[mlir][Linalg] Add a vectorization pattern for linalg::PadTensorOp

The new pattern is exercised from the TestLinalgTransforms pass.

Differential Revision: https://reviews.llvm.org/D96410
This commit is contained in:
Nicolas Vasilache 2021-02-10 13:15:23 +00:00
parent 6f9db455a5
commit bb69de3f41
7 changed files with 163 additions and 8 deletions

View File

@ -231,6 +231,28 @@ def Linalg_PadTensorOp : Linalg_Op<"pad_tensor",
static linalg::PadTensorOp createPadScalarOp(
Type type, Value source, Value pad, ArrayRef<OpFoldResult> low,
ArrayRef<OpFoldResult> high, Location loc, OpBuilder & builder);
// Return a vector of all the static or dynamic values (low/high padding) of
// the op.
inline SmallVector<OpFoldResult> getMixedPadImpl(ArrayAttr staticAttrs,
ValueRange values) {
SmallVector<OpFoldResult> res;
unsigned numDynamic = 0;
unsigned count = staticAttrs.size();
for (unsigned idx = 0; idx < count; ++idx) {
if (ShapedType::isDynamic(staticAttrs[idx].cast<IntegerAttr>().getInt()))
res.push_back(values[numDynamic++]);
else
res.push_back(staticAttrs[idx]);
}
return res;
}
SmallVector<OpFoldResult> getMixedLowPad() {
return getMixedPadImpl(static_low(), low());
}
SmallVector<OpFoldResult> getMixedHighPad() {
return getMixedPadImpl(static_high(), high());
}
}];
let builders = [

View File

@ -809,6 +809,16 @@ void populateLinalgConvGeneralizationPatterns(
//===----------------------------------------------------------------------===//
// Op-specific patterns.
//===----------------------------------------------------------------------===//
/// PadTensorOp does not implement the LinalgStructuredOpInterface `LinalgOp`,
/// it needs a specific pattern to vectorize.
struct PadTensorOpVectorizationPattern : public OpRewritePattern<PadTensorOp> {
using OpRewritePattern<PadTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(PadTensorOp padOp,
PatternRewriter &rewriter) const override;
};
/// Match and rewrite for the pattern:
/// ```
/// %alloc = ...

View File

@ -1213,6 +1213,10 @@ def Vector_TransferReadOp :
OpBuilderDAG<(ins "VectorType":$vector, "Value":$source,
"ValueRange":$indices, "AffineMap":$permutationMap,
CArg<"ArrayRef<bool>", "{}">:$maybeMasked)>,
// Builder that sets padding to 'getMinorIdentityMap'.
OpBuilderDAG<(ins "VectorType":$vector, "Value":$source,
"ValueRange":$indices, "Value":$padding,
CArg<"ArrayRef<bool>", "{}">:$maybeMasked)>,
// Builder that sets permutation map (resp. padding) to
// 'getMinorIdentityMap' (resp. zero).
OpBuilderDAG<(ins "VectorType":$vector, "Value":$source,

View File

@ -448,9 +448,71 @@ Optional<VectorizedLinalgOp> mlir::linalg::vectorizeLinalgOp(OpBuilder &builder,
}
//----------------------------------------------------------------------------//
// Misc. conv vectorization patterns.
// Misc. vectorization patterns.
//----------------------------------------------------------------------------//
// TODO: cleanup all this.
/// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and
/// TransferWriteOp. For now, this only applies when all low and high paddings
/// are determined to be zero.
LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite(
linalg::PadTensorOp padOp, PatternRewriter &rewriter) const {
// Helper function to determine whether an OpFoldResult is not a zero Index.
auto isNotZeroIndex = [](OpFoldResult ofr) {
if (Attribute attr = ofr.dyn_cast<Attribute>())
return attr.cast<IntegerAttr>().getInt() != 0;
Value v = ofr.get<Value>();
if (auto constOp = v.getDefiningOp<ConstantIntOp>())
return constOp.getValue() != 0;
return true;
};
auto resultShapedType = padOp.result().getType().cast<ShapedType>();
// Bail on non-static shapes.
if (!resultShapedType.hasStaticShape())
return failure();
// If any pad_low is not a static 0, needs a mask. Bail for now.
if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex))
return failure();
VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result());
if (!vectorType)
return failure();
// Only support padding with a constant for now, i.e. either:
// 1. A BBarg from a different block.
// 2. A value defined outside of the current block.
Block &block = padOp.region().front();
auto yieldOp = cast<YieldOp>(block.getTerminator());
assert(yieldOp.getNumOperands() == 1 && "expected single operand yield");
Value padValue = yieldOp.values().front();
Operation *definingOp = padValue.getDefiningOp();
if (definingOp && definingOp->getBlock() == &block)
return failure();
if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
return failure();
// TODO: if any pad_high is not a static 0, needs a mask. For now, just bail.
if (llvm::any_of(padOp.getMixedHighPad(),
[&](OpFoldResult ofr) { return isNotZeroIndex(ofr); }))
return failure();
// Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] +
// TransferWriteOp@[0..0].
SmallVector<Value> indices(
resultShapedType.getRank(),
rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0));
Value read = rewriter.create<vector::TransferReadOp>(
padOp.getLoc(), vectorType, padOp.source(), indices, padValue);
Value init =
rewriter.create<InitTensorOp>(padOp.getLoc(), resultShapedType.getShape(),
resultShapedType.getElementType());
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init,
indices);
return success();
}
// TODO: cleanup all the convolution vectorization patterns.
template <class ConvOp, int N>
LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
ConvOp op, PatternRewriter &rewriter) const {

View File

@ -1122,8 +1122,8 @@ public:
} // namespace
void BroadcastOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
void BroadcastOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<BroadcastToShapeCast>(context);
}
@ -2026,17 +2026,32 @@ static LogicalResult verifyTransferOp(Operation *op, ShapedType shapedType,
/// Builder that sets padding to zero.
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
VectorType vector, Value source, ValueRange indices,
AffineMap permutationMap,
VectorType vectorType, Value source,
ValueRange indices, AffineMap permutationMap,
ArrayRef<bool> maybeMasked) {
Type elemType = source.getType().cast<ShapedType>().getElementType();
Value padding = builder.create<ConstantOp>(result.location, elemType,
builder.getZeroAttr(elemType));
if (maybeMasked.empty())
return build(builder, result, vector, source, indices, permutationMap,
return build(builder, result, vectorType, source, indices, permutationMap,
padding, ArrayAttr());
ArrayAttr maskedArrayAttr = builder.getBoolArrayAttr(maybeMasked);
build(builder, result, vector, source, indices, permutationMap, padding,
build(builder, result, vectorType, source, indices, permutationMap, padding,
maskedArrayAttr);
}
/// Builder that sets permutation map to 'getMinorIdentityMap'.
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
VectorType vectorType, Value source,
ValueRange indices, Value padding,
ArrayRef<bool> maybeMasked) {
auto permMap = getTransferMinorIdentityMap(
source.getType().cast<ShapedType>(), vectorType);
if (maybeMasked.empty())
return build(builder, result, vectorType, source, indices, permMap, padding,
ArrayAttr());
ArrayAttr maskedArrayAttr = builder.getBoolArrayAttr(maybeMasked);
build(builder, result, vectorType, source, indices, permMap, padding,
maskedArrayAttr);
}

View File

@ -390,3 +390,44 @@ func @matmul_i8_i8_i32(%a: memref<4x6xi8>, %b: memref<6x12xi8>, %c: memref<4x12x
outs(%c: memref<4x12xi32>)
return
}
// -----
// CHECK-LABEL: func @pad_static
// CHECK-NOT: linalg.pad_tensor
func @pad_static(%arg0: tensor<?x?x?xf32>, %pad_value: f32) -> tensor<2x3x4xf32> {
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[READ:.*]] = vector.transfer_read %{{.*}}[%[[C0]], %[[C0]], %[[C0]]]
// CHECK-SAME: : tensor<?x?x?xf32>, vector<2x3x4xf32>
// CHECK: %[[INIT:.*]] = linalg.init_tensor [2, 3, 4] : tensor<2x3x4xf32>
// CHECK: %[[WRITTEN:.*]] = vector.transfer_write %[[READ]], %[[INIT]][%[[C0]], %[[C0]], %[[C0]]]
// CHECK-SAME: {masked = [false, false, false]} : vector<2x3x4xf32>, tensor<2x3x4xf32>
%0 = linalg.pad_tensor %arg0 low[0, 0, 0] high[0, 0, 0] {
^bb0(%arg1: index, %arg2: index, %arg3: index):
linalg.yield %pad_value : f32
} : tensor<?x?x?xf32> to tensor<2x3x4xf32>
// CHECK: return %[[WRITTEN]] : tensor<2x3x4xf32>
return %0 : tensor<2x3x4xf32>
}
// CHECK-LABEL: func @pad_static_high_padding
// CHECK: linalg.pad_tensor
func @pad_static_high_padding(%arg0: tensor<?x?x?xf32>, %pad_value: f32) -> tensor<2x3x4xf32> {
%0 = linalg.pad_tensor %arg0 low[0, 0, 0] high[0, 1, 0] {
^bb0(%arg1: index, %arg2: index, %arg3: index):
linalg.yield %pad_value : f32
} : tensor<?x?x?xf32> to tensor<2x3x4xf32>
return %0 : tensor<2x3x4xf32>
}
// CHECK-LABEL: func @pad_dynamic
// CHECK: linalg.pad_tensor
func @pad_dynamic(%arg0: tensor<1x2x2x?xf32>, %low: index, %high: index,
%pad_value: f32) -> tensor<6x?x?x?xf32> {
%0 = linalg.pad_tensor %arg0 low[2, %low, 3, 3] high[3, 3, %high, 2] {
^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index):
linalg.yield %pad_value : f32
} : tensor<1x2x2x?xf32> to tensor<6x?x?x?xf32>
return %0 : tensor<6x?x?x?xf32>
}

View File

@ -491,6 +491,7 @@ static void applyLinalgToVectorPatterns(FuncOp funcOp) {
patterns.insert<LinalgVectorizationPattern>(
LinalgTransformationFilter()
.addOpFilter<ContractionOpInterface, FillOp, CopyOp, GenericOp>());
patterns.insert<PadTensorOpVectorizationPattern>(funcOp.getContext());
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}