
template <unsigned N>
struct ProcessPDLValue<SmallVector<Type, N>> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
SmallVector<Type, N> values) {
results.push_back(TypeRange(values));
}
};
//===----------------------------------------------------------------------===//
// Value
template <>
struct ProcessPDLValue<Value> : public ProcessBuiltinPDLValue<Value> {};
//===----------------------------------------------------------------------===//
// ValueRange
template <>
struct ProcessPDLValue<ValueRange> : public ProcessBuiltinPDLValue<ValueRange> {
};
template <>
struct ProcessPDLValue<OperandRange> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
OperandRange values) {
results.push_back(values);
}
};
template <>
struct ProcessPDLValue<ResultRange> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
ResultRange values) {
results.push_back(values);
}
};
template <unsigned N>
struct ProcessPDLValue<SmallVector<Value, N>> {
static void processAsResult(PatternRewriter &, PDLResultList &results,
SmallVector<Value, N> values) {
results.push_back(ValueRange(values));
}
};
//===----------------------------------------------------------------------===//
// PDL Function Builder: Argument Handling
//===----------------------------------------------------------------------===//
/// Validate the given PDLValues match the constraints defined by the argument
/// types of the given function. In the case of failure, a match failure
/// diagnostic is emitted.
/// FIXME: This should be completely removed in favor of `assertArgs`, but PDL
/// does not currently preserve Constraint application ordering.
template <typename PDLFnT, std::size_t... I>
LogicalResult verifyAsArgs(PatternRewriter &rewriter, ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
using FnTraitsT = llvm::function_traits<PDLFnT>;
auto errorFn = [&](const Twine &msg) {
return rewriter.notifyMatchFailure(rewriter.getUnknownLoc(), msg);
};
return success(
(succeeded(ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::
verifyAsArg(errorFn, values[I], I)) &&
...));
}
/// Assert that the given PDLValues match the constraints defined by the
/// arguments of the given function. In the case of failure, a fatal error
/// is emitted.
template <typename PDLFnT, std::size_t... I>
void assertArgs(PatternRewriter &rewriter, ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
// We only want to do verification in debug builds, same as with `assert`.
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
using FnTraitsT = llvm::function_traits<PDLFnT>;
auto errorFn = [&](const Twine &msg) -> LogicalResult {
llvm::report_fatal_error(msg);
};
(void)errorFn;
assert((succeeded(ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::
verifyAsArg(errorFn, values[I], I)) &&
...));
#endif
(void)values;
}
//===----------------------------------------------------------------------===//
// PDL Function Builder: Results Handling
//===----------------------------------------------------------------------===//
/// Store a single result within the result list.
template <typename T>
static LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results, T &&value) {
ProcessPDLValue<T>::processAsResult(rewriter, results,
std::forward<T>(value));
return success();
}
/// Store a std::pair<> as individual results within the result list.
template <typename T1, typename T2>
static LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results,
std::pair<T1, T2> &&pair) {
if (failed(processResults(rewriter, results, std::move(pair.first))) ||
failed(processResults(rewriter, results, std::move(pair.second))))
return failure();
return success();
}
/// Store a std::tuple<> as individual results within the result list.
template <typename... Ts>
static LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results,
std::tuple<Ts...> &&tuple) {
auto applyFn = [&](auto &&...args) {
return (succeeded(processResults(rewriter, results, std::move(args))) &&
...);
};
return success(std::apply(applyFn, std::move(tuple)));
}
/// Handle LogicalResult propagation.
inline LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results,
LogicalResult &&result) {
return result;
}
template <typename T>
static LogicalResult processResults(PatternRewriter &rewriter,
PDLResultList &results,
FailureOr<T> &&result) {
if (failed(result))
return failure();
return processResults(rewriter, results, std::move(*result));
}
//===----------------------------------------------------------------------===//
// PDL Constraint Builder
//===----------------------------------------------------------------------===//
/// Process the arguments of a native constraint and invoke it.
template <typename PDLFnT, std::size_t... I,
typename FnTraitsT = llvm::function_traits<PDLFnT>>
typename FnTraitsT::result_t
processArgsAndInvokeConstraint(PDLFnT &fn, PatternRewriter &rewriter,
ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
return fn(
rewriter,
(ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::processAsArg(
values[I]))...);
}
/// Build a constraint function from the given function `ConstraintFnT`. This
/// allows for enabling the user to define simpler, more direct constraint
/// functions without needing to handle the low-level PDL goop.
///
/// If the constraint function is already in the correct form, we just forward
/// it directly.
template <typename ConstraintFnT>
std::enable_if_t<
std::is_convertible<ConstraintFnT, PDLConstraintFunction>::value,
PDLConstraintFunction>
buildConstraintFn(ConstraintFnT &&constraintFn) {
return std::forward<ConstraintFnT>(constraintFn);
}
/// Otherwise, we generate a wrapper that will unpack the PDLValues in the form
/// we desire.
template <typename ConstraintFnT>
std::enable_if_t<
!std::is_convertible<ConstraintFnT, PDLConstraintFunction>::value,
PDLConstraintFunction>
buildConstraintFn(ConstraintFnT &&constraintFn) {
return [constraintFn = std::forward<ConstraintFnT>(constraintFn)](
PatternRewriter &rewriter,
ArrayRef<PDLValue> values) -> LogicalResult {
auto argIndices = std::make_index_sequence<
llvm::function_traits<ConstraintFnT>::num_args - 1>();
if (failed(verifyAsArgs<ConstraintFnT>(rewriter, values, argIndices)))
return failure();
return processArgsAndInvokeConstraint(constraintFn, rewriter, values,
argIndices);
};
}
//===----------------------------------------------------------------------===//
// PDL Rewrite Builder
//===----------------------------------------------------------------------===//
/// Process the arguments of a native rewrite and invoke it.
/// This overload handles the case of no return values.
template <typename PDLFnT, std::size_t... I,
typename FnTraitsT = llvm::function_traits<PDLFnT>>
std::enable_if_t<std::is_same<typename FnTraitsT::result_t, void>::value,
LogicalResult>
processArgsAndInvokeRewrite(PDLFnT &fn, PatternRewriter &rewriter,
PDLResultList &, ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
fn(rewriter,
(ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::processAsArg(
values[I]))...);
return success();
}
/// This overload handles the case of return values, which need to be packaged
/// into the result list.
template <typename PDLFnT, std::size_t... I,
typename FnTraitsT = llvm::function_traits<PDLFnT>>
std::enable_if_t<!std::is_same<typename FnTraitsT::result_t, void>::value,
LogicalResult>
processArgsAndInvokeRewrite(PDLFnT &fn, PatternRewriter &rewriter,
PDLResultList &results, ArrayRef<PDLValue> values,
std::index_sequence<I...>) {
return processResults(
rewriter, results,
fn(rewriter, (ProcessPDLValue<typename FnTraitsT::template arg_t<I + 1>>::
processAsArg(values[I]))...));
(void)values;
}
/// Build a rewrite function from the given function `RewriteFnT`. This
/// allows for enabling the user to define simpler, more direct rewrite
/// functions without needing to handle the low-level PDL goop.
///
/// If the rewrite function is already in the correct form, we just forward
/// it directly.
template <typename RewriteFnT>
std::enable_if_t<std::is_convertible<RewriteFnT, PDLRewriteFunction>::value,
PDLRewriteFunction>
buildRewriteFn(RewriteFnT &&rewriteFn) {
return std::forward<RewriteFnT>(rewriteFn);
}
/// Otherwise, we generate a wrapper that will unpack the PDLValues in the form
/// we desire.
template <typename RewriteFnT>
std::enable_if_t<!std::is_convertible<RewriteFnT, PDLRewriteFunction>::value,
PDLRewriteFunction>
buildRewriteFn(RewriteFnT &&rewriteFn) {
return [rewriteFn = std::forward<RewriteFnT>(rewriteFn)](
PatternRewriter &rewriter, PDLResultList &results,
ArrayRef<PDLValue> values) {
auto argIndices =
std::make_index_sequence<llvm::function_traits<RewriteFnT>::num_args -
1>();
assertArgs<RewriteFnT>(rewriter, values, argIndices);
return processArgsAndInvokeRewrite(rewriteFn, rewriter, results, values,
argIndices);
};
}
} // namespace pdl_function_builder
} // namespace detail
//===----------------------------------------------------------------------===//
// PDLPatternModule
/// This class contains all of the necessary data for a set of PDL patterns, or
/// pattern rewrites specified in the form of the PDL dialect. This PDL module
/// contained by this pattern may contain any number of `pdl.pattern`
/// operations.
class PDLPatternModule {
public:
PDLPatternModule() = default;
/// Construct a PDL pattern with the given module and configurations.
PDLPatternModule(OwningOpRef<ModuleOp> module)
: pdlModule(std::move(module)) {}
template <typename... ConfigsT>
PDLPatternModule(OwningOpRef<ModuleOp> module, ConfigsT &&...patternConfigs)
: PDLPatternModule(std::move(module)) {
auto configSet = std::make_unique<PDLPatternConfigSet>(
std::forward<ConfigsT>(patternConfigs)...);
attachConfigToPatterns(*pdlModule, *configSet);
configs.emplace_back(std::move(configSet));
}
/// Merge the state in `other` into this pattern module.
void mergeIn(PDLPatternModule &&other);
/// Return the internal PDL module of this pattern.
ModuleOp getModule() { return pdlModule.get(); }
//===--------------------------------------------------------------------===//
// Function Registry
/// Register a constraint function with PDL. A constraint function may be
/// specified in one of two ways:
///
/// * `LogicalResult (PatternRewriter &, ArrayRef<PDLValue>)`
///
/// In this overload the arguments of the constraint function are passed via
/// the low-level PDLValue form.
///
/// * `LogicalResult (PatternRewriter &, ValueTs... values)`
///
/// In this form the arguments of the constraint function are passed via the
/// expected high level C++ type. In this form, the framework will
/// automatically unwrap PDLValues and convert them to the expected ValueTs.
/// For example, if the constraint function accepts a `Operation *`, the
/// framework will automatically cast the input PDLValue. In the case of a
/// `StringRef`, the framework will automatically unwrap the argument as a
/// StringAttr and pass the underlying string value. To see the full list of
/// supported types, or to see how to add handling for custom types, view
/// the definition of `ProcessPDLValue` above.
void registerConstraintFunction(StringRef name,
PDLConstraintFunction constraintFn);
template <typename ConstraintFnT>
void registerConstraintFunction(StringRef name,
ConstraintFnT &&constraintFn) {
registerConstraintFunction(name,
detail::pdl_function_builder::buildConstraintFn(
std::forward<ConstraintFnT>(constraintFn)));
}
/// Register a rewrite function with PDL. A rewrite function may be specified
/// in one of two ways:
///
/// * `void (PatternRewriter &, PDLResultList &, ArrayRef<PDLValue>)`
///
/// In this overload the arguments of the constraint function are passed via
/// the low-level PDLValue form, and the results are manually appended to
/// the given result list.
///
/// * `ResultT (PatternRewriter &, ValueTs... values)`
///
/// In this form the arguments and result of the rewrite function are passed
/// via the expected high level C++ type. In this form, the framework will
/// automatically unwrap the PDLValues arguments and convert them to the
/// expected ValueTs. It will also automatically handle the processing and
/// packaging of the result value to the result list. For example, if the
/// rewrite function takes a `Operation *`, the framework will automatically
/// cast the input PDLValue. In the case of a `StringRef`, the framework
/// will automatically unwrap the argument as a StringAttr and pass the
/// underlying string value. In the reverse case, if the rewrite returns a
/// StringRef or std::string, it will automatically package this as a
/// StringAttr and append it to the result list. To see the full list of
/// supported types, or to see how to add handling for custom types, view
/// the definition of `ProcessPDLValue` above.
void registerRewriteFunction(StringRef name, PDLRewriteFunction rewriteFn);
template <typename RewriteFnT>
void registerRewriteFunction(StringRef name, RewriteFnT &&rewriteFn) {
registerRewriteFunction(name, detail::pdl_function_builder::buildRewriteFn(
std::forward<RewriteFnT>(rewriteFn)));
}
/// Return the set of the registered constraint functions.
const llvm::StringMap<PDLConstraintFunction> &getConstraintFunctions() const {
return constraintFunctions;
}
llvm::StringMap<PDLConstraintFunction> takeConstraintFunctions() {
return constraintFunctions;
}
/// Return the set of the registered rewrite functions.
const llvm::StringMap<PDLRewriteFunction> &getRewriteFunctions() const {
return rewriteFunctions;
}
llvm::StringMap<PDLRewriteFunction> takeRewriteFunctions() {
return rewriteFunctions;
}
/// Return the set of the registered pattern configs.
SmallVector<std::unique_ptr<PDLPatternConfigSet>> takeConfigs() {
return std::move(configs);
}
DenseMap<Operation *, PDLPatternConfigSet *> takeConfigMap() {
return std::move(configMap);
}
/// Clear out the patterns and functions within this module.
void clear() {
pdlModule = nullptr;
constraintFunctions.clear();
rewriteFunctions.clear();
}
private:
/// Attach the given pattern config set to the patterns defined within the
/// given module.
void attachConfigToPatterns(ModuleOp module, PDLPatternConfigSet &configSet);
/// The module containing the `pdl.pattern` operations.
OwningOpRef<ModuleOp> pdlModule;
/// The set of configuration sets referenced by patterns within `pdlModule`.
SmallVector<std::unique_ptr<PDLPatternConfigSet>> configs;
DenseMap<Operation *, PDLPatternConfigSet *> configMap;
/// The external functions referenced from within the PDL module.
llvm::StringMap<PDLConstraintFunction> constraintFunctions;
llvm::StringMap<PDLRewriteFunction> rewriteFunctions;
};
//===----------------------------------------------------------------------===//
// RewritePatternSet
@ -759,7 +1679,8 @@ public:
nativePatterns.emplace_back(std::move(pattern));
}
RewritePatternSet(PDLPatternModule &&pattern)
: context(pattern.getContext()), pdlPatterns(std::move(pattern)) {}
: context(pattern.getModule()->getContext()),
pdlPatterns(std::move(pattern)) {}
MLIRContext *getContext() const { return context; }
@ -932,7 +1853,6 @@ private:
pattern->addDebugLabels(debugLabels);
nativePatterns.emplace_back(std::move(pattern));
}
template <typename T, typename... Args>
std::enable_if_t<std::is_base_of<PDLPatternModule, T>::value>
addImpl(ArrayRef<StringRef> debugLabels, Args &&...args) {
@ -943,9 +1863,6 @@ private:
MLIRContext *const context;
NativePatternListT nativePatterns;
// Patterns expressed with PDL. This will compile to a stub class when PDL is
// not enabled.
PDLPatternModule pdlPatterns;
};

View File

@ -13,7 +13,6 @@
#ifndef MLIR_TRANSFORMS_DIALECTCONVERSION_H_
#define MLIR_TRANSFORMS_DIALECTCONVERSION_H_
#include "mlir/Config/mlir-config.h"
#include "mlir/Rewrite/FrozenRewritePatternSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringMap.h"
@ -1016,7 +1015,6 @@ private:
MLIRContext &ctx;
};
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// PDL Configuration
//===----------------------------------------------------------------------===//
@ -1046,19 +1044,6 @@ private:
/// Register the dialect conversion PDL functions with the given pattern set.
void registerConversionPDLFunctions(RewritePatternSet &patterns);
#else
// Stubs for when PDL in rewriting is not enabled.
inline void registerConversionPDLFunctions(RewritePatternSet &patterns) {}
class PDLConversionConfig final {
public:
PDLConversionConfig(const TypeConverter * /*converter*/) {}
};
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// Op Conversion Entry Points
//===----------------------------------------------------------------------===//

View File

@ -14,6 +14,7 @@ add_mlir_dialect_library(MLIRBufferizationTransformOps
MLIRFunctionInterfaces
MLIRLinalgDialect
MLIRParser
MLIRPDLDialect
MLIRSideEffectInterfaces
MLIRTransformDialect
)

View File

@ -61,10 +61,3 @@ add_mlir_library(MLIRIR
LINK_LIBS PUBLIC
MLIRSupport
)
if(MLIR_ENABLE_PDL_IN_PATTERNMATCH)
add_subdirectory(PDL)
target_link_libraries(MLIRIR PUBLIC
MLIRIRPDLPatternMatch)
endif()

View File

@ -1,7 +0,0 @@
add_mlir_library(MLIRIRPDLPatternMatch
PDLPatternMatch.cpp
ADDITIONAL_HEADER_DIRS
${MLIR_MAIN_INCLUDE_DIR}/mlir/IR
)

View File

@ -1,133 +0,0 @@
//===- PDLPatternMatch.cpp - Base classes for PDL pattern match
//------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Iterators.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/RegionKindInterface.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// PDLValue
//===----------------------------------------------------------------------===//
void PDLValue::print(raw_ostream &os) const {
if (!value) {
os << "<NULL-PDLValue>";
return;
}
switch (kind) {
case Kind::Attribute:
os << cast<Attribute>();
break;
case Kind::Operation:
os << *cast<Operation *>();
break;
case Kind::Type:
os << cast<Type>();
break;
case Kind::TypeRange:
llvm::interleaveComma(cast<TypeRange>(), os);
break;
case Kind::Value:
os << cast<Value>();
break;
case Kind::ValueRange:
llvm::interleaveComma(cast<ValueRange>(), os);
break;
}
}
void PDLValue::print(raw_ostream &os, Kind kind) {
switch (kind) {
case Kind::Attribute:
os << "Attribute";
break;
case Kind::Operation:
os << "Operation";
break;
case Kind::Type:
os << "Type";
break;
case Kind::TypeRange:
os << "TypeRange";
break;
case Kind::Value:
os << "Value";
break;
case Kind::ValueRange:
os << "ValueRange";
break;
}
}
//===----------------------------------------------------------------------===//
// PDLPatternModule
//===----------------------------------------------------------------------===//
void PDLPatternModule::mergeIn(PDLPatternModule &&other) {
// Ignore the other module if it has no patterns.
if (!other.pdlModule)
return;
// Steal the functions and config of the other module.
for (auto &it : other.constraintFunctions)
registerConstraintFunction(it.first(), std::move(it.second));
for (auto &it : other.rewriteFunctions)
registerRewriteFunction(it.first(), std::move(it.second));
for (auto &it : other.configs)
configs.emplace_back(std::move(it));
for (auto &it : other.configMap)
configMap.insert(it);
// Steal the other state if we have no patterns.
if (!pdlModule) {
pdlModule = std::move(other.pdlModule);
return;
}
// Merge the pattern operations from the other module into this one.
Block *block = pdlModule->getBody();
block->getOperations().splice(block->end(),
other.pdlModule->getBody()->getOperations());
}
void PDLPatternModule::attachConfigToPatterns(ModuleOp module,
PDLPatternConfigSet &configSet) {
// Attach the configuration to the symbols within the module. We only add
// to symbols to avoid hardcoding any specific operation names here (given
// that we don't depend on any PDL dialect). We can't use
// cast<SymbolOpInterface> here because patterns may be optional symbols.
module->walk([&](Operation *op) {
if (op->hasTrait<SymbolOpInterface::Trait>())
configMap[op] = &configSet;
});
}
//===----------------------------------------------------------------------===//
// Function Registry
void PDLPatternModule::registerConstraintFunction(
StringRef name, PDLConstraintFunction constraintFn) {
// TODO: Is it possible to diagnose when `name` is already registered to
// a function that is not equivalent to `constraintFn`?
// Allow existing mappings in the case multiple patterns depend on the same
// constraint.
constraintFunctions.try_emplace(name, std::move(constraintFn));
}
void PDLPatternModule::registerRewriteFunction(StringRef name,
PDLRewriteFunction rewriteFn) {
// TODO: Is it possible to diagnose when `name` is already registered to
// a function that is not equivalent to `rewriteFn`?
// Allow existing mappings in the case multiple patterns depend on the same
// rewrite.
rewriteFunctions.try_emplace(name, std::move(rewriteFn));
}

View File

@ -7,7 +7,6 @@
//===----------------------------------------------------------------------===//
#include "mlir/IR/PatternMatch.h"
#include "mlir/Config/mlir-config.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Iterators.h"
#include "mlir/IR/RegionKindInterface.h"
@ -98,6 +97,124 @@ LogicalResult RewritePattern::match(Operation *op) const {
/// Out-of-line vtable anchor.
void RewritePattern::anchor() {}
//===----------------------------------------------------------------------===//
// PDLValue
//===----------------------------------------------------------------------===//
void PDLValue::print(raw_ostream &os) const {
if (!value) {
os << "<NULL-PDLValue>";
return;
}
switch (kind) {
case Kind::Attribute:
os << cast<Attribute>();
break;
case Kind::Operation:
os << *cast<Operation *>();
break;
case Kind::Type:
os << cast<Type>();
break;
case Kind::TypeRange:
llvm::interleaveComma(cast<TypeRange>(), os);
break;
case Kind::Value:
os << cast<Value>();
break;
case Kind::ValueRange:
llvm::interleaveComma(cast<ValueRange>(), os);
break;
}
}
void PDLValue::print(raw_ostream &os, Kind kind) {
switch (kind) {
case Kind::Attribute:
os << "Attribute";
break;
case Kind::Operation:
os << "Operation";
break;
case Kind::Type:
os << "Type";
break;
case Kind::TypeRange:
os << "TypeRange";
break;
case Kind::Value:
os << "Value";
break;
case Kind::ValueRange:
os << "ValueRange";
break;
}
}
//===----------------------------------------------------------------------===//
// PDLPatternModule
//===----------------------------------------------------------------------===//
void PDLPatternModule::mergeIn(PDLPatternModule &&other) {
// Ignore the other module if it has no patterns.
if (!other.pdlModule)
return;
// Steal the functions and config of the other module.
for (auto &it : other.constraintFunctions)
registerConstraintFunction(it.first(), std::move(it.second));
for (auto &it : other.rewriteFunctions)
registerRewriteFunction(it.first(), std::move(it.second));
for (auto &it : other.configs)
configs.emplace_back(std::move(it));
for (auto &it : other.configMap)
configMap.insert(it);
// Steal the other state if we have no patterns.
if (!pdlModule) {
pdlModule = std::move(other.pdlModule);
return;
}
// Merge the pattern operations from the other module into this one.
Block *block = pdlModule->getBody();
block->getOperations().splice(block->end(),
other.pdlModule->getBody()->getOperations());
}
void PDLPatternModule::attachConfigToPatterns(ModuleOp module,
PDLPatternConfigSet &configSet) {
// Attach the configuration to the symbols within the module. We only add
// to symbols to avoid hardcoding any specific operation names here (given
// that we don't depend on any PDL dialect). We can't use
// cast<SymbolOpInterface> here because patterns may be optional symbols.
module->walk([&](Operation *op) {
if (op->hasTrait<SymbolOpInterface::Trait>())
configMap[op] = &configSet;
});
}
//===----------------------------------------------------------------------===//
// Function Registry
void PDLPatternModule::registerConstraintFunction(
StringRef name, PDLConstraintFunction constraintFn) {
// TODO: Is it possible to diagnose when `name` is already registered to
// a function that is not equivalent to `constraintFn`?
// Allow existing mappings in the case multiple patterns depend on the same
// constraint.
constraintFunctions.try_emplace(name, std::move(constraintFn));
}
void PDLPatternModule::registerRewriteFunction(StringRef name,
PDLRewriteFunction rewriteFn) {
// TODO: Is it possible to diagnose when `name` is already registered to
// a function that is not equivalent to `rewriteFn`?
// Allow existing mappings in the case multiple patterns depend on the same
// rewrite.
rewriteFunctions.try_emplace(name, std::move(rewriteFn));
}
//===----------------------------------------------------------------------===//
// RewriterBase
//===----------------------------------------------------------------------===//

View File

@ -16,8 +16,6 @@
#include "mlir/IR/PatternMatch.h"
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
namespace mlir {
namespace pdl_interp {
class RecordMatchOp;
@ -226,38 +224,4 @@ private:
} // namespace detail
} // namespace mlir
#else
namespace mlir::detail {
class PDLByteCodeMutableState {
public:
void cleanupAfterMatchAndRewrite() {}
void updatePatternBenefit(unsigned patternIndex, PatternBenefit benefit) {}
};
class PDLByteCodePattern : public Pattern {};
class PDLByteCode {
public:
struct MatchResult {
const PDLByteCodePattern *pattern = nullptr;
PatternBenefit benefit;
};
void initializeMutableState(PDLByteCodeMutableState &state) const {}
void match(Operation *op, PatternRewriter &rewriter,
SmallVectorImpl<MatchResult> &matches,
PDLByteCodeMutableState &state) const {}
LogicalResult rewrite(PatternRewriter &rewriter, const MatchResult &match,
PDLByteCodeMutableState &state) const {
return failure();
}
ArrayRef<PDLByteCodePattern> getPatterns() const { return {}; }
};
} // namespace mlir::detail
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
#endif // MLIR_REWRITE_BYTECODE_H_

View File

@ -1,6 +1,5 @@
set(LLVM_OPTIONAL_SOURCES ByteCode.cpp)
add_mlir_library(MLIRRewrite
ByteCode.cpp
FrozenRewritePatternSet.cpp
PatternApplicator.cpp
@ -12,31 +11,8 @@ add_mlir_library(MLIRRewrite
LINK_LIBS PUBLIC
MLIRIR
MLIRPDLDialect
MLIRPDLInterpDialect
MLIRPDLToPDLInterp
MLIRSideEffectInterfaces
)
if(MLIR_ENABLE_PDL_IN_PATTERNMATCH)
add_mlir_library(MLIRRewritePDL
ByteCode.cpp
ADDITIONAL_HEADER_DIRS
${MLIR_MAIN_INCLUDE_DIR}/mlir/Rewrite
DEPENDS
mlir-generic-headers
LINK_LIBS PUBLIC
MLIRIR
MLIRPDLDialect
MLIRPDLInterpDialect
MLIRPDLToPDLInterp
MLIRSideEffectInterfaces
)
target_link_libraries(MLIRRewrite PUBLIC
MLIRPDLDialect
MLIRPDLInterpDialect
MLIRPDLToPDLInterp
MLIRRewritePDL)
endif()

View File

@ -8,6 +8,8 @@
#include "mlir/Rewrite/FrozenRewritePatternSet.h"
#include "ByteCode.h"
#include "mlir/Conversion/PDLToPDLInterp/PDLToPDLInterp.h"
#include "mlir/Dialect/PDL/IR/PDLOps.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
@ -15,11 +17,6 @@
using namespace mlir;
// Include the PDL rewrite support.
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
#include "mlir/Conversion/PDLToPDLInterp/PDLToPDLInterp.h"
#include "mlir/Dialect/PDL/IR/PDLOps.h"
static LogicalResult
convertPDLToPDLInterp(ModuleOp pdlModule,
DenseMap<Operation *, PDLPatternConfigSet *> &configMap) {
@ -51,7 +48,6 @@ convertPDLToPDLInterp(ModuleOp pdlModule,
pdlModule.getBody()->walk(simplifyFn);
return success();
}
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// FrozenRewritePatternSet
@ -125,7 +121,6 @@ FrozenRewritePatternSet::FrozenRewritePatternSet(
impl->nativeAnyOpPatterns.push_back(std::move(pat));
}
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
// Generate the bytecode for the PDL patterns if any were provided.
PDLPatternModule &pdlPatterns = patterns.getPDLPatterns();
ModuleOp pdlModule = pdlPatterns.getModule();
@ -142,7 +137,6 @@ FrozenRewritePatternSet::FrozenRewritePatternSet(
pdlModule, pdlPatterns.takeConfigs(), configMap,
pdlPatterns.takeConstraintFunctions(),
pdlPatterns.takeRewriteFunctions());
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
}
FrozenRewritePatternSet::~FrozenRewritePatternSet() = default;

View File

@ -152,6 +152,7 @@ LogicalResult PatternApplicator::matchAndRewrite(
// Find the next pattern with the highest benefit.
const Pattern *bestPattern = nullptr;
unsigned *bestPatternIt = &opIt;
const PDLByteCode::MatchResult *pdlMatch = nullptr;
/// Operation specific patterns.
if (opIt < opE)
@ -163,8 +164,6 @@ LogicalResult PatternApplicator::matchAndRewrite(
bestPatternIt = &anyIt;
bestPattern = anyOpPatterns[anyIt];
}
const PDLByteCode::MatchResult *pdlMatch = nullptr;
/// PDL patterns.
if (pdlIt < pdlE && (!bestPattern || bestPattern->getBenefit() <
pdlMatches[pdlIt].benefit)) {
@ -172,7 +171,6 @@ LogicalResult PatternApplicator::matchAndRewrite(
pdlMatch = &pdlMatches[pdlIt];
bestPattern = pdlMatch->pattern;
}
if (!bestPattern)
break;

View File

@ -7,7 +7,6 @@
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Config/mlir-config.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
@ -3313,7 +3312,6 @@ auto ConversionTarget::getOpInfo(OperationName op) const
return std::nullopt;
}
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// PDL Configuration
//===----------------------------------------------------------------------===//
@ -3384,7 +3382,6 @@ void mlir::registerConversionPDLFunctions(RewritePatternSet &patterns) {
return std::move(remappedTypes);
});
}
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// Op Conversion Entry Points

View File

@ -97,13 +97,16 @@ set(MLIR_TEST_DEPENDS
mlir-capi-ir-test
mlir-capi-llvm-test
mlir-capi-pass-test
mlir-capi-pdl-test
mlir-capi-quant-test
mlir-capi-sparse-tensor-test
mlir-capi-transform-test
mlir-capi-translation-test
mlir-linalg-ods-yaml-gen
mlir-lsp-server
mlir-pdll-lsp-server
mlir-opt
mlir-pdll
mlir-query
mlir-reduce
mlir-tblgen
@ -112,12 +115,6 @@ set(MLIR_TEST_DEPENDS
tblgen-to-irdl
)
set(MLIR_TEST_DEPENDS ${MLIR_TEST_DEPENDS}
mlir-capi-pdl-test
mlir-pdll-lsp-server
mlir-pdll
)
# The native target may not be enabled, in this case we won't
# run tests that involves executing on the host: do not build
# useless binaries.
@ -162,10 +159,9 @@ if(LLVM_BUILD_EXAMPLES)
toyc-ch3
toyc-ch4
toyc-ch5
)
list(APPEND MLIR_TEST_DEPENDS
transform-opt-ch2
transform-opt-ch3
mlir-minimal-opt
)
if(MLIR_ENABLE_EXECUTION_ENGINE)
list(APPEND MLIR_TEST_DEPENDS

View File

@ -1,8 +1,3 @@
set(LLVM_OPTIONAL_SOURCES
TestDialectConversion.cpp)
set(MLIRTestTransformsPDLDep)
set(MLIRTestTransformsPDLSrc)
if(MLIR_ENABLE_PDL_IN_PATTERNMATCH)
add_mlir_pdll_library(MLIRTestDialectConversionPDLLPatternsIncGen
TestDialectConversion.pdll
TestDialectConversionPDLLPatterns.h.inc
@ -11,22 +6,17 @@ add_mlir_pdll_library(MLIRTestDialectConversionPDLLPatternsIncGen
${CMAKE_CURRENT_SOURCE_DIR}/../Dialect/Test
${CMAKE_CURRENT_BINARY_DIR}/../Dialect/Test
)
set(MLIRTestTransformsPDLSrc
TestDialectConversion.cpp)
set(MLIRTestTransformsPDLDep
MLIRTestDialectConversionPDLLPatternsIncGen)
endif()
# Exclude tests from libMLIR.so
add_mlir_library(MLIRTestTransforms
TestCommutativityUtils.cpp
TestConstantFold.cpp
TestControlFlowSink.cpp
TestDialectConversion.cpp
TestInlining.cpp
TestIntRangeInference.cpp
TestMakeIsolatedFromAbove.cpp
TestTopologicalSort.cpp
${MLIRTestTransformsPDLSrc}
EXCLUDE_FROM_LIBMLIR
@ -34,7 +24,7 @@ add_mlir_library(MLIRTestTransforms
${MLIR_MAIN_INCLUDE_DIR}/mlir/Transforms
DEPENDS
${MLIRTestTransformsPDLDep}
MLIRTestDialectConversionPDLLPatternsIncGen
LINK_LIBS PUBLIC
MLIRAnalysis

View File

@ -21,12 +21,10 @@ if(MLIR_INCLUDE_TESTS)
MLIRTestIR
MLIRTestPass
MLIRTestReducer
)
set(test_libs
${test_libs}
MLIRTestRewrite
MLIRTestTransformDialect
MLIRTestTransforms)
MLIRTestTransforms
)
endif()
set(LIBS

View File

@ -38,18 +38,16 @@ if(MLIR_INCLUDE_TESTS)
MLIRTestIR
MLIRTestOneToNTypeConversionPass
MLIRTestPass
MLIRTestPDLL
MLIRTestReducer
MLIRTestRewrite
MLIRTestTransformDialect
MLIRTestTransforms
MLIRTilingInterfaceTestPasses
MLIRVectorTestPasses
MLIRTestVectorToSPIRV
MLIRLLVMTestPasses
)
set(test_libs ${test_libs}
MLIRTestPDLL
MLIRTestRewrite
MLIRTestTransformDialect
)
endif()
set(LIBS

View File

@ -85,9 +85,7 @@ void registerTestDataLayoutQuery();
void registerTestDeadCodeAnalysisPass();
void registerTestDecomposeCallGraphTypes();
void registerTestDiagnosticsPass();
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
void registerTestDialectConversionPasses();
#endif
void registerTestDominancePass();
void registerTestDynamicPipelinePass();
void registerTestEmulateNarrowTypePass();
@ -149,8 +147,8 @@ void registerTestNvgpuLowerings();
namespace test {
void registerTestDialect(DialectRegistry &);
void registerTestDynDialect(DialectRegistry &);
void registerTestTransformDialectExtension(DialectRegistry &);
void registerTestDynDialect(DialectRegistry &);
} // namespace test
#ifdef MLIR_INCLUDE_TESTS
@ -262,9 +260,6 @@ void registerTestPasses() {
mlir::test::registerTestVectorReductionToSPIRVDotProd();
mlir::test::registerTestNvgpuLowerings();
mlir::test::registerTestWrittenToPass();
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
mlir::test::registerTestDialectConversionPasses();
#endif
}
#endif

View File

@ -35,7 +35,6 @@ expand_template(
substitutions = {
"#cmakedefine01 MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS": "#define MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS 0",
"#cmakedefine MLIR_GREEDY_REWRITE_RANDOMIZER_SEED ${MLIR_GREEDY_REWRITE_RANDOMIZER_SEED}": "/* #undef MLIR_GREEDY_REWRITE_RANDOMIZER_SEED */",
"#cmakedefine01 MLIR_ENABLE_PDL_IN_PATTERNMATCH": "#define MLIR_ENABLE_PDL_IN_PATTERNMATCH 1",
},
template = "include/mlir/Config/mlir-config.h.cmake",
)
@ -319,13 +318,11 @@ cc_library(
srcs = glob([
"lib/IR/*.cpp",
"lib/IR/*.h",
"lib/IR/PDL/*.cpp",
"lib/Bytecode/Reader/*.h",
"lib/Bytecode/Writer/*.h",
"lib/Bytecode/*.h",
]) + [
"lib/Bytecode/BytecodeOpInterface.cpp",
"include/mlir/IR/PDLPatternMatch.h.inc",
],
hdrs = glob([
"include/mlir/IR/*.h",
@ -348,7 +345,6 @@ cc_library(
":BuiltinTypesIncGen",
":BytecodeOpInterfaceIncGen",
":CallOpInterfacesIncGen",
":config",
":DataLayoutInterfacesIncGen",
":InferTypeOpInterfaceIncGen",
":OpAsmInterfaceIncGen",