Unbreak *tf builtins for hexfloat (#82208)

This re-lands cc0065a7d0 in a way that
keeps existing targets working.

---------

Original commit message:
#68132 ended up removing
__multc3 & __divtc3 from compiler-rt library builds that have
QUAD_PRECISION but not TF_MODE due to missing int128 support.
I added support for QUAD_PRECISION to use the native hex float long double representation.

---------

Co-authored-by: Sean Perry <perry@ca.ibm.com>
(cherry picked from commit 99c457dc2ef395872d7448c85609f6cb73a7f89b)
This commit is contained in:
Alexander Richardson 2024-02-21 12:59:56 -08:00 committed by Tom Stellard
parent 89d543227a
commit c14879562f
4 changed files with 34 additions and 19 deletions

View File

@ -13,7 +13,7 @@
#define QUAD_PRECISION #define QUAD_PRECISION
#include "fp_lib.h" #include "fp_lib.h"
#if defined(CRT_HAS_TF_MODE) #if defined(CRT_HAS_F128)
// Returns: the quotient of (a + ib) / (c + id) // Returns: the quotient of (a + ib) / (c + id)

View File

@ -22,6 +22,7 @@
#include "int_lib.h" #include "int_lib.h"
#include "int_math.h" #include "int_math.h"
#include "int_types.h"
#include <limits.h> #include <limits.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdint.h> #include <stdint.h>
@ -93,13 +94,14 @@ static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b); COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b);
#elif defined QUAD_PRECISION #elif defined QUAD_PRECISION
#if defined(CRT_HAS_TF_MODE) #if defined(CRT_HAS_F128) && defined(CRT_HAS_128BIT)
typedef uint64_t half_rep_t; typedef uint64_t half_rep_t;
typedef __uint128_t rep_t; typedef __uint128_t rep_t;
typedef __int128_t srep_t; typedef __int128_t srep_t;
typedef tf_float fp_t; typedef tf_float fp_t;
#define HALF_REP_C UINT64_C #define HALF_REP_C UINT64_C
#define REP_C (__uint128_t) #define REP_C (__uint128_t)
#if defined(CRT_HAS_IEEE_TF)
// Note: Since there is no explicit way to tell compiler the constant is a // Note: Since there is no explicit way to tell compiler the constant is a
// 128-bit integer, we let the constant be casted to 128-bit integer // 128-bit integer, we let the constant be casted to 128-bit integer
#define significandBits 112 #define significandBits 112
@ -188,7 +190,10 @@ static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
#undef Word_HiMask #undef Word_HiMask
#undef Word_LoMask #undef Word_LoMask
#undef Word_FullMask #undef Word_FullMask
#endif // defined(CRT_HAS_TF_MODE) #endif // defined(CRT_HAS_IEEE_TF)
#else
typedef long double fp_t;
#endif // defined(CRT_HAS_F128) && defined(CRT_HAS_128BIT)
#else #else
#error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined. #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
#endif #endif
@ -196,19 +201,6 @@ static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
#if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \ #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \
(defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE)) (defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE))
#define typeWidth (sizeof(rep_t) * CHAR_BIT) #define typeWidth (sizeof(rep_t) * CHAR_BIT)
#define exponentBits (typeWidth - significandBits - 1)
#define maxExponent ((1 << exponentBits) - 1)
#define exponentBias (maxExponent >> 1)
#define implicitBit (REP_C(1) << significandBits)
#define significandMask (implicitBit - 1U)
#define signBit (REP_C(1) << (significandBits + exponentBits))
#define absMask (signBit - 1U)
#define exponentMask (absMask ^ significandMask)
#define oneRep ((rep_t)exponentBias << significandBits)
#define infRep exponentMask
#define quietBit (implicitBit >> 1)
#define qnanRep (exponentMask | quietBit)
static __inline rep_t toRep(fp_t x) { static __inline rep_t toRep(fp_t x) {
const union { const union {
@ -226,6 +218,21 @@ static __inline fp_t fromRep(rep_t x) {
return rep.f; return rep.f;
} }
#if !defined(QUAD_PRECISION) || defined(CRT_HAS_IEEE_TF)
#define exponentBits (typeWidth - significandBits - 1)
#define maxExponent ((1 << exponentBits) - 1)
#define exponentBias (maxExponent >> 1)
#define implicitBit (REP_C(1) << significandBits)
#define significandMask (implicitBit - 1U)
#define signBit (REP_C(1) << (significandBits + exponentBits))
#define absMask (signBit - 1U)
#define exponentMask (absMask ^ significandMask)
#define oneRep ((rep_t)exponentBias << significandBits)
#define infRep exponentMask
#define quietBit (implicitBit >> 1)
#define qnanRep (exponentMask | quietBit)
static __inline int normalize(rep_t *significand) { static __inline int normalize(rep_t *significand) {
const int shift = rep_clz(*significand) - rep_clz(implicitBit); const int shift = rep_clz(*significand) - rep_clz(implicitBit);
*significand <<= shift; *significand <<= shift;
@ -328,6 +335,8 @@ static __inline fp_t __compiler_rt_scalbnX(fp_t x, int y) {
return fromRep(sign | ((rep_t)exp << significandBits) | sig); return fromRep(sign | ((rep_t)exp << significandBits) | sig);
} }
#endif // !defined(QUAD_PRECISION) || defined(CRT_HAS_IEEE_TF)
// Avoid using fmax from libm. // Avoid using fmax from libm.
static __inline fp_t __compiler_rt_fmaxX(fp_t x, fp_t y) { static __inline fp_t __compiler_rt_fmaxX(fp_t x, fp_t y) {
// If either argument is NaN, return the other argument. If both are NaN, // If either argument is NaN, return the other argument. If both are NaN,
@ -405,6 +414,8 @@ static __inline tf_float __compiler_rt_fmaxtf(tf_float x, tf_float y) {
#define __compiler_rt_logbl crt_logbl #define __compiler_rt_logbl crt_logbl
#define __compiler_rt_scalbnl crt_scalbnl #define __compiler_rt_scalbnl crt_scalbnl
#define __compiler_rt_fmaxl crt_fmaxl #define __compiler_rt_fmaxl crt_fmaxl
#define crt_fabstf crt_fabsl
#define crt_copysigntf crt_copysignl
#else #else
#error Unsupported TF mode type #error Unsupported TF mode type
#endif #endif

View File

@ -189,12 +189,16 @@ typedef long double tf_float;
#define CRT_LDBL_IEEE_F128 #define CRT_LDBL_IEEE_F128
#endif #endif
#define TF_C(x) x##L #define TF_C(x) x##L
#elif __LDBL_MANT_DIG__ == 113 #elif __LDBL_MANT_DIG__ == 113 || \
// Use long double instead of __float128 if it matches the IEEE 128-bit format. (__FLT_RADIX__ == 16 && __LDBL_MANT_DIG__ == 28)
// Use long double instead of __float128 if it matches the IEEE 128-bit format
// or the IBM hexadecimal format.
#define CRT_LDBL_128BIT #define CRT_LDBL_128BIT
#define CRT_HAS_F128 #define CRT_HAS_F128
#if __LDBL_MANT_DIG__ == 113
#define CRT_HAS_IEEE_TF #define CRT_HAS_IEEE_TF
#define CRT_LDBL_IEEE_F128 #define CRT_LDBL_IEEE_F128
#endif
typedef long double tf_float; typedef long double tf_float;
#define TF_C(x) x##L #define TF_C(x) x##L
#elif defined(__FLOAT128__) || defined(__SIZEOF_FLOAT128__) #elif defined(__FLOAT128__) || defined(__SIZEOF_FLOAT128__)

View File

@ -15,7 +15,7 @@
#include "int_lib.h" #include "int_lib.h"
#include "int_math.h" #include "int_math.h"
#if defined(CRT_HAS_TF_MODE) #if defined(CRT_HAS_F128)
// Returns: the product of a + ib and c + id // Returns: the product of a + ib and c + id