mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-11-27 07:31:28 +00:00
[mlir][Linalg] Refactor padding hoisting - NFC
This revision extracts padding hoisting in a new file and cleans it up in prevision of future improvements and extensions. Differential Revision: https://reviews.llvm.org/D110414
This commit is contained in:
parent
468ff703e1
commit
b74493ecea
65
mlir/include/mlir/Dialect/Linalg/Transforms/HoistPadding.h
Normal file
65
mlir/include/mlir/Dialect/Linalg/Transforms/HoistPadding.h
Normal file
@ -0,0 +1,65 @@
|
||||
//===- HoistPadding.h - Hoisting transformation for PadTensorOp -*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef MLIR_DIALECT_LINALG_TRANSFORMS_HOIST_PADDING_H_
|
||||
#define MLIR_DIALECT_LINALG_TRANSFORMS_HOIST_PADDING_H_
|
||||
|
||||
namespace mlir {
|
||||
struct LogicalResult;
|
||||
|
||||
namespace linalg {
|
||||
class PadTensorOp;
|
||||
|
||||
/// Mechanically hoist padding operations on tensors by `nLoops` into a new,
|
||||
/// generally larger tensor. This achieves packing of multiple padding ops into
|
||||
/// a larger tensor. On success, `padTensorOp` is replaced by the cloned version
|
||||
/// in the packing loop so the caller can continue reasoning about the padding
|
||||
/// operation.
|
||||
///
|
||||
/// Example in pseudo-mlir:
|
||||
/// =======================
|
||||
///
|
||||
/// If hoistPaddingOnTensors is called with `nLoops` = 2 on the following IR.
|
||||
/// ```
|
||||
/// scf.for (%i, %j, %k)
|
||||
/// %st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
|
||||
/// %0 = linalg.pad_tensor %st0 low[0, 0] high[...] {
|
||||
/// ^bb0( ... ):
|
||||
/// linalg.yield %pad
|
||||
/// } : tensor<?x?xf32> to tensor<4x8xf32>
|
||||
/// compute(%0)
|
||||
/// ```
|
||||
///
|
||||
/// IR resembling the following is produced:
|
||||
///
|
||||
/// ```
|
||||
/// scf.for (%i) {
|
||||
/// %packed_init = linalg.init_tensor range(%j) : tensor<?x4x8xf32>
|
||||
/// %packed = scf.for (%k) iter_args(%p : %packed_init) {
|
||||
/// %st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
|
||||
/// %0 = linalg.pad_tensor %st0 low[0, 0] high[...] {
|
||||
/// ^bb0( ... ):
|
||||
/// linalg.yield %pad
|
||||
/// } : tensor<?x?xf32> to tensor<4x8xf32>
|
||||
/// %1 = tensor.insert_slice %0 ...
|
||||
/// : tensor<4x8xf32> to tensor<?x4x8xf32>
|
||||
/// scf.yield %1: tensor<?x4x8xf32>
|
||||
/// } -> tensor<?x4x8xf32>
|
||||
/// scf.for (%j, %k) {
|
||||
/// %st0 = tensor.extract_slice %packed [%k, 0, 0][1, 4, 8][1, 1, 1] :
|
||||
/// tensor<?x4x8xf32> to tensor<4x8xf32>
|
||||
/// compute(%st0)
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
LogicalResult hoistPaddingOnTensors(PadTensorOp &padTensorOp, int nLoops);
|
||||
|
||||
} // namespace linalg
|
||||
} // namespace mlir
|
||||
|
||||
#endif // MLIR_DIALECT_LINALG_TRANSFORMS_HOIST_PADDING_H_
|
@ -11,10 +11,8 @@
|
||||
|
||||
namespace mlir {
|
||||
class FuncOp;
|
||||
struct LogicalResult;
|
||||
|
||||
namespace linalg {
|
||||
class PadTensorOp;
|
||||
|
||||
/// Hoist vector.transfer_read/vector.transfer_write on buffers pairs out of
|
||||
/// immediately enclosing scf::ForOp iteratively, if the following conditions
|
||||
@ -35,50 +33,6 @@ void hoistRedundantVectorTransfers(FuncOp func);
|
||||
/// instead of buffers.
|
||||
void hoistRedundantVectorTransfersOnTensor(FuncOp func);
|
||||
|
||||
/// Mechanically hoist padding operations on tensors by `nLoops` into a new,
|
||||
/// generally larger tensor. This achieves packing of multiple padding ops into
|
||||
/// a larger tensor. On success, `padTensorOp` is replaced by the cloned version
|
||||
/// in the packing loop so the caller can continue reasoning about the padding
|
||||
/// operation.
|
||||
///
|
||||
/// Example in pseudo-mlir:
|
||||
/// =======================
|
||||
///
|
||||
/// If hoistPaddingOnTensors is called with `nLoops` = 2 on the following IR.
|
||||
/// ```
|
||||
/// scf.for (%i, %j, %k)
|
||||
/// %st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
|
||||
/// %0 = linalg.pad_tensor %st0 low[0, 0] high[...] {
|
||||
/// ^bb0( ... ):
|
||||
/// linalg.yield %pad
|
||||
/// } : tensor<?x?xf32> to tensor<4x8xf32>
|
||||
/// compute(%0)
|
||||
/// ```
|
||||
///
|
||||
/// IR resembling the following is produced:
|
||||
///
|
||||
/// ```
|
||||
/// scf.for (%i) {
|
||||
/// %packed_init = linalg.init_tensor range(%j) : tensor<?x4x8xf32>
|
||||
/// %packed = scf.for (%k) iter_args(%p : %packed_init) {
|
||||
/// %st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
|
||||
/// %0 = linalg.pad_tensor %st0 low[0, 0] high[...] {
|
||||
/// ^bb0( ... ):
|
||||
/// linalg.yield %pad
|
||||
/// } : tensor<?x?xf32> to tensor<4x8xf32>
|
||||
/// %1 = tensor.insert_slice %0 ...
|
||||
/// : tensor<4x8xf32> to tensor<?x4x8xf32>
|
||||
/// scf.yield %1: tensor<?x4x8xf32>
|
||||
/// } -> tensor<?x4x8xf32>
|
||||
/// scf.for (%j, %k) {
|
||||
/// %st0 = tensor.extract_slice %packed [%k, 0, 0][1, 4, 8][1, 1, 1] :
|
||||
/// tensor<?x4x8xf32> to tensor<4x8xf32>
|
||||
/// compute(%st0)
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
LogicalResult hoistPaddingOnTensors(PadTensorOp &padTensorOp, unsigned nLoops);
|
||||
|
||||
} // namespace linalg
|
||||
} // namespace mlir
|
||||
|
||||
|
@ -11,6 +11,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
|
||||
FusionOnTensors.cpp
|
||||
Generalization.cpp
|
||||
Hoisting.cpp
|
||||
HoistPadding.cpp
|
||||
InlineScalarOperands.cpp
|
||||
Interchange.cpp
|
||||
Loops.cpp
|
||||
|
562
mlir/lib/Dialect/Linalg/Transforms/HoistPadding.cpp
Normal file
562
mlir/lib/Dialect/Linalg/Transforms/HoistPadding.cpp
Normal file
@ -0,0 +1,562 @@
|
||||
//===- HoistPadding.cpp - Hoisting transformation for PadTensorOp ---------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements functions concerned with hoisting padding operations.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
|
||||
#include "mlir/Analysis/AffineStructures.h"
|
||||
#include "mlir/Analysis/SliceAnalysis.h"
|
||||
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
|
||||
#include "mlir/Dialect/Affine/Utils.h"
|
||||
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
||||
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
||||
#include "mlir/Dialect/SCF/SCF.h"
|
||||
#include "mlir/Dialect/SCF/Utils.h"
|
||||
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||||
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||||
#include "mlir/Dialect/Vector/VectorOps.h"
|
||||
#include "mlir/Dialect/Vector/VectorUtils.h"
|
||||
#include "mlir/IR/AsmState.h"
|
||||
#include "mlir/IR/BuiltinOps.h"
|
||||
#include "mlir/IR/Dominance.h"
|
||||
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
||||
#include "mlir/Transforms/LoopUtils.h"
|
||||
#include "llvm/ADT/StringRef.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
|
||||
using llvm::dbgs;
|
||||
|
||||
#define DEBUG_TYPE "hoist-padding"
|
||||
|
||||
#define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::linalg;
|
||||
|
||||
/// Analysis class to support PadTensorOp hoisting across multiple enclosing
|
||||
/// loops. The failure conditions are:
|
||||
/// 1. Pad op has a use that is not an input of a LinalgOp.
|
||||
/// 2. There is no immediately enclosing scf::ForOp.
|
||||
/// 3. The backward slice from the pad op to the scf::ForOp to hoist above
|
||||
/// contains
|
||||
/// an unknown op with a region.
|
||||
/// 4. The backward slice from the pad op to the scf::ForOp to hoist above is
|
||||
/// empty.
|
||||
/// Other cases succeed and will trigger hoisting of the pad op.
|
||||
struct HoistingAnalysis {
|
||||
HoistingAnalysis(PadTensorOp padTensorOp, int nLevels);
|
||||
|
||||
bool isValid() { return valid; }
|
||||
|
||||
/// Footprint of the packedTensor, computed from the packingLoops and
|
||||
/// `backwardSlice`.
|
||||
FailureOr<SmallVector<Value>> getPackedTensorSizes(ImplicitLocOpBuilder &b);
|
||||
|
||||
/// The padTensorOp that needs to be hoisted.
|
||||
PadTensorOp padTensorOp;
|
||||
|
||||
/// The maximum number of immediately enclosing scf::ForOp to hoist over.
|
||||
int nLevels;
|
||||
|
||||
/// The outermost loop, determined by `nLevels` above which `padTensorOp` will
|
||||
/// be hoisted.
|
||||
scf::ForOp outermostEnclosingForOp;
|
||||
|
||||
/// Backward slice rooted at `padTensorOp` and nested under
|
||||
/// `outermostEnclosingForOp`.
|
||||
SetVector<Operation *> backwardSlice;
|
||||
|
||||
/// The scf::ForOp immediately enclosing `padTensorOp` such that:
|
||||
/// 1. they are nested under `outermostEnclosingForOp` (inclusive)
|
||||
/// 2. whose induction variable is used, directly or indirectly, in the
|
||||
/// computation of `padTensorOp`.
|
||||
/// The span of these loops determines the footprint of the packed tensor.
|
||||
/// SmallSetVector<scf::ForOp> packingLoops;
|
||||
SetVector<scf::ForOp, SmallVector<scf::ForOp>, DenseSet<Operation *>>
|
||||
packingLoops;
|
||||
|
||||
private:
|
||||
/// Encodes whether the analysis is valid and hoisting can proceed.
|
||||
bool valid;
|
||||
};
|
||||
|
||||
/// Return true if all uses of `padTensorOp` are an input tensor of some
|
||||
/// LinalgOp.
|
||||
static bool isOnlyUsedAsInputOfLinalgOp(PadTensorOp padTensorOp) {
|
||||
for (OpOperand &use : padTensorOp.result().getUses()) {
|
||||
auto linalgUser = dyn_cast<linalg::LinalgOp>(use.getOwner());
|
||||
if (!linalgUser || !linalgUser.isInputTensor(&use)) {
|
||||
LLVM_DEBUG(DBGS() << "Found a use of " << *(padTensorOp)
|
||||
<< "\nthat is not an input tensor of a LinalgOp, "
|
||||
<< "cannot hoist\n"
|
||||
<< *(use.getOwner()) << "\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Return at most nLevels of immediately enclosing scf::ForOp loops.
|
||||
/// Stops at the first parent that is not an scf::ForOp.
|
||||
/// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm.
|
||||
/// Control-flow and other containing ops with regions are not modeled atm.
|
||||
static void
|
||||
getAtMostNEnclosingLoops(PadTensorOp padTensorOp, int nLevels,
|
||||
SmallVector<scf::ForOp> &reverseEnclosingLoops) {
|
||||
AsmState state(padTensorOp->getParentOfType<mlir::FuncOp>());
|
||||
(void)state;
|
||||
scf::ForOp outermostEnclosingForOp = nullptr;
|
||||
Operation *nextEnclosingOp = padTensorOp->getParentOp();
|
||||
while (nLevels-- > 0 &&
|
||||
(outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) {
|
||||
LLVM_DEBUG(
|
||||
DBGS() << "loops: ";
|
||||
outermostEnclosingForOp.getInductionVar().printAsOperand(dbgs(), state);
|
||||
dbgs() << "\n");
|
||||
reverseEnclosingLoops.push_back(outermostEnclosingForOp);
|
||||
nextEnclosingOp = outermostEnclosingForOp->getParentOp();
|
||||
}
|
||||
}
|
||||
|
||||
HoistingAnalysis::HoistingAnalysis(PadTensorOp padTensorOp, int nLevels)
|
||||
: padTensorOp(padTensorOp), nLevels(nLevels), valid(false) {
|
||||
AsmState state(padTensorOp->getParentOfType<mlir::FuncOp>());
|
||||
(void)state;
|
||||
|
||||
// Bail on any use that isn't an input of a Linalg op.
|
||||
// Hoisting of inplace updates happens after vectorization.
|
||||
if (!isOnlyUsedAsInputOfLinalgOp(padTensorOp))
|
||||
return;
|
||||
|
||||
// Get at most nLevels of immediately enclosing loops.
|
||||
SmallVector<scf::ForOp> reverseEnclosingLoops;
|
||||
getAtMostNEnclosingLoops(padTensorOp, nLevels, reverseEnclosingLoops);
|
||||
if (reverseEnclosingLoops.empty()) {
|
||||
LLVM_DEBUG(DBGS() << "No immediately enclosing loop -> skip\n");
|
||||
return;
|
||||
}
|
||||
|
||||
outermostEnclosingForOp = reverseEnclosingLoops.back();
|
||||
|
||||
// Get all the ops in the backwards slice starting from `padTensorOp` and that
|
||||
// are dominated by the outermost enclosing loop.
|
||||
// Bail on any op with a region that is not either a scf::ForOp or a LinalgOp.
|
||||
bool analysisFailure = false;
|
||||
DominanceInfo domInfo(outermostEnclosingForOp);
|
||||
getBackwardSlice(
|
||||
padTensorOp.getOperation(), &backwardSlice, [&](Operation *op) {
|
||||
if (!domInfo.dominates(outermostEnclosingForOp, op))
|
||||
return false;
|
||||
if (op != padTensorOp && op->getNumRegions() > 0 &&
|
||||
!isa<scf::ForOp, LinalgOp>(op)) {
|
||||
analysisFailure = true;
|
||||
LLVM_DEBUG(DBGS()
|
||||
<< "Unsupported op with region: " << *op << " -> skip\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
});
|
||||
|
||||
if (analysisFailure || backwardSlice.empty())
|
||||
return;
|
||||
|
||||
// Backward slice is a topologically sorted list of ops starting at
|
||||
// `outermostEnclosingForOp`.
|
||||
assert(outermostEnclosingForOp == backwardSlice.front());
|
||||
|
||||
// Filter out the loops whose induction variable is not used to compute the
|
||||
// padded result. As a first approximation, just look for IVs that have no use
|
||||
// in the backwardSlice.
|
||||
// These are the dimensions of reuse that we can exploit to reduce the amount
|
||||
// of copy / memory.
|
||||
for (scf::ForOp forOp : llvm::reverse(reverseEnclosingLoops)) {
|
||||
for (Operation *user : forOp.getInductionVar().getUsers()) {
|
||||
if (backwardSlice.contains(user)) {
|
||||
packingLoops.insert(forOp);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The analysis is valid and hoisting can occur.
|
||||
valid = true;
|
||||
}
|
||||
|
||||
/// Given a set of loops, assumed to be scf::ForOp, create a constraint set
|
||||
/// containing the inequalities `iv - lb >= 0` and `-iv + ub - 1 >= 0` for each
|
||||
/// loop. The order of the constraints follows:
|
||||
///
|
||||
/// ivs | lbs | ubs | eq/ineq
|
||||
/// ----+-----+-----+---------
|
||||
/// 1 -1 0 >= 0
|
||||
/// ----+-----+-----+---------
|
||||
/// -1 0 1 >= 0
|
||||
///
|
||||
static FlatAffineValueConstraints
|
||||
initLoopIvsAndBounds(ArrayRef<scf::ForOp> loops) {
|
||||
FlatAffineValueConstraints constraints;
|
||||
// Append dims for all ivs, lbs, ubs: the order is important.
|
||||
for (scf::ForOp op : loops)
|
||||
constraints.appendDimId(op.getInductionVar());
|
||||
for (scf::ForOp op : loops)
|
||||
constraints.appendDimId(op.lowerBound());
|
||||
for (scf::ForOp op : loops)
|
||||
constraints.appendDimId(op.upperBound());
|
||||
int numLoops = loops.size();
|
||||
for (int ivIdx = 0, e = numLoops; ivIdx < e; ++ivIdx) {
|
||||
// iv - lb >= 0
|
||||
SmallVector<int64_t, 8> ineqLb(constraints.getNumCols(), 0);
|
||||
ineqLb[ivIdx] = 1;
|
||||
ineqLb[ivIdx + numLoops] = -1;
|
||||
// -iv + ub >= 0
|
||||
SmallVector<int64_t, 8> ineqUb(constraints.getNumCols(), 0);
|
||||
ineqUb[ivIdx] = -1;
|
||||
ineqUb[ivIdx + 2 * numLoops] = 1;
|
||||
ineqUb[constraints.getNumCols() - 1] = -1;
|
||||
constraints.addInequality(ineqLb);
|
||||
constraints.addInequality(ineqUb);
|
||||
}
|
||||
return constraints;
|
||||
}
|
||||
|
||||
static bool isDefinedOutsideOrConstant(scf::ForOp outer, Value v) {
|
||||
return outer.isDefinedOutsideOfLoop(v) || v.getDefiningOp<ConstantOp>();
|
||||
}
|
||||
|
||||
/// For each loop in `loops`, determine the ops involved in the construction of
|
||||
/// its upper bound---up to the outerLimit loop--- and fold them as new
|
||||
/// inequalities in the constraint set.
|
||||
/// This is achieved by computing the backwardSlice of the loop's upper bound
|
||||
/// and iteratively folding each op in reverse topological order to guarantee
|
||||
/// use-def ordering.
|
||||
/// As operations are folded in, their result is projected out of the
|
||||
/// constraints set.
|
||||
/// The following operations are supported:
|
||||
/// - scf::ForOp are simply skipped.
|
||||
/// - AffineApplyOp are composed to replace the result by an equality.
|
||||
/// - AffineMinOp are composed by adding each entry as an upper bound.
|
||||
/// If any other operation is met, return failure.
|
||||
// TODO: extend on a per-need basis.
|
||||
static LogicalResult
|
||||
foldUpperBoundsIntoConstraintsSet(FlatAffineValueConstraints &constraints,
|
||||
scf::ForOp outerLimit,
|
||||
ArrayRef<scf::ForOp> loops) {
|
||||
SetVector<Value> toProjectOut;
|
||||
for (scf::ForOp loop : loops) {
|
||||
auto ub = loop.upperBound();
|
||||
if (isDefinedOutsideOrConstant(outerLimit, ub))
|
||||
continue;
|
||||
|
||||
// Compute a backward slice up to, but not including, `outerLimit`.
|
||||
SetVector<Operation *> backwardSlice;
|
||||
getBackwardSlice(ub, &backwardSlice, [&](Operation *op) {
|
||||
return outerLimit->isProperAncestor(op);
|
||||
});
|
||||
backwardSlice.insert(ub.getDefiningOp());
|
||||
|
||||
// Iterate over all ops in the slice and compose them in the constraints.
|
||||
for (Operation *op : llvm::reverse(backwardSlice)) {
|
||||
if (!isa<scf::ForOp, AffineApplyOp, AffineMinOp>(op))
|
||||
return failure();
|
||||
if (isa<scf::ForOp>(op))
|
||||
continue;
|
||||
// Ensure there is a
|
||||
auto ensureIdFailed = [&](Value v) {
|
||||
if (constraints.containsId(v)) {
|
||||
unsigned pos;
|
||||
constraints.findId(v, &pos);
|
||||
return pos >= constraints.getNumDimIds();
|
||||
}
|
||||
constraints.appendDimId(v);
|
||||
return false;
|
||||
};
|
||||
|
||||
// Ensure all ids exist and add results for later projection.
|
||||
if (llvm::any_of(op->getResults(), ensureIdFailed) ||
|
||||
llvm::any_of(op->getOperands(), ensureIdFailed))
|
||||
return failure();
|
||||
|
||||
// All supported ops have 1 result.
|
||||
// TODO: extend when needed.
|
||||
toProjectOut.insert(op->getResult(0));
|
||||
|
||||
// Compose supported ops.
|
||||
if (auto affineApplyOp = dyn_cast<AffineApplyOp>(op)) {
|
||||
AffineValueMap avm(affineApplyOp.getAffineMap(),
|
||||
affineApplyOp.getOperands(),
|
||||
affineApplyOp.getResult());
|
||||
if (failed(constraints.composeMap(&avm)))
|
||||
return failure();
|
||||
continue;
|
||||
}
|
||||
auto affineMinOp = cast<AffineMinOp>(op);
|
||||
unsigned pos;
|
||||
bool foundMinOp = constraints.findId(affineMinOp.getResult(), &pos);
|
||||
(void)foundMinOp;
|
||||
assert(foundMinOp);
|
||||
AffineMap alignedMap = constraints.computeAlignedMap(
|
||||
affineMinOp.getAffineMap(), affineMinOp.getOperands());
|
||||
if (failed(
|
||||
constraints.addBound(FlatAffineConstraints::UB, pos, alignedMap)))
|
||||
return failure();
|
||||
}
|
||||
}
|
||||
for (Value v : toProjectOut)
|
||||
constraints.projectOut(v);
|
||||
return success();
|
||||
}
|
||||
|
||||
// Footprint of the packedTensor, computed from the packingLoops and
|
||||
// `backwardSlice`.
|
||||
FailureOr<SmallVector<Value>>
|
||||
HoistingAnalysis::getPackedTensorSizes(ImplicitLocOpBuilder &b) {
|
||||
FlatAffineValueConstraints constraints =
|
||||
initLoopIvsAndBounds(packingLoops.getArrayRef());
|
||||
if (failed(foldUpperBoundsIntoConstraintsSet(
|
||||
constraints, outermostEnclosingForOp, packingLoops.getArrayRef())))
|
||||
return failure();
|
||||
|
||||
int nPackedLoops = packingLoops.size();
|
||||
SmallVector<AffineMap> lbs(nPackedLoops), ubs(nPackedLoops);
|
||||
// Compute the bounds of the first positions, assuming the others are fixed.
|
||||
constraints.getSliceBounds(/*pos=*/0, /*num=*/nPackedLoops,
|
||||
outermostEnclosingForOp->getContext(), &lbs, &ubs);
|
||||
|
||||
SmallVector<Value> allValues;
|
||||
constraints.getAllValues(&allValues);
|
||||
SmallVector<Value> allNonLoopValues(allValues.begin() + nPackedLoops,
|
||||
allValues.end());
|
||||
|
||||
// For each packingLoop, create the extent by (ub - lb).ceilDiv(step).
|
||||
// IP just before the outermost loop considered that we hoist above.
|
||||
assert(nPackedLoops == static_cast<int64_t>(lbs.size()) &&
|
||||
"expected matching lb sizes");
|
||||
assert(nPackedLoops == static_cast<int64_t>(ubs.size()) &&
|
||||
"expected matching ub sizes");
|
||||
SmallVector<Value> dynamicTensorSizes;
|
||||
for (auto it : llvm::zip(packingLoops, lbs, ubs)) {
|
||||
scf::ForOp loop = std::get<0>(it);
|
||||
AffineMap lbMap = std::get<1>(it);
|
||||
AffineMap ubMap = std::get<2>(it);
|
||||
SmallVector<Value> lbOperands(allNonLoopValues);
|
||||
canonicalizeMapAndOperands(&lbMap, &lbOperands);
|
||||
Value lbVal = b.createOrFold<AffineMaxOp>(lbMap, lbOperands);
|
||||
|
||||
SmallVector<Value> ubOperands(allNonLoopValues);
|
||||
canonicalizeMapAndOperands(&ubMap, &ubOperands);
|
||||
Value ubVal = b.createOrFold<AffineMinOp>(ubMap, ubOperands);
|
||||
|
||||
AffineExpr lb, ub, step;
|
||||
bindDims(b.getContext(), lb, ub);
|
||||
bindSymbols(b.getContext(), step);
|
||||
Value res = b.createOrFold<AffineApplyOp>(
|
||||
(ub - lb).ceilDiv(step),
|
||||
ValueRange{lbVal, ubVal, cast<scf::ForOp>(loop).step()});
|
||||
|
||||
dynamicTensorSizes.push_back(res);
|
||||
}
|
||||
return dynamicTensorSizes;
|
||||
}
|
||||
|
||||
/// Return success if `v` is a value that is only transitively defined by ops of
|
||||
/// type in `OpTypeList`.
|
||||
template <typename... OpTypeList>
|
||||
static bool backwardsSliceOnlyHasOpsOfType(scf::ForOp outerLimit, Value v) {
|
||||
// Compute a backward slice up to, but not including, `outerLimit`.
|
||||
SetVector<Operation *> backwardSlice;
|
||||
getBackwardSlice(v, &backwardSlice, [&](Operation *op) {
|
||||
return outerLimit->isProperAncestor(op);
|
||||
});
|
||||
// Traverse the backward slice and ensure we can perform the computation to
|
||||
// hoist.
|
||||
for (Operation *op : backwardSlice) {
|
||||
if (isa<OpTypeList...>(op))
|
||||
continue;
|
||||
LLVM_DEBUG(DBGS() << "Abort: unadmissible op in slice " << *op << "\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Return the current iteration number in the loop (iv - lb).ceilDiv(step).
|
||||
/// The returned Value is guaranteed not to depend on any loop comprised in
|
||||
/// [`outer`, `forOp`].
|
||||
/// Return null if such a loop-independent quantity cannot be computed.
|
||||
static Value buildLoopIterationCount(OpBuilder &b, scf::ForOp outer,
|
||||
scf::ForOp forOp) {
|
||||
MLIRContext *ctx = forOp->getContext();
|
||||
AffineExpr iv, lb, step;
|
||||
bindDims(ctx, iv, lb);
|
||||
bindSymbols(ctx, step);
|
||||
if (!isDefinedOutsideOrConstant(outer, forOp.lowerBound()) ||
|
||||
!isDefinedOutsideOrConstant(outer, forOp.step()))
|
||||
return Value();
|
||||
Value ivVal = forOp.getInductionVar(), lbVal = forOp.lowerBound(),
|
||||
stepVal = forOp.step();
|
||||
auto loc = forOp->getLoc();
|
||||
return b.createOrFold<AffineApplyOp>(loc, (iv - lb).ceilDiv(step),
|
||||
ValueRange{ivVal, lbVal, stepVal});
|
||||
}
|
||||
|
||||
LogicalResult mlir::linalg::hoistPaddingOnTensors(PadTensorOp &padTensorOp,
|
||||
int nLoops) {
|
||||
LLVM_DEBUG(DBGS() << "Try to hoist " << *(padTensorOp) << " by " << nLoops
|
||||
<< " loops\n");
|
||||
HoistingAnalysis analysis(padTensorOp, nLoops);
|
||||
if (!analysis.isValid()) {
|
||||
LLVM_DEBUG(DBGS() << "Analysis failed -> Skip\n");
|
||||
return failure();
|
||||
}
|
||||
|
||||
scf::ForOp outer = analysis.outermostEnclosingForOp;
|
||||
ImplicitLocOpBuilder b(outer->getLoc(), outer);
|
||||
|
||||
auto maybeDynamicTensorSizes = analysis.getPackedTensorSizes(b);
|
||||
if (failed(maybeDynamicTensorSizes))
|
||||
return failure();
|
||||
SmallVector<Value> dynamicTensorSizes = *maybeDynamicTensorSizes;
|
||||
|
||||
// Update actual number of loops, which may be smaller.
|
||||
int nPackedLoops = analysis.packingLoops.size();
|
||||
|
||||
Location loc = padTensorOp->getLoc();
|
||||
RankedTensorType paddedTensorType = padTensorOp.getResultType();
|
||||
int paddedRank = paddedTensorType.getRank();
|
||||
|
||||
// Create the packed tensor<?x?x..?xpadded_shape> into which we amortize
|
||||
// padding.
|
||||
SmallVector<int64_t> packedShape(nPackedLoops, ShapedType::kDynamicSize);
|
||||
// TODO: go grab dims when necessary, for now PadTensorOp returns a static
|
||||
// tensor.
|
||||
llvm::append_range(packedShape, paddedTensorType.getShape());
|
||||
auto packedTensorType =
|
||||
RankedTensorType::get(packedShape, paddedTensorType.getElementType());
|
||||
Value packedTensor = b.create<linalg::InitTensorOp>(
|
||||
loc, dynamicTensorSizes, packedTensorType.getShape(),
|
||||
packedTensorType.getElementType());
|
||||
|
||||
// Clone the operations involved in the backward slice, iteratively stepping
|
||||
// into the loops that we encounter.
|
||||
// The implementation proceeds in a stack-like fashion:
|
||||
// 1. Iteratively clone and step into the loops, pushing the `packedTensor`
|
||||
// deeper in the stack.
|
||||
// 2. Create a InsertSliceOp at the top of the stack.
|
||||
// 3. Iteratively pop and yield the result of the InsertSliceOp across
|
||||
// the cloned loops.
|
||||
SmallVector<Value> clonedLoopIvs, leadingPackedTensorIndexings;
|
||||
clonedLoopIvs.reserve(nPackedLoops);
|
||||
leadingPackedTensorIndexings.reserve(nPackedLoops);
|
||||
BlockAndValueMapping bvm;
|
||||
// Insert `padTensorOp` into the backwardSlice so we clone it too.
|
||||
analysis.backwardSlice.insert(padTensorOp);
|
||||
// Stack step 1. iteratively clone loops and push `packedTensor`.
|
||||
for (Operation *op : analysis.backwardSlice) {
|
||||
// Specifically sit out in the extract_slice(packedTensor) case: this is the
|
||||
// piece we seek to replace.
|
||||
if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(op))
|
||||
if (bvm.lookupOrDefault(sliceOp.source()) == packedTensor)
|
||||
continue;
|
||||
auto effects = dyn_cast<MemoryEffectOpInterface>(op);
|
||||
bool hasNoEffects = !effects || effects.hasNoEffect();
|
||||
if (hasNoEffects &&
|
||||
(op->getNumRegions() == 0 || isa<linalg::PadTensorOp>(op))) {
|
||||
b.clone(*op, bvm);
|
||||
continue;
|
||||
}
|
||||
// TODO: support more cases as they appear.
|
||||
auto forOp = dyn_cast<scf::ForOp>(op);
|
||||
assert(forOp && "Expected scf::ForOp when hoisting pad ops");
|
||||
// Unused loop, just skip it.
|
||||
if (!analysis.packingLoops.contains(forOp))
|
||||
continue;
|
||||
|
||||
auto clonedForOp =
|
||||
b.create<scf::ForOp>(loc, bvm.lookupOrDefault(forOp.lowerBound()),
|
||||
bvm.lookupOrDefault(forOp.upperBound()),
|
||||
bvm.lookupOrDefault(forOp.step()), packedTensor);
|
||||
// Map the induction var, region args and results to the `clonedForOp`.
|
||||
bvm.map(forOp.getInductionVar(), clonedForOp.getInductionVar());
|
||||
bvm.map(forOp.getRegionIterArgs(), clonedForOp.getRegionIterArgs());
|
||||
bvm.map(forOp.getResults(), clonedForOp.getResults());
|
||||
assert(clonedForOp->getNumRegions() == 1);
|
||||
clonedLoopIvs.push_back(clonedForOp.getInductionVar());
|
||||
|
||||
b.setInsertionPointToStart(&clonedForOp->getRegion(0).front());
|
||||
Value loopIndependentIterationCount =
|
||||
buildLoopIterationCount(b, outer, clonedForOp);
|
||||
// Assert the loop-independent iteration count can be computed.
|
||||
if (!loopIndependentIterationCount)
|
||||
llvm_unreachable("loop independence prerequisite not met");
|
||||
leadingPackedTensorIndexings.push_back(loopIndependentIterationCount);
|
||||
packedTensor = clonedForOp.getRegionIterArgs().front();
|
||||
}
|
||||
|
||||
// Stack step 2. create InsertSliceOp at the top of the stack.
|
||||
// offsets = [clonedLoopIvs, 0 .. 0].
|
||||
SmallVector<OpFoldResult> offsets(leadingPackedTensorIndexings.begin(),
|
||||
leadingPackedTensorIndexings.end());
|
||||
offsets.append(paddedRank, b.getIndexAttr(0));
|
||||
// sizes = [1 .. 1, paddedShape].
|
||||
SmallVector<OpFoldResult> sizes(nPackedLoops, b.getIndexAttr(1));
|
||||
for (int64_t sz : paddedTensorType.getShape()) {
|
||||
// TODO: go grab dims when necessary, for now PadTensorOp returns a static
|
||||
// tensor.
|
||||
assert(!ShapedType::isDynamic(sz) && "padded tensor needs static sizes");
|
||||
sizes.push_back(b.getIndexAttr(sz));
|
||||
}
|
||||
// strides = [1 .. 1].
|
||||
SmallVector<OpFoldResult> strides(nPackedLoops + paddedRank,
|
||||
b.getIndexAttr(1));
|
||||
|
||||
Value inserted =
|
||||
b.create<tensor::InsertSliceOp>(loc, bvm.lookup(padTensorOp.result()),
|
||||
packedTensor, offsets, sizes, strides);
|
||||
|
||||
// Stack step 3. iteratively pop the stack and propagate the yield.
|
||||
Value valueToYield = inserted;
|
||||
for (Value iv : llvm::reverse(clonedLoopIvs)) {
|
||||
auto forOp = scf::getForInductionVarOwner(iv);
|
||||
b.setInsertionPointToEnd(&forOp.getRegion().front());
|
||||
b.create<scf::YieldOp>(loc, valueToYield);
|
||||
valueToYield = forOp.getResult(0);
|
||||
}
|
||||
|
||||
// Now the packed tensor is ready, replace the original padding op by a
|
||||
// 1x..x1 slice [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1].
|
||||
b.setInsertionPoint(padTensorOp);
|
||||
SmallVector<Value> loopIterationCounts = llvm::to_vector<4>(
|
||||
llvm::map_range(analysis.packingLoops, [&](Operation *loop) {
|
||||
return buildLoopIterationCount(b, outer, cast<scf::ForOp>(loop));
|
||||
}));
|
||||
// Assert all loop iteration counts can be computed.
|
||||
if (llvm::any_of(loopIterationCounts, [](Value v) { return !v; }))
|
||||
llvm_unreachable("loop independence prerequisite not met");
|
||||
// offsets = [originalLoopIvs, 0 .. 0].
|
||||
offsets.assign(loopIterationCounts.begin(), loopIterationCounts.end());
|
||||
offsets.append(paddedRank, b.getIndexAttr(0));
|
||||
// sizes = [1 .. 1, paddedShape] (definedabove).
|
||||
// strides = [1 .. 1] (defined above)
|
||||
packedTensor =
|
||||
scf::getForInductionVarOwner(clonedLoopIvs.front())->getResult(0);
|
||||
padTensorOp.replaceAllUsesWith(
|
||||
b.create<tensor::ExtractSliceOp>(loc, padTensorOp.getResultType(),
|
||||
packedTensor, offsets, sizes, strides)
|
||||
->getResult(0));
|
||||
|
||||
Operation *toErase = padTensorOp;
|
||||
|
||||
// Make the newly cloned `padTensorOp` available to the caller.
|
||||
padTensorOp =
|
||||
cast<PadTensorOp>(bvm.lookup(padTensorOp.result()).getDefiningOp());
|
||||
|
||||
toErase->erase();
|
||||
|
||||
return success();
|
||||
}
|
@ -509,445 +509,3 @@ void mlir::linalg::hoistRedundantVectorTransfers(FuncOp func) {
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
/// Return success if `v` is a value that is only transitively defined by ops of
|
||||
/// type in `OpTypeList`.
|
||||
template <typename... OpTypeList>
|
||||
static bool backwardsSliceOnlyHasOpsOfType(scf::ForOp outerLimit, Value v) {
|
||||
// Compute a backward slice up to, but not including, `outerLimit`.
|
||||
SetVector<Operation *> backwardSlice;
|
||||
getBackwardSlice(v, &backwardSlice, [&](Operation *op) {
|
||||
return outerLimit->isProperAncestor(op);
|
||||
});
|
||||
// Traverse the backward slice and ensure we can perform the computation to
|
||||
// hoist.
|
||||
for (Operation *op : backwardSlice) {
|
||||
if (isa<OpTypeList...>(op))
|
||||
continue;
|
||||
LLVM_DEBUG(DBGS() << "Abort: unadmissible op in slice " << *op << "\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool isDefinedOutsideOrConstant(scf::ForOp outer, Value v) {
|
||||
return outer.isDefinedOutsideOfLoop(v) || v.getDefiningOp<ConstantOp>();
|
||||
}
|
||||
|
||||
/// Return the current iteration number in the loop (iv - lb).ceilDiv(step).
|
||||
/// The returned Value is guaranteed not to depend on any loop comprised in
|
||||
/// [`outer`, `forOp`].
|
||||
/// Return null if such a loop-independent quantity cannot be computed.
|
||||
static Value buildLoopIterationCount(OpBuilder &b, scf::ForOp outer,
|
||||
scf::ForOp forOp) {
|
||||
MLIRContext *ctx = forOp->getContext();
|
||||
AffineExpr iv, lb, step;
|
||||
bindDims(ctx, iv, lb);
|
||||
bindSymbols(ctx, step);
|
||||
if (!isDefinedOutsideOrConstant(outer, forOp.lowerBound()) ||
|
||||
!isDefinedOutsideOrConstant(outer, forOp.step()))
|
||||
return Value();
|
||||
Value ivVal = forOp.getInductionVar(), lbVal = forOp.lowerBound(),
|
||||
stepVal = forOp.step();
|
||||
auto loc = forOp->getLoc();
|
||||
return b.createOrFold<AffineApplyOp>(loc, (iv - lb).ceilDiv(step),
|
||||
ValueRange{ivVal, lbVal, stepVal});
|
||||
}
|
||||
|
||||
/// Given a set of loops, assumed to be scf::ForOp, create a constraint set
|
||||
/// containing the inequalities `iv - lb >= 0` and `-iv + ub - 1 >= 0` for each
|
||||
/// loop.
|
||||
static FlatAffineValueConstraints
|
||||
initLoopIvsAndBounds(ArrayRef<Operation *> loops) {
|
||||
FlatAffineValueConstraints constraints;
|
||||
for (Operation *op : loops)
|
||||
constraints.appendDimId(cast<scf::ForOp>(op).getInductionVar());
|
||||
for (Operation *op : loops)
|
||||
constraints.appendDimId(cast<scf::ForOp>(op).lowerBound());
|
||||
for (Operation *op : loops)
|
||||
constraints.appendDimId(cast<scf::ForOp>(op).upperBound());
|
||||
unsigned numLoops = loops.size();
|
||||
for (unsigned ivIdx = 0, e = numLoops; ivIdx < e; ++ivIdx) {
|
||||
// iv - lb >= 0
|
||||
SmallVector<int64_t, 8> ineqLb(constraints.getNumCols(), 0);
|
||||
ineqLb[ivIdx] = 1;
|
||||
ineqLb[ivIdx + numLoops] = -1;
|
||||
// -iv + ub >= 0
|
||||
SmallVector<int64_t, 8> ineqUb(constraints.getNumCols(), 0);
|
||||
ineqUb[ivIdx] = -1;
|
||||
ineqUb[ivIdx + 2 * numLoops] = 1;
|
||||
ineqUb[constraints.getNumCols() - 1] = -1;
|
||||
constraints.addInequality(ineqLb);
|
||||
constraints.addInequality(ineqUb);
|
||||
}
|
||||
return constraints;
|
||||
}
|
||||
|
||||
/// For each loop in `loops`, determine the ops involved in the construction of
|
||||
/// its upper bound---up to the outerLimit loop--- and fold them as new
|
||||
/// inequalities in the constraint set.
|
||||
/// This is achieved by computing the backwardSlice of the loop's upper bound
|
||||
/// and iteratively folding each op in reverse topological order to guarantee
|
||||
/// use-def ordering.
|
||||
/// As operations are folded in, their result is projected out of the
|
||||
/// constraints set.
|
||||
/// The following operations are supported:
|
||||
/// - scf::ForOp are simply skipped.
|
||||
/// - AffineApplyOp are composed to replace the result by an equality.
|
||||
/// - AffineMinOp are composed by adding each entry as an upper bound.
|
||||
/// If any other operation is met, return failure.
|
||||
// TODO: extend on a per-need basis.
|
||||
static LogicalResult
|
||||
foldUpperBoundsIntoConstraintsSet(FlatAffineValueConstraints &constraints,
|
||||
scf::ForOp outerLimit,
|
||||
ArrayRef<Operation *> loops) {
|
||||
SetVector<Value> toProjectOut;
|
||||
for (Operation *loop : loops) {
|
||||
auto ub = cast<scf::ForOp>(loop).upperBound();
|
||||
if (isDefinedOutsideOrConstant(outerLimit, ub))
|
||||
continue;
|
||||
|
||||
// Compute a backward slice up to, but not including, `outerLimit`.
|
||||
SetVector<Operation *> backwardSlice;
|
||||
getBackwardSlice(ub, &backwardSlice, [&](Operation *op) {
|
||||
return outerLimit->isProperAncestor(op);
|
||||
});
|
||||
backwardSlice.insert(ub.getDefiningOp());
|
||||
|
||||
// Iterate over all ops in the slice and compose them in the constraints.
|
||||
for (Operation *op : llvm::reverse(backwardSlice)) {
|
||||
if (!isa<scf::ForOp, AffineApplyOp, AffineMinOp>(op))
|
||||
return failure();
|
||||
if (isa<scf::ForOp>(op))
|
||||
continue;
|
||||
// Ensure there is a
|
||||
auto ensureIdFailed = [&](Value v) {
|
||||
if (constraints.containsId(v)) {
|
||||
unsigned pos;
|
||||
constraints.findId(v, &pos);
|
||||
return pos >= constraints.getNumDimIds();
|
||||
}
|
||||
constraints.appendDimId(v);
|
||||
return false;
|
||||
};
|
||||
|
||||
// Ensure all ids exist and add results for later projection.
|
||||
if (llvm::any_of(op->getResults(), ensureIdFailed) ||
|
||||
llvm::any_of(op->getOperands(), ensureIdFailed))
|
||||
return failure();
|
||||
|
||||
// All supported ops have 1 result.
|
||||
// TODO: extend when needed.
|
||||
toProjectOut.insert(op->getResult(0));
|
||||
|
||||
// Compose supported ops.
|
||||
if (auto affineApplyOp = dyn_cast<AffineApplyOp>(op)) {
|
||||
AffineValueMap avm(affineApplyOp.getAffineMap(),
|
||||
affineApplyOp.getOperands(),
|
||||
affineApplyOp.getResult());
|
||||
if (failed(constraints.composeMap(&avm)))
|
||||
return failure();
|
||||
continue;
|
||||
}
|
||||
auto affineMinOp = cast<AffineMinOp>(op);
|
||||
unsigned pos;
|
||||
bool foundMinOp = constraints.findId(affineMinOp.getResult(), &pos);
|
||||
(void)foundMinOp;
|
||||
assert(foundMinOp);
|
||||
AffineMap alignedMap = constraints.computeAlignedMap(
|
||||
affineMinOp.getAffineMap(), affineMinOp.getOperands());
|
||||
if (failed(
|
||||
constraints.addBound(FlatAffineConstraints::UB, pos, alignedMap)))
|
||||
return failure();
|
||||
}
|
||||
}
|
||||
for (Value v : toProjectOut)
|
||||
constraints.projectOut(v);
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Ensure prerequisites that guarantee pad op hoisting can occur.
|
||||
/// Return failure in the cases when we cannot perform hoisting; i.e. if either:
|
||||
/// 1. There exists a use of `padTensorOp` that is not a linalg input operand.
|
||||
/// 2. There isn't an enclosing `outermostEnclosingForOp` loop.
|
||||
/// 3. There exists an op with a region that is dominated by
|
||||
/// `outermostEnclosingForOp` and that isn't a LoopLikeInterface or a
|
||||
/// LinalgOp.
|
||||
/// 4. There exists an op with side effects that is dominated by
|
||||
/// `outermostEnclosingForOp` and that isn't a LoopLikeInterface.
|
||||
/// 5. The lower bound, upper bound and step of all the loops involved in the
|
||||
/// hoisting can be
|
||||
///
|
||||
/// While ensuring prerequisites:
|
||||
/// 1. Fill the `backwardSlice` to contain the topologically sorted ops
|
||||
/// dominated by `outermostEnclosingForOp`.
|
||||
/// 2. Fill the `packingLoops` to contain only the enclosing loops of
|
||||
/// `backwardSlice` whose IV is actually used in computing padding. Loops that
|
||||
/// remain in `backwardSlice` but that are not in `packingLoops` are
|
||||
/// dimensions of reuse.
|
||||
static LogicalResult
|
||||
hoistPaddingOnTensorsPrerequisites(linalg::PadTensorOp padTensorOp, int nLevels,
|
||||
SetVector<Operation *> &backwardSlice,
|
||||
SetVector<Operation *> &packingLoops,
|
||||
SmallVector<Value> &dynamicTensorSizes) {
|
||||
// Bail on any use that isn't an input of a Linalg op.
|
||||
// Hoisting of inplace updates happens after vectorization.
|
||||
for (OpOperand &use : padTensorOp.result().getUses()) {
|
||||
auto linalgUser = dyn_cast<linalg::LinalgOp>(use.getOwner());
|
||||
if (!linalgUser || !linalgUser.isInputTensor(&use))
|
||||
return failure();
|
||||
}
|
||||
|
||||
// Get at most nLevels of enclosing loops.
|
||||
SmallVector<LoopLikeOpInterface> reverseEnclosingLoops;
|
||||
Operation *outermostEnclosingForOp = nullptr,
|
||||
*nextEnclosingForOp =
|
||||
padTensorOp->getParentOfType<LoopLikeOpInterface>();
|
||||
while (nLevels-- > 0 && nextEnclosingForOp) {
|
||||
outermostEnclosingForOp = nextEnclosingForOp;
|
||||
reverseEnclosingLoops.push_back(outermostEnclosingForOp);
|
||||
nextEnclosingForOp =
|
||||
nextEnclosingForOp->getParentOfType<LoopLikeOpInterface>();
|
||||
}
|
||||
if (!outermostEnclosingForOp)
|
||||
return failure();
|
||||
|
||||
// Get the backwards slice from `padTensorOp` that is dominated by the
|
||||
// outermost enclosing loop.
|
||||
DominanceInfo domInfo(outermostEnclosingForOp);
|
||||
getBackwardSlice(padTensorOp.getOperation(), &backwardSlice,
|
||||
[&](Operation *op) {
|
||||
return domInfo.dominates(outermostEnclosingForOp, op);
|
||||
});
|
||||
|
||||
// Bail on any op with a region that is not a LoopLikeInterface or a LinalgOp.
|
||||
if (llvm::any_of(backwardSlice, [](Operation *op) {
|
||||
return op->getNumRegions() > 0 && !isa<LoopLikeOpInterface>(op) &&
|
||||
!isa<LinalgOp>(op);
|
||||
}))
|
||||
return failure();
|
||||
|
||||
// Filter out the loops whose induction variable is not used to compute the
|
||||
// padded result. As a first approximation, just look for IVs that have no use
|
||||
// in the backwardSlice.
|
||||
// These are the dimensions of reuse that we can exploit to reduce the amount
|
||||
// of work / memory.
|
||||
// TODO: would this optimization compose better as a canonicalization?
|
||||
for (LoopLikeOpInterface loop : llvm::reverse(reverseEnclosingLoops)) {
|
||||
auto forOp = dyn_cast<scf::ForOp>(loop.getOperation());
|
||||
if (!forOp)
|
||||
continue;
|
||||
for (Operation *user : forOp.getInductionVar().getUsers()) {
|
||||
if (backwardSlice.contains(user)) {
|
||||
packingLoops.insert(forOp);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Backward slice is a topologically sorted list of ops starting at
|
||||
// `outermostEnclosingForOp`.
|
||||
assert(outermostEnclosingForOp == backwardSlice.front());
|
||||
|
||||
scf::ForOp outer = cast<scf::ForOp>(outermostEnclosingForOp);
|
||||
|
||||
FlatAffineValueConstraints constraints =
|
||||
initLoopIvsAndBounds(packingLoops.getArrayRef());
|
||||
if (failed(foldUpperBoundsIntoConstraintsSet(constraints, outer,
|
||||
packingLoops.getArrayRef())))
|
||||
return failure();
|
||||
|
||||
unsigned numLoops = packingLoops.size();
|
||||
SmallVector<AffineMap> lbs(numLoops), ubs(numLoops);
|
||||
// Compute the bounds of the first positions, assuming the others are fixed.
|
||||
constraints.getSliceBounds(/*pos=*/0, /*num=*/packingLoops.size(),
|
||||
outer->getContext(), &lbs, &ubs);
|
||||
|
||||
SmallVector<Value> allValues;
|
||||
constraints.getAllValues(&allValues);
|
||||
SmallVector<Value> allNonLoopValues(allValues.begin() + numLoops,
|
||||
allValues.end());
|
||||
|
||||
// For each packingLoop, create the extent by (ub - lb).ceilDiv(step).
|
||||
// IP just before the outermost loop considered that we hoist above.
|
||||
ImplicitLocOpBuilder b(outer->getLoc(), outer);
|
||||
assert(packingLoops.size() == lbs.size() && "expected matching lb sizes");
|
||||
assert(packingLoops.size() == ubs.size() && "expected matching ub sizes");
|
||||
for (auto it : llvm::zip(packingLoops, lbs, ubs)) {
|
||||
scf::ForOp loop = cast<scf::ForOp>(std::get<0>(it));
|
||||
AffineMap lbMap = std::get<1>(it);
|
||||
AffineMap ubMap = std::get<2>(it);
|
||||
SmallVector<Value> lbOperands(allNonLoopValues);
|
||||
canonicalizeMapAndOperands(&lbMap, &lbOperands);
|
||||
Value lbVal = b.createOrFold<AffineMaxOp>(lbMap, lbOperands);
|
||||
|
||||
SmallVector<Value> ubOperands(allNonLoopValues);
|
||||
canonicalizeMapAndOperands(&ubMap, &ubOperands);
|
||||
Value ubVal = b.createOrFold<AffineMinOp>(ubMap, ubOperands);
|
||||
|
||||
AffineExpr lb, ub, step;
|
||||
bindDims(b.getContext(), lb, ub);
|
||||
bindSymbols(b.getContext(), step);
|
||||
Value res = b.createOrFold<AffineApplyOp>(
|
||||
(ub - lb).ceilDiv(step),
|
||||
ValueRange{lbVal, ubVal, cast<scf::ForOp>(loop).step()});
|
||||
|
||||
dynamicTensorSizes.push_back(res);
|
||||
}
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
LogicalResult mlir::linalg::hoistPaddingOnTensors(PadTensorOp &padTensorOp,
|
||||
unsigned nLoops) {
|
||||
SmallVector<Value> dynamicTensorSizes;
|
||||
SetVector<Operation *> backwardSlice, packingLoops;
|
||||
if (failed(hoistPaddingOnTensorsPrerequisites(padTensorOp, nLoops,
|
||||
backwardSlice, packingLoops,
|
||||
dynamicTensorSizes)))
|
||||
return failure();
|
||||
|
||||
// Update actual number of loops, which may be smaller.
|
||||
nLoops = packingLoops.size();
|
||||
|
||||
Location loc = padTensorOp->getLoc();
|
||||
RankedTensorType paddedTensorType = padTensorOp.getResultType();
|
||||
unsigned paddedRank = paddedTensorType.getRank();
|
||||
|
||||
// Backward slice is a topologically sorted list of ops starting at
|
||||
// `outermostEnclosingForOp`.
|
||||
Operation *outermostEnclosingForOp = backwardSlice.front();
|
||||
// IP just before the outermost loop considered that we hoist above.
|
||||
OpBuilder b(outermostEnclosingForOp);
|
||||
|
||||
// Create the packed tensor<?x?x..?xpadded_shape> into which we amortize
|
||||
// padding.
|
||||
SmallVector<int64_t> packedShape(nLoops, ShapedType::kDynamicSize);
|
||||
// TODO: go grab dims when necessary, for now PadTensorOp returns a static
|
||||
// tensor.
|
||||
llvm::append_range(packedShape, paddedTensorType.getShape());
|
||||
auto packedTensorType =
|
||||
RankedTensorType::get(packedShape, paddedTensorType.getElementType());
|
||||
Value packedTensor = b.create<linalg::InitTensorOp>(
|
||||
loc, dynamicTensorSizes, packedTensorType.getShape(),
|
||||
packedTensorType.getElementType());
|
||||
|
||||
// Clone the operations involved in the backward slice, iteratively stepping
|
||||
// into the loops that we encounter.
|
||||
// The implementation proceeds in a stack-like fashion:
|
||||
// 1. Iteratively clone and step into the loops, pushing the `packedTensor`
|
||||
// deeper in the stack.
|
||||
// 2. Create a InsertSliceOp at the top of the stack.
|
||||
// 3. Iteratively pop and yield the result of the InsertSliceOp across
|
||||
// the cloned loops.
|
||||
SmallVector<Value> clonedLoopIvs, leadingPackedTensorIndexings;
|
||||
clonedLoopIvs.reserve(nLoops);
|
||||
leadingPackedTensorIndexings.reserve(nLoops);
|
||||
BlockAndValueMapping bvm;
|
||||
// Insert `padTensorOp` into the backwardSlice so we clone it too.
|
||||
backwardSlice.insert(padTensorOp);
|
||||
// Stack step 1. iteratively clone loops and push `packedTensor`.
|
||||
for (Operation *op : backwardSlice) {
|
||||
// Specifically sit out in the extract_slice(packedTensor) case: this is the
|
||||
// piece we seek to replace.
|
||||
if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(op))
|
||||
if (bvm.lookupOrDefault(sliceOp.source()) == packedTensor)
|
||||
continue;
|
||||
auto effects = dyn_cast<MemoryEffectOpInterface>(op);
|
||||
bool hasNoEffects = !effects || effects.hasNoEffect();
|
||||
if (hasNoEffects &&
|
||||
(op->getNumRegions() == 0 || isa<linalg::PadTensorOp>(op))) {
|
||||
b.clone(*op, bvm);
|
||||
continue;
|
||||
}
|
||||
// TODO: support more cases as they appear.
|
||||
auto forOp = dyn_cast<scf::ForOp>(op);
|
||||
assert(forOp && "Expected scf::ForOp when hoisting pad ops");
|
||||
// Unused loop, just skip it.
|
||||
if (!packingLoops.contains(forOp))
|
||||
continue;
|
||||
|
||||
auto clonedForOp =
|
||||
b.create<scf::ForOp>(loc, bvm.lookupOrDefault(forOp.lowerBound()),
|
||||
bvm.lookupOrDefault(forOp.upperBound()),
|
||||
bvm.lookupOrDefault(forOp.step()), packedTensor);
|
||||
// Map the induction var, region args and results to the `clonedForOp`.
|
||||
bvm.map(forOp.getInductionVar(), clonedForOp.getInductionVar());
|
||||
bvm.map(forOp.getRegionIterArgs(), clonedForOp.getRegionIterArgs());
|
||||
bvm.map(forOp.getResults(), clonedForOp.getResults());
|
||||
assert(clonedForOp->getNumRegions() == 1);
|
||||
clonedLoopIvs.push_back(clonedForOp.getInductionVar());
|
||||
|
||||
b.setInsertionPointToStart(&clonedForOp->getRegion(0).front());
|
||||
Value loopIndependentIterationCount = buildLoopIterationCount(
|
||||
b, cast<scf::ForOp>(outermostEnclosingForOp), clonedForOp);
|
||||
// Assert the loop-independent iteration count can be computed.
|
||||
if (!loopIndependentIterationCount)
|
||||
llvm_unreachable("loop independence prerequisite not met");
|
||||
leadingPackedTensorIndexings.push_back(loopIndependentIterationCount);
|
||||
packedTensor = clonedForOp.getRegionIterArgs().front();
|
||||
}
|
||||
|
||||
// Stack step 2. create InsertSliceOp at the top of the stack.
|
||||
// offsets = [clonedLoopIvs, 0 .. 0].
|
||||
SmallVector<OpFoldResult> offsets(leadingPackedTensorIndexings.begin(),
|
||||
leadingPackedTensorIndexings.end());
|
||||
offsets.append(paddedRank, b.getIndexAttr(0));
|
||||
// sizes = [1 .. 1, paddedShape].
|
||||
SmallVector<OpFoldResult> sizes(nLoops, b.getIndexAttr(1));
|
||||
for (int64_t sz : paddedTensorType.getShape()) {
|
||||
// TODO: go grab dims when necessary, for now PadTensorOp returns a static
|
||||
// tensor.
|
||||
assert(!ShapedType::isDynamic(sz) && "padded tensor needs static sizes");
|
||||
sizes.push_back(b.getIndexAttr(sz));
|
||||
}
|
||||
// strides = [1 .. 1].
|
||||
SmallVector<OpFoldResult> strides(nLoops + paddedRank, b.getIndexAttr(1));
|
||||
|
||||
Value inserted =
|
||||
b.create<tensor::InsertSliceOp>(loc, bvm.lookup(padTensorOp.result()),
|
||||
packedTensor, offsets, sizes, strides);
|
||||
|
||||
// Stack step 3. iteratively pop the stack and propagate the yield.
|
||||
Value valueToYield = inserted;
|
||||
for (Value iv : llvm::reverse(clonedLoopIvs)) {
|
||||
auto forOp = scf::getForInductionVarOwner(iv);
|
||||
b.setInsertionPointToEnd(&forOp.getRegion().front());
|
||||
b.create<scf::YieldOp>(loc, valueToYield);
|
||||
valueToYield = forOp.getResult(0);
|
||||
}
|
||||
|
||||
// Now the packed tensor is ready, replace the original padding op by a
|
||||
// 1x..x1 slice [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1].
|
||||
b.setInsertionPoint(padTensorOp);
|
||||
SmallVector<Value> loopIterationCounts =
|
||||
llvm::to_vector<4>(llvm::map_range(packingLoops, [&](Operation *loop) {
|
||||
return buildLoopIterationCount(
|
||||
b, cast<scf::ForOp>(outermostEnclosingForOp),
|
||||
cast<scf::ForOp>(loop));
|
||||
}));
|
||||
// Assert all loop iteration counts can be computed.
|
||||
if (llvm::any_of(loopIterationCounts, [](Value v) { return !v; }))
|
||||
llvm_unreachable("loop independence prerequisite not met");
|
||||
// offsets = [originalLoopIvs, 0 .. 0].
|
||||
offsets.assign(loopIterationCounts.begin(), loopIterationCounts.end());
|
||||
offsets.append(paddedRank, b.getIndexAttr(0));
|
||||
// sizes = [1 .. 1, paddedShape] (definedabove).
|
||||
// strides = [1 .. 1] (defined above)
|
||||
packedTensor =
|
||||
scf::getForInductionVarOwner(clonedLoopIvs.front())->getResult(0);
|
||||
padTensorOp.replaceAllUsesWith(
|
||||
b.create<tensor::ExtractSliceOp>(loc, padTensorOp.getResultType(),
|
||||
packedTensor, offsets, sizes, strides)
|
||||
->getResult(0));
|
||||
|
||||
Operation *toErase = padTensorOp;
|
||||
|
||||
// Make the newly cloned `padTensorOp` available to the caller.
|
||||
padTensorOp =
|
||||
cast<PadTensorOp>(bvm.lookup(padTensorOp.result()).getDefiningOp());
|
||||
|
||||
toErase->erase();
|
||||
|
||||
return success();
|
||||
}
|
||||
|
@ -13,6 +13,7 @@
|
||||
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
||||
#include "mlir/Dialect/GPU/GPUDialect.h"
|
||||
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
||||
#include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
|
||||
#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
|
||||
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
||||
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
||||
|
@ -6185,6 +6185,7 @@ cc_library(
|
||||
"include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h",
|
||||
"include/mlir/Dialect/Linalg/Passes.h",
|
||||
"include/mlir/Dialect/Linalg/Transforms/CodegenStrategy.h",
|
||||
"include/mlir/Dialect/Linalg/Transforms/HoistPadding.h",
|
||||
"include/mlir/Dialect/Linalg/Transforms/Hoisting.h",
|
||||
"include/mlir/Dialect/Linalg/Transforms/Transforms.h",
|
||||
"include/mlir/Dialect/Linalg/Utils/Utils.h",
|
||||
|
Loading…
Reference in New Issue
Block a user