[mlir] Delete ForwardDataFlowAnalysis

With SCCP and integer range analysis ported to the new framework, this old framework is redundant. Delete it.

Depends on D128866

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D128867
This commit is contained in:
Mogball 2022-06-27 13:46:29 -07:00
parent 1934b3ae59
commit c20a581a8d
9 changed files with 0 additions and 1403 deletions

View File

@ -1,428 +0,0 @@
//===- DataFlowAnalysis.h - General DataFlow Analysis Utilities -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file has several utilities and algorithms that perform abstract dataflow
// analysis over the IR. These allow for users to hook into various analysis
// propagation algorithms without needing to reinvent the traversal over the
// different types of control structures present within MLIR, such as regions,
// the callgraph, etc. A few of the main entry points are detailed below:
//
// FowardDataFlowAnalysis:
// This class provides support for defining dataflow algorithms that are
// forward, sparse, pessimistic (except along unreached backedges) and
// context-insensitive for the interprocedural aspects.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_ANALYSIS_DATAFLOWANALYSIS_H
#define MLIR_ANALYSIS_DATAFLOWANALYSIS_H
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/IR/Value.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Allocator.h"
/// TODO: Remove this file when SCCP and integer range analysis have been ported
/// to the new framework.
namespace mlir {
//===----------------------------------------------------------------------===//
// AbstractLatticeElement
//===----------------------------------------------------------------------===//
namespace detail {
/// This class represents an abstract lattice. A lattice is what gets propagated
/// across the IR, and contains the information for a specific Value.
class AbstractLatticeElement {
public:
virtual ~AbstractLatticeElement();
/// Returns true if the value of this lattice is uninitialized, meaning that
/// it hasn't yet been initialized.
virtual bool isUninitialized() const = 0;
/// Join the information contained in 'rhs' into this lattice. Returns
/// if the value of the lattice changed.
virtual ChangeResult join(const AbstractLatticeElement &rhs) = 0;
/// Mark the lattice element as having reached a pessimistic fixpoint. This
/// means that the lattice may potentially have conflicting value states, and
/// only the most conservative value should be relied on.
virtual ChangeResult markPessimisticFixpoint() = 0;
/// Mark the lattice element as having reached an optimistic fixpoint. This
/// means that we optimistically assume the current value is the true state.
virtual void markOptimisticFixpoint() = 0;
/// Returns true if the lattice has reached a fixpoint. A fixpoint is when the
/// information optimistically assumed to be true is the same as the
/// information known to be true.
virtual bool isAtFixpoint() const = 0;
};
} // namespace detail
//===----------------------------------------------------------------------===//
// LatticeElement
//===----------------------------------------------------------------------===//
/// This class represents a lattice holding a specific value of type `ValueT`.
/// Lattice values (`ValueT`) are required to adhere to the following:
/// * static ValueT join(const ValueT &lhs, const ValueT &rhs);
/// - This method conservatively joins the information held by `lhs`
/// and `rhs` into a new value. This method is required to be monotonic.
/// * static ValueT getPessimisticValueState(MLIRContext *context);
/// - This method computes a pessimistic/conservative value state assuming
/// no information about the state of the IR.
/// * static ValueT getPessimisticValueState(Value value);
/// - This method computes a pessimistic/conservative value state for
/// `value` assuming only information present in the current IR.
/// * bool operator==(const ValueT &rhs) const;
///
template <typename ValueT>
class LatticeElement final : public detail::AbstractLatticeElement {
public:
LatticeElement() = delete;
LatticeElement(const ValueT &knownValue) : knownValue(knownValue) {}
/// Return the value held by this lattice. This requires that the value is
/// initialized.
ValueT &getValue() {
assert(!isUninitialized() && "expected known lattice element");
return *optimisticValue;
}
const ValueT &getValue() const {
assert(!isUninitialized() && "expected known lattice element");
return *optimisticValue;
}
/// Returns true if the value of this lattice hasn't yet been initialized.
bool isUninitialized() const final { return !optimisticValue; }
/// Join the information contained in the 'rhs' lattice into this
/// lattice. Returns if the state of the current lattice changed.
ChangeResult join(const detail::AbstractLatticeElement &rhs) final {
const LatticeElement<ValueT> &rhsLattice =
static_cast<const LatticeElement<ValueT> &>(rhs);
// If we are at a fixpoint, or rhs is uninitialized, there is nothing to do.
if (isAtFixpoint() || rhsLattice.isUninitialized())
return ChangeResult::NoChange;
// Join the rhs value into this lattice.
return join(rhsLattice.getValue());
}
/// Join the information contained in the 'rhs' value into this
/// lattice. Returns if the state of the current lattice changed.
ChangeResult join(const ValueT &rhs) {
// If the current lattice is uninitialized, copy the rhs value.
if (isUninitialized()) {
optimisticValue = rhs;
return ChangeResult::Change;
}
// Otherwise, join rhs with the current optimistic value.
ValueT newValue = ValueT::join(*optimisticValue, rhs);
assert(ValueT::join(newValue, *optimisticValue) == newValue &&
"expected `join` to be monotonic");
assert(ValueT::join(newValue, rhs) == newValue &&
"expected `join` to be monotonic");
// Update the current optimistic value if something changed.
if (newValue == optimisticValue)
return ChangeResult::NoChange;
optimisticValue = newValue;
return ChangeResult::Change;
}
/// Mark the lattice element as having reached a pessimistic fixpoint. This
/// means that the lattice may potentially have conflicting value states, and
/// only the conservatively known value state should be relied on.
ChangeResult markPessimisticFixpoint() final {
if (isAtFixpoint())
return ChangeResult::NoChange;
// For this fixed point, we take whatever we knew to be true and set that to
// our optimistic value.
optimisticValue = knownValue;
return ChangeResult::Change;
}
/// Mark the lattice element as having reached an optimistic fixpoint. This
/// means that we optimistically assume the current value is the true state.
void markOptimisticFixpoint() final {
assert(!isUninitialized() && "expected an initialized value");
knownValue = *optimisticValue;
}
/// Returns true if the lattice has reached a fixpoint. A fixpoint is when the
/// information optimistically assumed to be true is the same as the
/// information known to be true.
bool isAtFixpoint() const final { return optimisticValue == knownValue; }
private:
/// The value that is conservatively known to be true.
ValueT knownValue;
/// The currently computed value that is optimistically assumed to be true, or
/// None if the lattice element is uninitialized.
Optional<ValueT> optimisticValue;
};
//===----------------------------------------------------------------------===//
// ForwardDataFlowAnalysisBase
//===----------------------------------------------------------------------===//
namespace detail {
/// This class is the non-templated virtual base class for the
/// ForwardDataFlowAnalysis. This class provides opaque hooks to the main
/// algorithm.
class ForwardDataFlowAnalysisBase {
public:
virtual ~ForwardDataFlowAnalysisBase();
/// Initialize and compute the analysis on operations rooted under the given
/// top-level operation. Note that the top-level operation is not visited.
void run(Operation *topLevelOp);
/// Return the lattice element attached to the given value. If a lattice has
/// not been added for the given value, a new 'uninitialized' value is
/// inserted and returned.
AbstractLatticeElement &getLatticeElement(Value value);
/// Return the lattice element attached to the given value, or nullptr if no
/// lattice for the value has yet been created.
AbstractLatticeElement *lookupLatticeElement(Value value);
/// Visit the given operation, and join any necessary analysis state
/// into the lattices for the results and block arguments owned by this
/// operation using the provided set of operand lattice elements (all pointer
/// values are guaranteed to be non-null). Returns if any result or block
/// argument value lattices changed during the visit. The lattice for a result
/// or block argument value can be obtained and join'ed into by using
/// `getLatticeElement`.
virtual ChangeResult
visitOperation(Operation *op,
ArrayRef<AbstractLatticeElement *> operands) = 0;
/// Given a BranchOpInterface, and the current lattice elements that
/// correspond to the branch operands (all pointer values are guaranteed to be
/// non-null), try to compute a specific set of successors that would be
/// selected for the branch. Returns failure if not computable, or if all of
/// the successors would be chosen. If a subset of successors can be selected,
/// `successors` is populated.
virtual LogicalResult
getSuccessorsForOperands(BranchOpInterface branch,
ArrayRef<AbstractLatticeElement *> operands,
SmallVectorImpl<Block *> &successors) = 0;
/// Given a RegionBranchOpInterface, and the current lattice elements that
/// correspond to the branch operands (all pointer values are guaranteed to be
/// non-null), compute a specific set of region successors that would be
/// selected.
virtual void
getSuccessorsForOperands(RegionBranchOpInterface branch,
Optional<unsigned> sourceIndex,
ArrayRef<AbstractLatticeElement *> operands,
SmallVectorImpl<RegionSuccessor> &successors) = 0;
/// Given a operation with successor regions, one of those regions,
/// and the lattice elements corresponding to the operation's
/// arguments, compute the latice values for block arguments
/// that are not accounted for by the branching control flow (ex. the
/// bounds of loops).
virtual ChangeResult
visitNonControlFlowArguments(Operation *op, const RegionSuccessor &region,
ArrayRef<AbstractLatticeElement *> operands) = 0;
/// Create a new uninitialized lattice element. An optional value is provided
/// which, if valid, should be used to initialize the known conservative state
/// of the lattice.
virtual AbstractLatticeElement *createLatticeElement(Value value = {}) = 0;
private:
/// A map from SSA value to lattice element.
DenseMap<Value, AbstractLatticeElement *> latticeValues;
};
} // namespace detail
//===----------------------------------------------------------------------===//
// ForwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
/// This class provides a general forward dataflow analysis driver
/// utilizing the lattice classes defined above, to enable the easy definition
/// of dataflow analysis algorithms. More specifically this driver is useful for
/// defining analyses that are forward, sparse, pessimistic (except along
/// unreached backedges) and context-insensitive for the interprocedural
/// aspects.
template <typename ValueT>
class ForwardDataFlowAnalysis : public detail::ForwardDataFlowAnalysisBase {
public:
ForwardDataFlowAnalysis(MLIRContext *context) : context(context) {}
/// Return the MLIR context used when constructing this analysis.
MLIRContext *getContext() { return context; }
/// Compute the analysis on operations rooted under the given top-level
/// operation. Note that the top-level operation is not visited.
void run(Operation *topLevelOp) {
detail::ForwardDataFlowAnalysisBase::run(topLevelOp);
}
/// Return the lattice element attached to the given value, or nullptr if no
/// lattice for the value has yet been created.
LatticeElement<ValueT> *lookupLatticeElement(Value value) {
return static_cast<LatticeElement<ValueT> *>(
detail::ForwardDataFlowAnalysisBase::lookupLatticeElement(value));
}
protected:
/// Return the lattice element attached to the given value. If a lattice has
/// not been added for the given value, a new 'uninitialized' value is
/// inserted and returned.
LatticeElement<ValueT> &getLatticeElement(Value value) {
return static_cast<LatticeElement<ValueT> &>(
detail::ForwardDataFlowAnalysisBase::getLatticeElement(value));
}
/// Mark all of the lattices for the given range of Values as having reached a
/// pessimistic fixpoint.
ChangeResult markAllPessimisticFixpoint(ValueRange values) {
ChangeResult result = ChangeResult::NoChange;
for (Value value : values)
result |= getLatticeElement(value).markPessimisticFixpoint();
return result;
}
/// Visit the given operation, and join any necessary analysis state
/// into the lattices for the results and block arguments owned by this
/// operation using the provided set of operand lattice elements (all pointer
/// values are guaranteed to be non-null). Returns if any result or block
/// argument value lattices changed during the visit. The lattice for a result
/// or block argument value can be obtained by using
/// `getLatticeElement`.
virtual ChangeResult
visitOperation(Operation *op,
ArrayRef<LatticeElement<ValueT> *> operands) = 0;
/// Given a BranchOpInterface, and the current lattice elements that
/// correspond to the branch operands (all pointer values are guaranteed to be
/// non-null), try to compute a specific set of successors that would be
/// selected for the branch. Returns failure if not computable, or if all of
/// the successors would be chosen. If a subset of successors can be selected,
/// `successors` is populated.
virtual LogicalResult
getSuccessorsForOperands(BranchOpInterface branch,
ArrayRef<LatticeElement<ValueT> *> operands,
SmallVectorImpl<Block *> &successors) {
return failure();
}
/// Given a RegionBranchOpInterface, and the current lattice elements that
/// correspond to the branch operands (all pointer values are guaranteed to be
/// non-null), compute a specific set of region successors that would be
/// selected.
virtual void
getSuccessorsForOperands(RegionBranchOpInterface branch,
Optional<unsigned> sourceIndex,
ArrayRef<LatticeElement<ValueT> *> operands,
SmallVectorImpl<RegionSuccessor> &successors) {
SmallVector<Attribute> constantOperands(operands.size());
branch.getSuccessorRegions(sourceIndex, constantOperands, successors);
}
/// Given a operation with successor regions, one of those regions,
/// and the lattice elements corresponding to the operation's
/// arguments, compute the latice values for block arguments
/// that are not accounted for by the branching control flow (ex. the
/// bounds of loops). By default, this method marks all such lattice elements
/// as having reached a pessimistic fixpoint. The region in the
/// RegionSuccessor and the operand latice elements are guaranteed to be
/// non-null.
virtual ChangeResult
visitNonControlFlowArguments(Operation *op, const RegionSuccessor &successor,
ArrayRef<LatticeElement<ValueT> *> operands) {
ChangeResult result = ChangeResult::NoChange;
Region *region = successor.getSuccessor();
ValueRange succArgs = successor.getSuccessorInputs();
Block *block = &region->front();
Block::BlockArgListType arguments = block->getArguments();
if (arguments.size() != succArgs.size()) {
unsigned firstArgIdx =
succArgs.empty() ? 0
: succArgs[0].cast<BlockArgument>().getArgNumber();
result |= markAllPessimisticFixpoint(arguments.take_front(firstArgIdx));
result |= markAllPessimisticFixpoint(
arguments.drop_front(firstArgIdx + succArgs.size()));
}
return result;
}
private:
/// Type-erased wrappers that convert the abstract lattice operands to derived
/// lattices and invoke the virtual hooks operating on the derived lattices.
ChangeResult
visitOperation(Operation *op,
ArrayRef<detail::AbstractLatticeElement *> operands) final {
LatticeElement<ValueT> *const *derivedOperandBase =
reinterpret_cast<LatticeElement<ValueT> *const *>(operands.data());
return visitOperation(
op, llvm::makeArrayRef(derivedOperandBase, operands.size()));
}
LogicalResult
getSuccessorsForOperands(BranchOpInterface branch,
ArrayRef<detail::AbstractLatticeElement *> operands,
SmallVectorImpl<Block *> &successors) final {
LatticeElement<ValueT> *const *derivedOperandBase =
reinterpret_cast<LatticeElement<ValueT> *const *>(operands.data());
return getSuccessorsForOperands(
branch, llvm::makeArrayRef(derivedOperandBase, operands.size()),
successors);
}
void
getSuccessorsForOperands(RegionBranchOpInterface branch,
Optional<unsigned> sourceIndex,
ArrayRef<detail::AbstractLatticeElement *> operands,
SmallVectorImpl<RegionSuccessor> &successors) final {
LatticeElement<ValueT> *const *derivedOperandBase =
reinterpret_cast<LatticeElement<ValueT> *const *>(operands.data());
getSuccessorsForOperands(
branch, sourceIndex,
llvm::makeArrayRef(derivedOperandBase, operands.size()), successors);
}
ChangeResult visitNonControlFlowArguments(
Operation *op, const RegionSuccessor &region,
ArrayRef<detail::AbstractLatticeElement *> operands) final {
LatticeElement<ValueT> *const *derivedOperandBase =
reinterpret_cast<LatticeElement<ValueT> *const *>(operands.data());
return visitNonControlFlowArguments(
op, region, llvm::makeArrayRef(derivedOperandBase, operands.size()));
}
/// Create a new uninitialized lattice element. An optional value is provided,
/// which if valid, should be used to initialize the known conservative state
/// of the lattice.
detail::AbstractLatticeElement *createLatticeElement(Value value) final {
ValueT knownValue = value ? ValueT::getPessimisticValueState(value)
: ValueT::getPessimisticValueState(context);
return new (allocator.Allocate()) LatticeElement<ValueT>(knownValue);
}
/// An allocator used for new lattice elements.
llvm::SpecificBumpPtrAllocator<LatticeElement<ValueT>> allocator;
/// The MLIRContext of this solver.
MLIRContext *context;
};
} // namespace mlir
#endif // MLIR_ANALYSIS_DATAFLOWANALYSIS_H

View File

@ -2,7 +2,6 @@ set(LLVM_OPTIONAL_SOURCES
AliasAnalysis.cpp
BufferViewFlowAnalysis.cpp
CallGraph.cpp
DataFlowAnalysis.cpp
DataLayoutAnalysis.cpp
Liveness.cpp
SliceAnalysis.cpp

View File

@ -1,818 +0,0 @@
//===- DataFlowAnalysis.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlowAnalysis.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <queue>
using namespace mlir;
using namespace mlir::detail;
namespace {
/// This class contains various state used when computing the lattice elements
/// of a callable operation.
class CallableLatticeState {
public:
/// Build a lattice state with a given callable region, and a specified number
/// of results to be initialized to the default lattice element.
CallableLatticeState(ForwardDataFlowAnalysisBase &analysis,
Region *callableRegion, unsigned numResults)
: callableArguments(callableRegion->getArguments()),
resultLatticeElements(numResults) {
for (AbstractLatticeElement *&it : resultLatticeElements)
it = analysis.createLatticeElement();
}
/// Returns the arguments to the callable region.
Block::BlockArgListType getCallableArguments() const {
return callableArguments;
}
/// Returns the lattice element for the results of the callable region.
auto getResultLatticeElements() {
return llvm::make_pointee_range(resultLatticeElements);
}
/// Add a call to this callable. This is only used if the callable defines a
/// symbol.
void addSymbolCall(Operation *op) { symbolCalls.push_back(op); }
/// Return the calls that reference this callable. This is only used
/// if the callable defines a symbol.
ArrayRef<Operation *> getSymbolCalls() const { return symbolCalls; }
private:
/// The arguments of the callable region.
Block::BlockArgListType callableArguments;
/// The lattice state for each of the results of this region. The return
/// values of the callable aren't SSA values, so we need to track them
/// separately.
SmallVector<AbstractLatticeElement *, 4> resultLatticeElements;
/// The calls referencing this callable if this callable defines a symbol.
/// This removes the need to recompute symbol references during propagation.
/// Value based references are trivial to resolve, so they can be done
/// in-place.
SmallVector<Operation *, 4> symbolCalls;
};
/// This class represents the solver for a forward dataflow analysis. This class
/// acts as the propagation engine for computing which lattice elements.
class ForwardDataFlowSolver {
public:
/// Initialize the solver with the given top-level operation.
ForwardDataFlowSolver(ForwardDataFlowAnalysisBase &analysis, Operation *op);
/// Run the solver until it converges.
void solve();
private:
/// Initialize the set of symbol defining callables that can have their
/// arguments and results tracked. 'op' is the top-level operation that the
/// solver is operating on.
void initializeSymbolCallables(Operation *op);
/// Visit the users of the given IR that reside within executable blocks.
template <typename T>
void visitUsers(T &value) {
for (Operation *user : value.getUsers())
if (isBlockExecutable(user->getBlock()))
visitOperation(user);
}
/// Visit the given operation and compute any necessary lattice state.
void visitOperation(Operation *op);
/// Visit the given call operation and compute any necessary lattice state.
void visitCallOperation(CallOpInterface op);
/// Visit the given callable operation and compute any necessary lattice
/// state.
void visitCallableOperation(Operation *op);
/// Visit the given region branch operation, which defines regions, and
/// compute any necessary lattice state. This also resolves the lattice state
/// of both the operation results and any nested regions.
void visitRegionBranchOperation(
RegionBranchOpInterface branch,
ArrayRef<AbstractLatticeElement *> operandLattices);
/// Visit the given set of region successors, computing any necessary lattice
/// state. The provided function returns the input operands to the region at
/// the given index. If the index is 'None', the input operands correspond to
/// the parent operation results.
void visitRegionSuccessors(
Operation *parentOp, ArrayRef<RegionSuccessor> regionSuccessors,
ArrayRef<AbstractLatticeElement *> operandLattices,
function_ref<OperandRange(Optional<unsigned>)> getInputsForRegion);
/// Visit the given terminator operation and compute any necessary lattice
/// state.
void
visitTerminatorOperation(Operation *op,
ArrayRef<AbstractLatticeElement *> operandLattices);
/// Visit the given terminator operation that exits a callable region. These
/// are terminators with no CFG successors.
void visitCallableTerminatorOperation(
Operation *callable, Operation *terminator,
ArrayRef<AbstractLatticeElement *> operandLattices);
/// Visit the given block and compute any necessary lattice state.
void visitBlock(Block *block);
/// Visit argument #'i' of the given block and compute any necessary lattice
/// state.
void visitBlockArgument(Block *block, int i);
/// Mark the entry block of the given region as executable. Returns NoChange
/// if the block was already marked executable. If `markPessimisticFixpoint`
/// is true, the arguments of the entry block are also marked as having
/// reached the pessimistic fixpoint.
ChangeResult markEntryBlockExecutable(Region *region,
bool markPessimisticFixpoint);
/// Mark the given block as executable. Returns NoChange if the block was
/// already marked executable.
ChangeResult markBlockExecutable(Block *block);
/// Returns true if the given block is executable.
bool isBlockExecutable(Block *block) const;
/// Mark the edge between 'from' and 'to' as executable.
void markEdgeExecutable(Block *from, Block *to);
/// Return true if the edge between 'from' and 'to' is executable.
bool isEdgeExecutable(Block *from, Block *to) const;
/// Mark the given value as having reached the pessimistic fixpoint. This
/// means that we cannot further refine the state of this value.
void markPessimisticFixpoint(Value value);
/// Mark all of the given values as having reaching the pessimistic fixpoint.
template <typename ValuesT>
void markAllPessimisticFixpoint(ValuesT values) {
for (auto value : values)
markPessimisticFixpoint(value);
}
template <typename ValuesT>
void markAllPessimisticFixpoint(Operation *op, ValuesT values) {
markAllPessimisticFixpoint(values);
opWorklist.push(op);
}
template <typename ValuesT>
void markAllPessimisticFixpointAndVisitUsers(ValuesT values) {
for (auto value : values) {
AbstractLatticeElement &lattice = analysis.getLatticeElement(value);
if (lattice.markPessimisticFixpoint() == ChangeResult::Change)
visitUsers(value);
}
}
/// Returns true if the given value was marked as having reached the
/// pessimistic fixpoint.
bool isAtFixpoint(Value value) const;
/// Merge in the given lattice 'from' into the lattice 'to'. 'owner'
/// corresponds to the parent operation of the lattice for 'to'.
void join(Operation *owner, AbstractLatticeElement &to,
const AbstractLatticeElement &from);
/// A reference to the dataflow analysis being computed.
ForwardDataFlowAnalysisBase &analysis;
/// The set of blocks that are known to execute, or are intrinsically live.
SmallPtrSet<Block *, 16> executableBlocks;
/// The set of control flow edges that are known to execute.
DenseSet<std::pair<Block *, Block *>> executableEdges;
/// A worklist containing blocks that need to be processed.
std::queue<Block *> blockWorklist;
/// A worklist of operations that need to be processed.
std::queue<Operation *> opWorklist;
/// The callable operations that have their argument/result state tracked.
DenseMap<Operation *, CallableLatticeState> callableLatticeState;
/// A map between a call operation and the resolved symbol callable. This
/// avoids re-resolving symbol references during propagation. Value based
/// callables are trivial to resolve, so they can be done in-place.
DenseMap<Operation *, Operation *> callToSymbolCallable;
/// A symbol table used for O(1) symbol lookups during simplification.
SymbolTableCollection symbolTable;
};
} // namespace
ForwardDataFlowSolver::ForwardDataFlowSolver(
ForwardDataFlowAnalysisBase &analysis, Operation *op)
: analysis(analysis) {
/// Initialize the solver with the regions within this operation.
for (Region &region : op->getRegions()) {
// Mark the entry block as executable. The values passed to these regions
// are also invisible, so mark any arguments as reaching the pessimistic
// fixpoint.
markEntryBlockExecutable(&region, /*markPessimisticFixpoint=*/true);
}
initializeSymbolCallables(op);
}
void ForwardDataFlowSolver::solve() {
while (!blockWorklist.empty() || !opWorklist.empty()) {
// Process any operations in the op worklist.
while (!opWorklist.empty()) {
Operation *nextOp = opWorklist.front();
opWorklist.pop();
visitUsers(*nextOp);
}
// Process any blocks in the block worklist.
while (!blockWorklist.empty()) {
Block *nextBlock = blockWorklist.front();
blockWorklist.pop();
visitBlock(nextBlock);
}
}
}
void ForwardDataFlowSolver::initializeSymbolCallables(Operation *op) {
// Initialize the set of symbol callables that can have their state tracked.
// This tracks which symbol callable operations we can propagate within and
// out of.
auto walkFn = [&](Operation *symTable, bool allUsesVisible) {
Region &symbolTableRegion = symTable->getRegion(0);
Block *symbolTableBlock = &symbolTableRegion.front();
for (auto callable : symbolTableBlock->getOps<CallableOpInterface>()) {
// We won't be able to track external callables.
Region *callableRegion = callable.getCallableRegion();
if (!callableRegion)
continue;
// We only care about symbol defining callables here.
auto symbol = dyn_cast<SymbolOpInterface>(callable.getOperation());
if (!symbol)
continue;
callableLatticeState.try_emplace(callable, analysis, callableRegion,
callable.getCallableResults().size());
// If not all of the uses of this symbol are visible, we can't track the
// state of the arguments.
if (symbol.isPublic() || (!allUsesVisible && symbol.isNested())) {
for (Region &region : callable->getRegions())
markEntryBlockExecutable(&region, /*markPessimisticFixpoint=*/true);
}
}
if (callableLatticeState.empty())
return;
// After computing the valid callables, walk any symbol uses to check
// for non-call references. We won't be able to track the lattice state
// for arguments to these callables, as we can't guarantee that we can see
// all of its calls.
Optional<SymbolTable::UseRange> uses =
SymbolTable::getSymbolUses(&symbolTableRegion);
if (!uses) {
// If we couldn't gather the symbol uses, conservatively assume that
// we can't track information for any nested symbols.
op->walk([&](CallableOpInterface op) { callableLatticeState.erase(op); });
return;
}
for (const SymbolTable::SymbolUse &use : *uses) {
// If the use is a call, track it to avoid the need to recompute the
// reference later.
if (auto callOp = dyn_cast<CallOpInterface>(use.getUser())) {
Operation *symCallable = callOp.resolveCallable(&symbolTable);
auto callableLatticeIt = callableLatticeState.find(symCallable);
if (callableLatticeIt != callableLatticeState.end()) {
callToSymbolCallable.try_emplace(callOp, symCallable);
// We only need to record the call in the lattice if it produces any
// values.
if (callOp->getNumResults())
callableLatticeIt->second.addSymbolCall(callOp);
}
continue;
}
// This use isn't a call, so don't we know all of the callers.
auto *symbol = symbolTable.lookupSymbolIn(op, use.getSymbolRef());
auto it = callableLatticeState.find(symbol);
if (it != callableLatticeState.end()) {
for (Region &region : it->first->getRegions())
markEntryBlockExecutable(&region, /*markPessimisticFixpoint=*/true);
}
}
};
SymbolTable::walkSymbolTables(op, /*allSymUsesVisible=*/!op->getBlock(),
walkFn);
}
void ForwardDataFlowSolver::visitOperation(Operation *op) {
// Collect all of the lattice elements feeding into this operation. If any are
// not yet resolved, bail out and wait for them to resolve.
SmallVector<AbstractLatticeElement *, 8> operandLattices;
operandLattices.reserve(op->getNumOperands());
for (Value operand : op->getOperands()) {
AbstractLatticeElement *operandLattice =
analysis.lookupLatticeElement(operand);
if (!operandLattice || operandLattice->isUninitialized())
return;
operandLattices.push_back(operandLattice);
}
// If this is a terminator operation, process any control flow lattice state.
if (op->hasTrait<OpTrait::IsTerminator>())
visitTerminatorOperation(op, operandLattices);
// Process call operations. The call visitor processes result values, so we
// can exit afterwards.
if (CallOpInterface call = dyn_cast<CallOpInterface>(op))
return visitCallOperation(call);
// Process callable operations. These are specially handled region operations
// that track dataflow via calls.
if (isa<CallableOpInterface>(op)) {
// If this callable has a tracked lattice state, it will be visited by calls
// that reference it instead. This way, we don't assume that it is
// executable unless there is a proper reference to it.
if (callableLatticeState.count(op))
return;
return visitCallableOperation(op);
}
// Process region holding operations.
if (op->getNumRegions()) {
// Check to see if we can reason about the internal control flow of this
// region operation.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op))
return visitRegionBranchOperation(branch, operandLattices);
for (Region &region : op->getRegions()) {
analysis.visitNonControlFlowArguments(op, RegionSuccessor(&region),
operandLattices);
// `visitNonControlFlowArguments` is required to define all of the region
// argument lattices.
assert(llvm::none_of(
region.getArguments(),
[&](Value value) {
return analysis.getLatticeElement(value).isUninitialized();
}) &&
"expected `visitNonControlFlowArguments` to define all argument "
"lattices");
markEntryBlockExecutable(&region, /*markPessimisticFixpoint=*/false);
}
}
// If this op produces no results, it can't produce any constants.
if (op->getNumResults() == 0)
return;
// If all of the results of this operation are already resolved, bail out
// early.
auto isAtFixpointFn = [&](Value value) { return isAtFixpoint(value); };
if (llvm::all_of(op->getResults(), isAtFixpointFn))
return;
// Visit the current operation.
if (analysis.visitOperation(op, operandLattices) == ChangeResult::Change)
opWorklist.push(op);
// `visitOperation` is required to define all of the result lattices.
assert(llvm::none_of(
op->getResults(),
[&](Value value) {
return analysis.getLatticeElement(value).isUninitialized();
}) &&
"expected `visitOperation` to define all result lattices");
}
void ForwardDataFlowSolver::visitCallableOperation(Operation *op) {
// Mark the regions as executable. If we aren't tracking lattice state for
// this callable, mark all of the region arguments as having reached a
// fixpoint.
bool isTrackingLatticeState = callableLatticeState.count(op);
for (Region &region : op->getRegions())
markEntryBlockExecutable(&region, !isTrackingLatticeState);
// TODO: Add support for non-symbol callables when necessary. If the callable
// has non-call uses we would mark as having reached pessimistic fixpoint,
// otherwise allow for propagating the return values out.
markAllPessimisticFixpoint(op, op->getResults());
}
void ForwardDataFlowSolver::visitCallOperation(CallOpInterface op) {
ResultRange callResults = op->getResults();
// Resolve the callable operation for this call.
Operation *callableOp = nullptr;
if (Value callableValue = op.getCallableForCallee().dyn_cast<Value>())
callableOp = callableValue.getDefiningOp();
else
callableOp = callToSymbolCallable.lookup(op);
// The callable of this call can't be resolved, mark any results overdefined.
if (!callableOp)
return markAllPessimisticFixpoint(op, callResults);
// If this callable is tracking state, merge the argument operands with the
// arguments of the callable.
auto callableLatticeIt = callableLatticeState.find(callableOp);
if (callableLatticeIt == callableLatticeState.end())
return markAllPessimisticFixpoint(op, callResults);
OperandRange callOperands = op.getArgOperands();
auto callableArgs = callableLatticeIt->second.getCallableArguments();
for (auto it : llvm::zip(callOperands, callableArgs)) {
BlockArgument callableArg = std::get<1>(it);
AbstractLatticeElement &argValue = analysis.getLatticeElement(callableArg);
AbstractLatticeElement &operandValue =
analysis.getLatticeElement(std::get<0>(it));
if (argValue.join(operandValue) == ChangeResult::Change)
visitUsers(callableArg);
}
// Visit the callable.
visitCallableOperation(callableOp);
// Merge in the lattice state for the callable results as well.
auto callableResults = callableLatticeIt->second.getResultLatticeElements();
for (auto it : llvm::zip(callResults, callableResults))
join(/*owner=*/op,
/*to=*/analysis.getLatticeElement(std::get<0>(it)),
/*from=*/std::get<1>(it));
}
void ForwardDataFlowSolver::visitRegionBranchOperation(
RegionBranchOpInterface branch,
ArrayRef<AbstractLatticeElement *> operandLattices) {
// Check to see which regions are executable.
SmallVector<RegionSuccessor, 1> successors;
analysis.getSuccessorsForOperands(branch, /*sourceIndex=*/llvm::None,
operandLattices, successors);
// If the interface identified that no region will be executed. Mark
// any results of this operation as overdefined, as we can't reason about
// them.
// TODO: If we had an interface to detect pass through operands, we could
// resolve some results based on the lattice state of the operands. We could
// also allow for the parent operation to have itself as a region successor.
if (successors.empty())
return markAllPessimisticFixpoint(branch, branch->getResults());
return visitRegionSuccessors(branch, successors, operandLattices,
[&](Optional<unsigned> index) {
return branch.getSuccessorEntryOperands(index);
});
}
void ForwardDataFlowSolver::visitRegionSuccessors(
Operation *parentOp, ArrayRef<RegionSuccessor> regionSuccessors,
ArrayRef<AbstractLatticeElement *> operandLattices,
function_ref<OperandRange(Optional<unsigned>)> getInputsForRegion) {
for (const RegionSuccessor &it : regionSuccessors) {
Region *region = it.getSuccessor();
ValueRange succArgs = it.getSuccessorInputs();
// Check to see if this is the parent operation.
if (!region) {
ResultRange results = parentOp->getResults();
if (llvm::all_of(results, [&](Value res) { return isAtFixpoint(res); }))
continue;
// Mark the results outside of the input range as having reached the
// pessimistic fixpoint.
// TODO: This isn't exactly ideal. There may be situations in which a
// region operation can provide information for certain results that
// aren't part of the control flow.
if (succArgs.size() != results.size()) {
opWorklist.push(parentOp);
if (succArgs.empty()) {
markAllPessimisticFixpoint(results);
continue;
}
unsigned firstResIdx = succArgs[0].cast<OpResult>().getResultNumber();
markAllPessimisticFixpoint(results.take_front(firstResIdx));
markAllPessimisticFixpoint(
results.drop_front(firstResIdx + succArgs.size()));
}
// Update the lattice for any operation results.
OperandRange operands = getInputsForRegion(/*index=*/llvm::None);
for (auto it : llvm::zip(succArgs, operands))
join(parentOp, analysis.getLatticeElement(std::get<0>(it)),
analysis.getLatticeElement(std::get<1>(it)));
continue;
}
assert(!region->empty() && "expected region to be non-empty");
Block *entryBlock = &region->front();
markBlockExecutable(entryBlock);
// If all of the arguments have already reached a fixpoint, the arguments
// have already been fully resolved.
Block::BlockArgListType arguments = entryBlock->getArguments();
if (llvm::all_of(arguments, [&](Value arg) { return isAtFixpoint(arg); }))
continue;
if (succArgs.size() != arguments.size()) {
if (analysis.visitNonControlFlowArguments(
parentOp, it, operandLattices) == ChangeResult::Change) {
unsigned firstArgIdx =
succArgs.empty() ? 0
: succArgs[0].cast<BlockArgument>().getArgNumber();
for (Value v : arguments.take_front(firstArgIdx)) {
assert(!analysis.getLatticeElement(v).isUninitialized() &&
"Non-control flow block arg has no lattice value after "
"analysis callback");
visitUsers(v);
}
for (Value v : arguments.drop_front(firstArgIdx + succArgs.size())) {
assert(!analysis.getLatticeElement(v).isUninitialized() &&
"Non-control flow block arg has no lattice value after "
"analysis callback");
visitUsers(v);
}
}
}
// Update the lattice of arguments that have inputs from the predecessor.
OperandRange succOperands = getInputsForRegion(region->getRegionNumber());
for (auto it : llvm::zip(succArgs, succOperands)) {
AbstractLatticeElement &argValue =
analysis.getLatticeElement(std::get<0>(it));
AbstractLatticeElement &operandValue =
analysis.getLatticeElement(std::get<1>(it));
if (argValue.join(operandValue) == ChangeResult::Change)
visitUsers(std::get<0>(it));
}
}
}
void ForwardDataFlowSolver::visitTerminatorOperation(
Operation *op, ArrayRef<AbstractLatticeElement *> operandLattices) {
// If this operation has no successors, we treat it as an exiting terminator.
if (op->getNumSuccessors() == 0) {
Region *parentRegion = op->getParentRegion();
Operation *parentOp = parentRegion->getParentOp();
// Check to see if this is a terminator for a callable region.
if (isa<CallableOpInterface>(parentOp))
return visitCallableTerminatorOperation(parentOp, op, operandLattices);
// Otherwise, check to see if the parent tracks region control flow.
auto regionInterface = dyn_cast<RegionBranchOpInterface>(parentOp);
if (!regionInterface || !isBlockExecutable(parentOp->getBlock()))
return;
// Query the set of successors of the current region using the current
// optimistic lattice state.
SmallVector<RegionSuccessor, 1> regionSuccessors;
analysis.getSuccessorsForOperands(regionInterface,
parentRegion->getRegionNumber(),
operandLattices, regionSuccessors);
if (regionSuccessors.empty())
return;
// Try to get "region-like" successor operands if possible in order to
// propagate the operand states to the successors.
if (isRegionReturnLike(op)) {
auto getOperands = [&](Optional<unsigned> regionIndex) {
// Determine the individual region successor operands for the given
// region index (if any).
return *getRegionBranchSuccessorOperands(op, regionIndex);
};
return visitRegionSuccessors(parentOp, regionSuccessors, operandLattices,
getOperands);
}
// If this terminator is not "region-like", conservatively mark all of the
// successor values as having reached the pessimistic fixpoint.
for (auto &it : regionSuccessors) {
// If the successor is a region, mark the entry block as executable so
// that we visit operations defined within. If the successor is the
// parent operation, we simply mark the control flow results as having
// reached the pessimistic state.
if (Region *region = it.getSuccessor())
markEntryBlockExecutable(region, /*markPessimisticFixpoint=*/true);
else
markAllPessimisticFixpointAndVisitUsers(it.getSuccessorInputs());
}
}
// Try to resolve to a specific set of successors with the current optimistic
// lattice state.
Block *block = op->getBlock();
if (auto branch = dyn_cast<BranchOpInterface>(op)) {
SmallVector<Block *> successors;
if (succeeded(analysis.getSuccessorsForOperands(branch, operandLattices,
successors))) {
for (Block *succ : successors)
markEdgeExecutable(block, succ);
return;
}
}
// Otherwise, conservatively treat all edges as executable.
for (Block *succ : op->getSuccessors())
markEdgeExecutable(block, succ);
}
void ForwardDataFlowSolver::visitCallableTerminatorOperation(
Operation *callable, Operation *terminator,
ArrayRef<AbstractLatticeElement *> operandLattices) {
// If there are no exiting values, we have nothing to track.
if (terminator->getNumOperands() == 0)
return;
// If this callable isn't tracking any lattice state there is nothing to do.
auto latticeIt = callableLatticeState.find(callable);
if (latticeIt == callableLatticeState.end())
return;
assert(callable->getNumResults() == 0 && "expected symbol callable");
// If this terminator is not "return-like", conservatively mark all of the
// call-site results as having reached the pessimistic fixpoint.
auto callableResultLattices = latticeIt->second.getResultLatticeElements();
if (!terminator->hasTrait<OpTrait::ReturnLike>()) {
for (auto &it : callableResultLattices)
it.markPessimisticFixpoint();
for (Operation *call : latticeIt->second.getSymbolCalls())
markAllPessimisticFixpoint(call, call->getResults());
return;
}
// Merge the lattice state for terminator operands into the results.
ChangeResult result = ChangeResult::NoChange;
for (auto it : llvm::zip(operandLattices, callableResultLattices))
result |= std::get<1>(it).join(*std::get<0>(it));
if (result == ChangeResult::NoChange)
return;
// If any of the result lattices changed, update the callers.
for (Operation *call : latticeIt->second.getSymbolCalls())
for (auto it : llvm::zip(call->getResults(), callableResultLattices))
join(call, analysis.getLatticeElement(std::get<0>(it)), std::get<1>(it));
}
void ForwardDataFlowSolver::visitBlock(Block *block) {
// If the block is not the entry block we need to compute the lattice state
// for the block arguments. Entry block argument lattices are computed
// elsewhere, such as when visiting the parent operation.
if (!block->isEntryBlock()) {
for (int i : llvm::seq<int>(0, block->getNumArguments()))
visitBlockArgument(block, i);
}
// Visit all of the operations within the block.
for (Operation &op : *block)
visitOperation(&op);
}
void ForwardDataFlowSolver::visitBlockArgument(Block *block, int i) {
BlockArgument arg = block->getArgument(i);
AbstractLatticeElement &argLattice = analysis.getLatticeElement(arg);
if (argLattice.isAtFixpoint())
return;
ChangeResult updatedLattice = ChangeResult::NoChange;
for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
Block *pred = *it;
// We only care about this predecessor if it is going to execute.
if (!isEdgeExecutable(pred, block))
continue;
// Try to get the operand forwarded by the predecessor. If we can't reason
// about the terminator of the predecessor, mark as having reached a
// fixpoint.
auto branch = dyn_cast<BranchOpInterface>(pred->getTerminator());
if (!branch) {
updatedLattice |= argLattice.markPessimisticFixpoint();
break;
}
Value operand = branch.getSuccessorOperands(it.getSuccessorIndex())[i];
if (!operand) {
updatedLattice |= argLattice.markPessimisticFixpoint();
break;
}
// If the operand hasn't been resolved, it is uninitialized and can merge
// with anything.
AbstractLatticeElement *operandLattice =
analysis.lookupLatticeElement(operand);
if (!operandLattice)
continue;
// Otherwise, join the operand lattice into the argument lattice.
updatedLattice |= argLattice.join(*operandLattice);
if (argLattice.isAtFixpoint())
break;
}
// If the lattice changed, visit users of the argument.
if (updatedLattice == ChangeResult::Change)
visitUsers(arg);
}
ChangeResult
ForwardDataFlowSolver::markEntryBlockExecutable(Region *region,
bool markPessimisticFixpoint) {
if (!region->empty()) {
if (markPessimisticFixpoint)
markAllPessimisticFixpoint(region->front().getArguments());
return markBlockExecutable(&region->front());
}
return ChangeResult::NoChange;
}
ChangeResult ForwardDataFlowSolver::markBlockExecutable(Block *block) {
bool marked = executableBlocks.insert(block).second;
if (marked)
blockWorklist.push(block);
return marked ? ChangeResult::Change : ChangeResult::NoChange;
}
bool ForwardDataFlowSolver::isBlockExecutable(Block *block) const {
return executableBlocks.count(block);
}
void ForwardDataFlowSolver::markEdgeExecutable(Block *from, Block *to) {
executableEdges.insert(std::make_pair(from, to));
// Mark the destination as executable, and reprocess its arguments if it was
// already executable.
if (markBlockExecutable(to) == ChangeResult::NoChange) {
for (int i : llvm::seq<int>(0, to->getNumArguments()))
visitBlockArgument(to, i);
}
}
bool ForwardDataFlowSolver::isEdgeExecutable(Block *from, Block *to) const {
return executableEdges.count(std::make_pair(from, to));
}
void ForwardDataFlowSolver::markPessimisticFixpoint(Value value) {
analysis.getLatticeElement(value).markPessimisticFixpoint();
}
bool ForwardDataFlowSolver::isAtFixpoint(Value value) const {
if (auto *lattice = analysis.lookupLatticeElement(value))
return lattice->isAtFixpoint();
return false;
}
void ForwardDataFlowSolver::join(Operation *owner, AbstractLatticeElement &to,
const AbstractLatticeElement &from) {
if (to.join(from) == ChangeResult::Change)
opWorklist.push(owner);
}
//===----------------------------------------------------------------------===//
// AbstractLatticeElement
//===----------------------------------------------------------------------===//
AbstractLatticeElement::~AbstractLatticeElement() = default;
//===----------------------------------------------------------------------===//
// ForwardDataFlowAnalysisBase
//===----------------------------------------------------------------------===//
ForwardDataFlowAnalysisBase::~ForwardDataFlowAnalysisBase() = default;
AbstractLatticeElement &
ForwardDataFlowAnalysisBase::getLatticeElement(Value value) {
AbstractLatticeElement *&latticeValue = latticeValues[value];
if (!latticeValue)
latticeValue = createLatticeElement(value);
return *latticeValue;
}
AbstractLatticeElement *
ForwardDataFlowAnalysisBase::lookupLatticeElement(Value value) {
return latticeValues.lookup(value);
}
void ForwardDataFlowAnalysisBase::run(Operation *topLevelOp) {
// Run the main dataflow solver.
ForwardDataFlowSolver solver(*this, topLevelOp);
solver.solve();
// Any values that are still uninitialized now go to a pessimistic fixpoint,
// otherwise we assume an optimistic fixpoint has been reached.
for (auto &it : latticeValues)
if (it.second->isUninitialized())
it.second->markPessimisticFixpoint();
else
it.second->markOptimisticFixpoint();
}

View File

@ -11,7 +11,6 @@
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlowAnalysis.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"

View File

@ -11,7 +11,6 @@
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlowAnalysis.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Transform/Transforms/Passes.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"

View File

@ -1,24 +0,0 @@
// RUN: mlir-opt -test-data-flow --allow-unregistered-dialect %s 2>&1 | FileCheck %s
// CHECK-LABEL: Testing : "loop-arg-pessimistic"
module attributes {test.name = "loop-arg-pessimistic"} {
func.func @f() -> index {
// CHECK: Visiting : %{{.*}} = arith.constant 0
// CHECK-NEXT: Result 0 moved from uninitialized to 1
%c0 = arith.constant 0 : index
// CHECK: Visiting : %{{.*}} = arith.constant 1
// CHECK-NEXT: Result 0 moved from uninitialized to 1
%c1 = arith.constant 1 : index
// CHECK: Visiting region branch op : %{{.*}} = scf.for
// CHECK: Block argument 0 moved from uninitialized to 1
%0 = scf.for %arg1 = %c0 to %c1 step %c1 iter_args(%arg2 = %c0) -> index {
// CHECK: Visiting : %{{.*}} = arith.addi %{{.*}}, %{{.*}}
// CHECK-NEXT: Arg 0 : 1
// CHECK-NEXT: Arg 1 : 1
// CHECK-NEXT: Result 0 moved from uninitialized to 1
%10 = arith.addi %arg1, %arg2 : index
scf.yield %10 : index
}
return %0 : index
}
}

View File

@ -2,7 +2,6 @@
add_mlir_library(MLIRTestAnalysis
TestAliasAnalysis.cpp
TestCallGraph.cpp
TestDataFlow.cpp
TestDataFlowFramework.cpp
TestLiveness.cpp
TestMatchReduction.cpp

View File

@ -1,127 +0,0 @@
//===- TestDataFlow.cpp - Test data flow analysis system -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains test passes for defining and running a dataflow analysis.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlowAnalysis.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
namespace {
struct WasAnalyzed {
WasAnalyzed(bool wasAnalyzed) : wasAnalyzed(wasAnalyzed) {}
static WasAnalyzed join(const WasAnalyzed &a, const WasAnalyzed &b) {
return a.wasAnalyzed && b.wasAnalyzed;
}
static WasAnalyzed getPessimisticValueState(MLIRContext *context) {
return false;
}
static WasAnalyzed getPessimisticValueState(Value v) {
return getPessimisticValueState(v.getContext());
}
bool operator==(const WasAnalyzed &other) const {
return wasAnalyzed == other.wasAnalyzed;
}
bool wasAnalyzed;
};
struct TestAnalysis : public ForwardDataFlowAnalysis<WasAnalyzed> {
using ForwardDataFlowAnalysis<WasAnalyzed>::ForwardDataFlowAnalysis;
ChangeResult
visitOperation(Operation *op,
ArrayRef<LatticeElement<WasAnalyzed> *> operands) final {
ChangeResult ret = ChangeResult::NoChange;
llvm::errs() << "Visiting : ";
op->print(llvm::errs());
llvm::errs() << "\n";
WasAnalyzed result(true);
for (auto &pair : llvm::enumerate(operands)) {
LatticeElement<WasAnalyzed> *elem = pair.value();
llvm::errs() << "Arg " << pair.index();
if (!elem->isUninitialized()) {
llvm::errs() << " : " << elem->getValue().wasAnalyzed << "\n";
result = WasAnalyzed::join(result, elem->getValue());
} else {
llvm::errs() << " uninitialized\n";
}
}
for (const auto &pair : llvm::enumerate(op->getResults())) {
LatticeElement<WasAnalyzed> &lattice = getLatticeElement(pair.value());
llvm::errs() << "Result " << pair.index() << " moved from ";
if (lattice.isUninitialized())
llvm::errs() << "uninitialized";
else
llvm::errs() << lattice.getValue().wasAnalyzed;
ret |= lattice.join({result});
llvm::errs() << " to " << lattice.getValue().wasAnalyzed << "\n";
}
return ret;
}
ChangeResult visitNonControlFlowArguments(
Operation *op, const RegionSuccessor &successor,
ArrayRef<LatticeElement<WasAnalyzed> *> operands) final {
ChangeResult ret = ChangeResult::NoChange;
llvm::errs() << "Visiting region branch op : ";
op->print(llvm::errs());
llvm::errs() << "\n";
Region *region = successor.getSuccessor();
Block *block = &region->front();
Block::BlockArgListType arguments = block->getArguments();
// Mark all arguments to blocks as analyzed unless they already have
// an unanalyzed state.
for (const auto &pair : llvm::enumerate(arguments)) {
LatticeElement<WasAnalyzed> &lattice = getLatticeElement(pair.value());
llvm::errs() << "Block argument " << pair.index() << " moved from ";
if (lattice.isUninitialized())
llvm::errs() << "uninitialized";
else
llvm::errs() << lattice.getValue().wasAnalyzed;
ret |= lattice.join({true});
llvm::errs() << " to " << lattice.getValue().wasAnalyzed << "\n";
}
return ret;
}
};
struct TestDataFlowPass
: public PassWrapper<TestDataFlowPass, OperationPass<ModuleOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDataFlowPass)
StringRef getArgument() const final { return "test-data-flow"; }
StringRef getDescription() const final {
return "Print the actions taken during a dataflow analysis.";
}
void runOnOperation() override {
llvm::errs() << "Testing : " << getOperation()->getAttr("test.name")
<< "\n";
TestAnalysis analysis(getOperation().getContext());
analysis.run(getOperation());
}
};
} // namespace
namespace mlir {
namespace test {
void registerTestDataFlowPass() { PassRegistration<TestDataFlowPass>(); }
} // namespace test
} // namespace mlir

View File

@ -70,7 +70,6 @@ void registerTestConstantFold();
void registerTestControlFlowSink();
void registerTestGpuSerializeToCubinPass();
void registerTestGpuSerializeToHsacoPass();
void registerTestDataFlowPass();
void registerTestDataLayoutQuery();
void registerTestDeadCodeAnalysisPass();
void registerTestDecomposeCallGraphTypes();
@ -173,7 +172,6 @@ void registerTestPasses() {
mlir::test::registerTestGpuSerializeToHsacoPass();
#endif
mlir::test::registerTestDecomposeCallGraphTypes();
mlir::test::registerTestDataFlowPass();
mlir::test::registerTestDataLayoutQuery();
mlir::test::registerTestDeadCodeAnalysisPass();
mlir::test::registerTestDominancePass();