Revert the part of r107257 which introduced new logic for using

nsw and nuw flags from IR Instructions. On further consideration,
this isn't valid.

llvm-svn: 107298
This commit is contained in:
Dan Gohman 2010-06-30 17:27:11 +00:00
parent b4591efa93
commit c0cca7fdda
2 changed files with 15 additions and 85 deletions

View File

@ -2760,38 +2760,6 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
return getUnknown(PN);
}
/// UseFlag - When creating an operator with operands L and R based on an
/// LLVM IR instruction in basic block BB where the instruction has
/// nsw, nuw, or inbounds, test whether the corresponding flag can be
/// set for the resulting SCEV.
static bool
UseFlag(bool Flag, const SCEV *L, const SCEV *R, const Value *Inst) {
// If the flag is not set, don't use it. This is included here to reduce
// clutter in the callers.
if (!Flag)
return false;
// Determine the block which contains the instruction with the flag.
const Instruction *I = dyn_cast<Instruction>(Inst);
if (!I)
return false;
const BasicBlock *BB = I->getParent();
// Handle an easy case: test if exactly one of the operands is an addrec
// and that the instruction is trivially control-equivalent to the addrec's
// loop's header.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(L)) {
if (!isa<SCEVAddRecExpr>(R) &&
AR->getLoop()->getHeader() == BB)
return true;
} else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(R)) {
if (AR->getLoop()->getHeader() == BB)
return true;
}
return false;
}
/// createNodeForGEP - Expand GEP instructions into add and multiply
/// operations. This allows them to be analyzed by regular SCEV code.
///
@ -2800,9 +2768,7 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
// Don't blindly transfer the inbounds flag from the GEP instruction to the
// Add expression, because the Instruction may be guarded by control flow
// and the no-overflow bits may not be valid for the expression in any
// context. However, in the special case where the GEP is in the loop header,
// we know it's trivially control-equivalent to any addrecs for that loop.
bool InBounds = GEP->isInBounds();
// context.
const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Value *Base = GEP->getOperand(0);
@ -2821,13 +2787,8 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
// Test if the GEP has the inbounds keyword and is control-equivalent
// to the addrec.
bool HasNUW = UseFlag(InBounds, TotalOffset, FieldOffset, GEP);
// Add the field offset to the running total offset.
TotalOffset = getAddExpr(TotalOffset, FieldOffset,
HasNUW, /*HasNSW=*/false);
TotalOffset = getAddExpr(TotalOffset, FieldOffset);
} else {
// For an array, add the element offset, explicitly scaled.
const SCEV *ElementSize = getSizeOfExpr(*GTI);
@ -2835,33 +2796,19 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
// Getelementptr indices are signed.
IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
// Test if the GEP has the inbounds keyword and is control-equivalent
// to the addrec.
bool HasNUW = UseFlag(InBounds, IndexS, ElementSize, GEP);
// Multiply the index by the element size to compute the element offset.
const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
HasNUW, /*HasNSW=*/false);
// Test if the GEP has the inbounds keyword and is control-equivalent
// to the addrec.
HasNUW = UseFlag(InBounds, TotalOffset, LocalOffset, GEP);
const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
// Add the element offset to the running total offset.
TotalOffset = getAddExpr(TotalOffset, LocalOffset,
HasNUW, /*HasNSW=*/false);
TotalOffset = getAddExpr(TotalOffset, LocalOffset);
}
}
// Get the SCEV for the GEP base.
const SCEV *BaseS = getSCEV(Base);
// Test if the GEP has the inbounds keyword and is control-equivalent
// to the addrec.
bool HasNUW = UseFlag(InBounds, BaseS, TotalOffset, GEP);
// Add the total offset from all the GEP indices to the base.
return getAddExpr(BaseS, TotalOffset, HasNUW, /*HasNSW=*/false);
return getAddExpr(BaseS, TotalOffset);
}
/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
@ -3253,30 +3200,12 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
Operator *U = cast<Operator>(V);
switch (Opcode) {
case Instruction::Add: {
const SCEV *LHS = getSCEV(U->getOperand(0));
const SCEV *RHS = getSCEV(U->getOperand(1));
// Don't transfer the NSW and NUW bits from the Add instruction to the
// Add expression unless we can prove that it's safe.
AddOperator *Add = cast<AddOperator>(U);
bool HasNUW = UseFlag(Add->hasNoUnsignedWrap(), LHS, RHS, Add);
bool HasNSW = UseFlag(Add->hasNoSignedWrap(), LHS, RHS, Add);
return getAddExpr(LHS, RHS, HasNUW, HasNSW);
}
case Instruction::Mul: {
const SCEV *LHS = getSCEV(U->getOperand(0));
const SCEV *RHS = getSCEV(U->getOperand(1));
// Don't transfer the NSW and NUW bits from the Mul instruction to the
// Mul expression unless we can prove that it's safe.
MulOperator *Mul = cast<MulOperator>(U);
bool HasNUW = UseFlag(Mul->hasNoUnsignedWrap(), LHS, RHS, Mul);
bool HasNSW = UseFlag(Mul->hasNoSignedWrap(), LHS, RHS, Mul);
return getMulExpr(LHS, RHS, HasNUW, HasNSW);
}
case Instruction::Add:
return getAddExpr(getSCEV(U->getOperand(0)),
getSCEV(U->getOperand(1)));
case Instruction::Mul:
return getMulExpr(getSCEV(U->getOperand(0)),
getSCEV(U->getOperand(1)));
case Instruction::UDiv:
return getUDivExpr(getSCEV(U->getOperand(0)),
getSCEV(U->getOperand(1)));

View File

@ -190,8 +190,9 @@ define void @bar() {
ret void
}
; TODO: This is theoretically provable to be NoAlias.
; CHECK: Function: nonnegative: 2 pointers, 0 call sites
; CHECK: NoAlias: i64* %arrayidx, i64* %p
; CHECK: MayAlias: i64* %arrayidx, i64* %p
define void @nonnegative(i64* %p) nounwind {
entry:
@ -210,6 +211,6 @@ for.end: ; preds = %for.body, %entry
ret void
}
; CHECK: 14 no alias responses
; CHECK: 26 may alias responses
; CHECK: 13 no alias responses
; CHECK: 27 may alias responses
; CHECK: 18 must alias responses